next up previous
Next: About this document ...

Partial order: a relation that is reflexive, antisymmetric and transitive.

Examples:




Equivalence relation: a relation that is reflexive, symmetric and transitive.

Examples:

A relation $R$ on a set $A$ can be represented as a directed graph $G_R=(A,E)$ as follows:

The vertices of $G_R$ are the elements of $A$
The edge set $E=\{ (a,b)\in A\times A\vert aRb\}$.




A relation $R$ on a set $A=\{ a_1,a_2,\dots, a_n\}$ can be represented by an $n\times n$ relation matrix $A$ as follows:


\begin{displaymath}
A_{i,j}=\left\{
\begin{array}{ll}
1&\mbox{if $a_iRa_j$}\\
0&\mbox{otherwise}
\end{array}\right.
\end{displaymath}

Note that the relation matrix of $R$ is the adjacency matrix of the directed graph representing $R$.

Partial Orders

Given a partial order $R$ on a set $A$:

An element $x\in A$ is maximal if


\begin{displaymath}
\forall_{a\in A} xRa\rightarrow x=a.
\end{displaymath}

An element $x\in A$ is minimal if


\begin{displaymath}
\forall_{a\in A} aRx\rightarrow x=a.
\end{displaymath}




An element $x\in A$ is a greatest element if


\begin{displaymath}
\forall_{a\in A} aRx.
\end{displaymath}

An element $x\in A$ is a least element if


\begin{displaymath}
\forall_{a\in A} xRa.
\end{displaymath}

Let $B\subseteq A$.

An element $x\in A$ is a lower bound of $B$ if


\begin{displaymath}
\forall_{b\in B} xRb.
\end{displaymath}

An element $x$ is a greatest lower bound (glb) of $B$ if $x$ is a lower bound of $B$, and for every lower bound $x'$ of $B$, $x'Rx$.




Let $B\subseteq A$.

An element $x\in A$ is a upper bound of $B$ if


\begin{displaymath}
\forall_{b\in B} bRx.
\end{displaymath}

An element $x$ is a least upper bound (lub) of $B$ if $x$ is an upper bound of $B$, and for every upper bound $x'$ of $B$, $xRx'$.




next up previous
Next: About this document ...
Jeannette Janssen
2002-04-05