Partial order: a relation that is reflexive, antisymmetric and transitive.

Examples:

- The relation R on \mathbb{Z} where xRy if $x \geq y$,
- The relation R on the collection of alls sets where xRy if $x \subseteq y$,
- The relation R on \mathbb{Z} where xRy if x|y.

Equivalence relation: a relation that is reflexive, symmetric and transitive.

Examples:

- The relation R on \mathbb{Z} where xRy if x-y is divisible by 5.
- The relation R on the set of all people where xRy if x and y have the same age.

A relation R on a set A can be represented as a directed graph $G_R = (A, E)$ as follows:

The vertices of G_R are the elements of AThe edge set $E = \{(a, b) \in A \times A | aRb\}$.

A relation R on a set $A = \{a_1, a_2, \dots, a_n\}$ can be represented by an $n \times n$ relation matrix A as follows:

$$A_{i,j} = \begin{cases} 1 & \text{if } a_i R a_j \\ 0 & \text{otherwise} \end{cases}$$

Note that the relation matrix of R is the adjacency matrix of the directed graph representing R.

Partial Orders

Given a partial order R on a set A:

An element $x \in A$ is maximal if

$$\forall_{a \in A} x Ra \to x = a.$$

An element $x \in A$ is minimal if

$$\forall_{a \in A} aRx \to x = a.$$

An element $x \in A$ is a greatest element if

$$\forall_{a \in A} aRx$$
.

An element $x \in A$ is a least element if

$$\forall_{a \in A} x Ra$$
.

Let $B \subseteq A$.

An element $x \in A$ is a lower bound of B if

$$\forall_{b \in B} x R b$$
.

An element x is a greatest lower bound (glb) of B if x is a lower bound of B, and for every lower bound x' of B, x'Rx.

Let $B \subseteq A$.

An element $x \in A$ is a upper bound of B if

$$\forall_{b \in B} bRx$$
.

An element x is a least upper bound (lub) of B if x is an upper bound of B, and for every upper bound x' of B, xRx'.