Derangements

A derangement is an arrangement of the integers $1 \dots n$ so that none of the integers stays in its natural position.

Example: all derangements of 1234

 $2143 \ 3142 \ 4123$

2341 3412 4312

2413 3421 4321

The number of derangements of $1 \dots n$ is denoted by d_n , and can be calculated with the inclusion/exclusion formula:

$$d_n = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \dots$$

$$= \sum_{t=0}^{n} (-1)^n \binom{n}{t}(n-t)!$$

$$= n! \sum_{t=0}^{n} (-1)^n \frac{1}{t!}$$

Maclaurin series for the exponential function:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{t=0}^{\infty} \frac{x^t}{t!}.$$

For x = -1:

$$e^{-1} = 1 + (-1) + \frac{1}{2!} - \frac{1}{3!} + \dots = \sum_{t=0}^{\infty} (-1)^t \frac{1}{t!}.$$

The Travelling Salesman Problem

INPUT: A set of points V, and a travel cost w_{uv} for each pair of points u, v in V.

Objective: find a tour through all the points of V so that the total travel cost is minimized.

Example.

Travel cost: