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List colourings

A common requirement in real-life applications of graph colouring is that
the “colours” available are limited by external considerations. This concept
gives rise to the concept of list colouring.

Given a graph G = (V| E) and a colour set A, a list assignment is a
function L : V' — P(A). The set L(v) is called the list at vertex v, and
represents the set of possible colours at v. A list colouring for a given graph
G and list assignment L is a proper colouring f of G such that, for allv € V,
f(v) € L(v). A graph G is k-choosable or k-list colourable if, for every list
assignment such that, for all v € V', |L(v)| = k, there exists a list colouring
of (G, L). The list chromatic number x,(G) of G is the least k so that G is
k-choosable.

One possible list assignment is to give each vertex the same list. In
this case, the problem reverts to the regular colouring problem, and a list
colouring exists precisely when the graph has chromatic number at least as
large as the size of the common list. Thus, for every graph G, x,(G) > x(G).
We will see in a presentation in class that there exist bipartite graphs with
arbitrary large list chromatic number, so the gap between x,(G) and yg can
be arbitrarily large.

Given a list assignment, we can also employ the greedy colouring al-
gorithm to find a list colouring. As before, vertices are coloured in pre-
determined order. At each vertex v, a colour in L(v) is chosen which does
not appear on any of the coloured neighbours. Clearly, if L(v) is of larger
size than the number of coloured neighbours, such a colour exists. There-
fore, if we have a greedy ordering vy, vs, ..., v, such that, for every vertex
v, |N(v;) N {v1,v9,. .., 0,1} < k, then the graph is (k 4 1)-choosable. For
example, for the graph in assignment 1 formed by intersecting lines in the
plane, the vertices could be ordered so that each vertex has at most two
coloured neighbours. Thus the list-chromatic number is at most 3. Similarly,
if we have a perfect elimination ordering, then each vertex has at most w —1
coloured neighbours, so x/(G) = x(G) = w(G).

We have seen that there are many connections between colourings and
orientations. Here is one more. First we need some definition. Given an
orientation of a graph, the out-degree of a vertex v, notation deg™(v), is the



number of edges that have v as their tail. A kernel is an independent set A
in G so that each vertex v € V(G) is either in a, or is the tail of an edge
with head in A.

Theorem 1. Let G = (V, E) be a graph. If G has an orientation such that
every induced subgraph has a kernel, and L : V — C is a list assignment
for V' so that, for allv € V, |L(v)| > deg™ (v) + 1, then there exists a list
colouring of (G, L).

Proof. The proof is by induction on the total number of edges of G. If G
has no edges, then G satisfies the condition trivially, and each vertex has
out-degree 0. So for any assignment of lists of size at least 1, a list-colouring
can be found. Fix a colour ¢ € (', and let GG, be the subgraph by all vertices
whose list contains colour ¢. By assumption, G, has a kernel, say A. Assign
colour ¢ to all vertices of A.

Now consider H = G — A, and let Ly be a list assignment for H obtained
by removing colour v: Ly(v) = L(v) — {c} for all v € V — A. Now for
each v of G. — A, we have that deg};(v) = degt(v) — 1, where degf (V) is
the out-degree of v in H. On the other hand, |Ly(v)| = |L(v)| — 1. So
|Lg(v)| > degj;(v) + 1. For vertices in H which are not in G., so whose list
does not contain v, degj;(v) < deg®(v) < |Ly(v)| — 1.

Thus H satisfies the conditions, so by induction there exists a list colour-
ing of (H, Ly). Adding the vertices in A, coloured with colour ¢, makes this
into a list colouring for (G, L).
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The concept of list colouring can be equally applied to edge colourings.
Thus, x;(G) is the list chromatic index of G, and is the minimum number
k such that, for any assignment of lists of size k to the edges of GG, a list
colouring can always be found.

In general, edge colourings are "nicer” than vertex colourings. For ex-
ample, we have the theorem that, for all bipartite graphs G, x'(G) = A(G).
In fact, for simple graphs G, we have that x'(G) < A + 1. (Proof of this
theorem skipped in this class, but worth looking up!) This led Vizing to the
following conjecture.

