Combinations with repititions:

The number of ways to distribute objects of n different types over r different containers equals:

$$C(n+r-1,r)$$

(assuming there are enough objects of each type)

Examples:

The number of ways to choose three integers i, j, k, where $0 \le i \le j \le k \le 100$

The number of times the print statement is executed in the program:

for i := 1 to 20 do for j := i to 20 do for k := j to 20 do print (i * j + k)

Self-test

- 1. How many ways to give 10 different books to Mary, William and Charles so that Mary receives 3 books, William 5, and Charles 2?
- 2. How many ways to distribute 10 identical pens to William, Mary and Charles?
- 3. How many ways to distribute 3 types of pens over 10 different people?
- 4. How many ternary strings of length 10 are there with three zeros and five ones?
- 5. When six dice are cast, how many different outcomes are there? Are they all equally probable?

Lexicographic order

A string $x_1x_2...x_n$ is lexicographically less than $y_1y_2...y_n$ if for some $i, 1 \le i \le n$

- $x_j = y_j$ for all j so that $1 \le j < i$, and
- $\bullet x_i < y_i$

For example, 21345 is lexicographically less than 21534, and 12345 is lexicographically less than all other permutations of 1,2,3,4,5.

Generating permutations

Input: n.

Output: all permutations of 1, 2, ..., n, listed in lexicographic order.

1. Start with the permutation

$$s_1 = 1, s_2 = 2, \dots, s_n = n$$
.

- 2. Find the rightmost element s_i so that $s_{i-1} < s_i$.
- 3. Find the smallest element s_j so that $s_j > s_i$ and j > i.
- 4. Swap s_i and s_j .
- 5. Rearrange the elements $s_{i+1} \dots s_n$ in increasing order.
- 6. Repeat steps 2–5 until no element s_i can be found in step 2 (so all s_i 's are in decreasing order).