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Designs

In this chapter we give an introduction to a large and important
area of combinatorial theory which is known as design theory. The
most general object that is studied in this theory is a so-called
incidence structure. This is a triple 8 = (P, B, I}, where:

(1) P is a set, the elements of which are called points;

(2) Bis a set, the elements of which are called blocks;

(3) 1is an incidence relation between P and B (i.e. IC P x B).
The elements of I are called flags.

If (p, B) € I, then we say that point p and block B are incident.
We allow two different blocks By and By to be incident with the
same subset of points of P. In this case one speaks of “repeated
blocks”. If this does not happen, then the design is called a simple
design and we can then consider blocks as subsets of P. 1In fact,
from now on we shall always do that, taking care 1o realize that
different blocks are possibly the same subset of P. This allows us
to replace the notation (p, B)elIbypc B, and we shall often say
that point p is “in block B” instead of incident with B.

It has become customary to denote the cardinality of P by v and
the cardinality of B by b. So the incidence structure then is a set
of v points and a collection of b not necessarily distinct subsets of
the point set. The structure obtained by replacing each block by
its complement is, of course called the complement of the structure.
(This means that we replace I by its complement in P x B.)

To obtain an interesting theory, we must lmpose some regularity
conditions on the structure S. As a first example, we mention
incidence structures that have the confusing name “linear spaces’.
Here the biocks are usually called lines and the regularity conditions
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are that every line contains (i.e.1s incident with) at least two points
and any two points are on exactly one line. Example 19.6 below
shows a simple but important linear space. The following theorem
is due to De Bruijn and Erdds (1948). The elegant proof is due to

Conway.

TrEOREM 19.1. For a linear space we have b = L or b > v, and
equality implies that for any two lines there is exactly one point

ineident with both.

Proor: For z € P, denote by 7z the number of lines incident with
z, and similarly for B € B, let kp be the number of points on B.
Let there be more than one line. If z ¢ L then 7o 2 k; because
there are kg lines “joining” x to the points on L. Suppose b < v.
Then b(v — kz) = v(b— rp) and hence

1 1
13221}{6—7’1) Zz:Zb('uﬂkL):1

LeB z¢ L

and this implies that in all the inequalities, equality must hold.
Therefore v = b, and 7o = KL if x ¢ L. Cl

A trivial example of equality in Theorem 19.1 is a so-called near
pencil, a structure with one line that contains all the points but
one, and all pairs containing that point as lines of size two. Much
more interesting examples are the projective planes that we shall
define later in this chapter.

In the rest of this chapter, we chall be interested in highly reguiar
incidence structures called “t_designs”. Let v, k¢ and X be integers
withv > k>t >0and A > L A t-design on v points with blocksize
L and indez ) is an incidence structure D = (P, B,1) with:

(i) llpt =

(i) |B} =k for all B e B,

(iil) for any set T of ¢ points, there are exactly ) blocks incident

with all points in T _

So all blocks have the same size and every t-subset of the point set
is contained in the same number of blocks. Two different notations
for such a design are widely used, namely t-{v,k,A) design and
Sy (t, k,v). We shall use both of them. A Steiner system S(t, k,v)
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is a t-design with A = 1, and we suppress the index in the notation.
Most of the early theory of designs originated in statistics, where 2-
designs are used in the design of experiments for statistical analysis.
These designs are often called balanced incomplete block designs
(BIBDs). Usually trivial designs are exciuded from the theory: a
design with one block that contains all the points or a design that
has all the k-subsets of the point set as blocks is of course a t-design
for £ < k, but is not very interesting. ‘
We give a few examples; more will follow further on.

ExaMPLE 19.1. Let the nonzero vectors of F} be the points. As
blocks we take all triples {x,y,2} with x +y +2z = 0. Any pair
x,y with X # ¥ uniquely determines a third element z, different
from both, satisfying this equation. So we have constructed an
5(2,3,15). The blocks are the 2-dimensional subspaces of IF} with
0 deleted.

We construct a second design by taking all the vectors as point
set and defining blocks to be 4-tuples {w,x,y,z} for which w +
x 4y + 2 = 0. This defines an 5(3,4,16). Note that if we take the
blocks that contain 0 and delete this vector, we find the blocks of
the previous design.

EXAMPLE 19.2. We take the ten edges of a K5 as point set. Fach
of the three kinds of 4-tuples shown in Fig. 19.1 will be a block.

ﬁ Go———3
Figure 19.1

There are 5110415 = 30 blocks. No triple {of edges) is contained
in more than one block. Therefore the blocks contain 120 different
triples, i.e. all the triples. We have constructed an S(3,4, 10).
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ExXAMPLE 19.3. Let H be a normalized Hadamard matrix of order
4k. Delete the first row and the first column. We now identify
points with rows of this matrix. Each column defines a subset of
the rows, namely those rows for which there is a + in that column.
These subsets are the blocks. From the argument in Theorem 18.1,
we see that any pair of points is contained in exactly k—1 blocks and
clearly all blocks have size 2k—1. We have a 2-(4k—1,2k — 1,k — 1)
design and such a design is called a Hadomard 2-design.