[Vizing] For all graphs G, x,(G) = X'(G).

The conjecture was proved for bipartite graphs. For bipartite graphs,
the line graph has an obvious representation. Each edge x;,y; in a graph
with bipartition X,Y can be represented as a subsquare in an |X| x |Y|
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square, where each row corresponds to an element of X, and each column
to an element of Y. Subsquares are connected iff they are in the same row
and column. It turns out that, for a specific orientation of the line graph, a
kernel can be found using the concept of stable matchings.

Given sets X = {z1,29,...,23} and Y = {y1.92,...,yn}, as well as a
ranking of the elements of Y for each element of X, and a ranking of the
elements of X for each element of Y, a stable matching is a subset M of
X x Y such that each element of X and each element of Y occurs exactly
once in M (so M is a perfect matching), and, for every pair (z,y) not in M,
the following holds. Let 2’ be the unique element of X matched to y, and
y' the unique element of Y matched to . (So (x,y’) and (2/,y) are in M).
Then x prefers v’ to y or y prefers 2’ to x.

Gale and Shapley showed that a stable matching always exists, no matter
how the rankings are, and they gave an algorithm to find such a matching.

Lemma 2. If G is a bipartite graph with maximum degree A, then L(G) has
an orientation with the property that each subgraph of L(G) has a kernel, and
each vertex of L(G) has out-degree at most A — 1.

Proof. Assume wlog that |X| = |Y| = n. (If not, add isolated vertices.) Let
k= A(G). Let f: X XY — [k]| be a vertex colouring of L(G) with k colours.
By Ko6nig’s theorem, such a colouring exists. Now orient the edges of L(G) as
follows. Horizontally, orient edges from larger colours to smaller colours. So
if ¢(x,y) > c(z,y’) then the edge is oriented from (z,y) to (z,y’). Vertically,
orient edges from smaller colours to larger colours, so if ¢(z,y) > c¢(2’,y) then
the edge is oriented from (2/,y) to (z,vy).

Note that each vertex (z,y) has out-degree at most & — 1. Namely, Let
c(x,y) = i. Then any horizontal edge from (z,y) to a vertex (x,7’) must go
to a vertex of colour in {1,2,...,7 — 1}, while any vertical edge must go to a
vertex (z',y) of colour in {i+1,...,k}. Since each colour can occur at most
once in any row or column, this implies that any vertex has out-degree at
most k& — 1.

Now consider any induced subgraph H of L(G). Form the following
preference lists. Each vertex x ranks the vertices in Y as follows. First,
elements y € Y so that (z,y) is in H are ranked, in increasing order of the
colour of the pair (x,y). Then, the other elements of Y are ranked in any
arbitrary order, but all being of less preference than the first set. Each vertex
y ranks the vertices in X as follows. First, elements x € X so that (z,y) is in
H are ranked in decreasing order of the colour of the pair (z,y). Then, the
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other elements of X are ranked in any arbitrary order, but of less preference
than the first set.

Let M be a stable matching for these preference rankings. We claim that
the set A consisting of all pairs (x,y) in M that correspond to vertices in H
forms a kernel in H with the given orientation. Let (z,y) be a pair occurring
in H which is not in A. Let 2/ € X and ¢y € Y be so that (x,y’) and (2, y)
are in M (such elements must exist). By the definition of a stable matching,
x prefers 3/ to y or y prefers 2’ to x. If x prefers ¢’ to y, then the pair (x,y’)
must be in H, and ¢(z,y’) < c¢(x,y). Therefore, (x,y") € A (by definition of
the ranking) and there is an edge directed from (z,y) to (x,y’). If y prefers
2’ to x, then the pair (z/,y) must be in H, and ¢(z,y) < ¢(2’,y). Therefore,
(#’,y) € A and there is an edge directed from (z,y) to (z',y). Therefore,
(x,y) is the tail of at least one edge with head in A. Thus, A is a kernel. [J

The proof of the following theorem now follows from the previous lemma
and theorem.

Theorem 3 (Galvin, '94). For all bipartite graphs G, x,(G) = X'(G).