Consider the same matrix J but now delete only the first row.
Each of the other rows determines two 2k-subsets of the set of
columns. This partition is unaffected if we change the sign of the
row. The argument of Theorem 18.1 now shows that for any three
columns, there are exactly k — 1 of the subsets that have three
elements in these columns. So these 2k-sets are the blocks of a
3-(4k, 2k, k — 1} design called a Hadamard 3-design.

ExaMPLE 10.4. Consider a regular Hadamard matrix of order 4u?
(see Example 18.2). If we replace + by 1 and — by 0, we find
a (0,1)-matrix with 2u® + u ones in every row and column, and
furthermore, any two rows or columns have inner product u? 4 .

Let the columns be the characteristic functions of the blocks of a
design on 4u* points. The properties of the matrix show that this
is a 2-(4u?, 2u® + u, 1% + u) design. One usually prefers considering
the complement of this design, i.e. a 2- (4u?, ou? —u, u? —u) design.

PROBLEM 10A. Here are two more examples in the spirit of Ex-
ample 19.2.

(i) Take the edges of K¢ as points of an incidence structure. The
blocks are to be all sets of three edges that either are the edges of
a perfect matching, or the edges of a triangle. Show that this is an
5(2,3,15) and show that it is isomorphic to the design in Example
10.1. '

(ii) Take the edges of K7 as points of an incidence structure.
The blocks are to be all sets of five edges of these three types: (a)
“claws” with five edges incident with a common vertex, (b) edge
sets of pentagon subgraphs, and (¢} five edges that form a triangle
and two disjoint edges. Show that this is an S3(3, 5,21).

We now give two elementary theorems on f-designs.
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THEOREM 19.2. The number of blocks of an Sx(t, k,v) is

(19._1) b= )\(";)/(i) .

ProoOF: Count in two ways the number of pairs {T', B), where Tis
4 f-subset of P and B is a block incident with all points of 7. We
find A(Y) = b(}). O
THEOREM 19.3. Given i, 0 <1t <{, the number of blocks incident
with all the points of an i-subset I of P is

(19.2) b:A(’:’::)/(f:z)

That is, every Sy(t, k,v) is also an i-design fori <t.
Proor: Count in two ways the number of pairs (7, B), where I'

is a t-subset of P that contains I and B is a block that is incident
with all the points of T'. [l

COROLLARY. If D is a t-design with point set P and block set B
and if T is & subset of P with |I| < t, then the point set P\I and
the blocks {B\I : I C B} form an S5)(t —4,k —4,v— 1). This design
is called the derived design Dj. '

In Example 19.1 we already saw an example of a derived design.

If we take I = {0}, the derived design for S(3,4, 16) is S(2, 3, 15).
ProBLEM 19B. Show that an S(3,6,11) does not exist.

The number of blocks incident with any point, i.e. b1, is usually
denoted by r (replication number). Two special cases of Theorem
19.3 are the following relations for the parameters of a 2-design:

(19.3) bk = vr,

(19.4) My — 1) =r{k—1).

THROREM 19.4. Let 0 < j < t. The number of blocks of an
Sy(t, k,v) that are incident with none of the points of & j-subset J
of P is

(19.5) bﬂ'zA(v;j\)/(Z:D.

S B D
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PROOF: For x € P, let B, be the set of blocks incident with z. We
use inclusion-exclusion, Theorem 10.1. We find that

The result follows by substitution of (19.2) and then using (10.5).

Tt is quicker to observe that bl apparently does not depend on
the particular set J and then count in two ways the pairs {J, B),
where J is a j-subset of P and JN B = 8. So ()b =b(*;). Then
the result follows from Theorem 19.2. O

COROLLARY. Ifi-j < t, then the number of blocks of an Si{t, k,v)
that are incident with all of a set of ¢ points and none of a disjoint
set of j points is a constant

N,

p—ty

(=)
PROOF: The result follows upon application of Theorem 19.4 to
the (¢ — 1)-design Dy, where I is the set of i points. ]

(19.6) b =

COROLLARY. If.J is a j-subset of P, j <t, then the poinb set PN
and the blocks B with BnJ = 0 form an S,(t — j, k,v — j) called
the residual design D’.

PrROBLEM 19C. Prove that the complement of an Sy(t, k,v) is a
t-design and determine its parameters.

EXAMPLE 19.5. Consider a Hadamard 3-design 3-(4k, 2k, & — 1)
and form the residual with respect to a set with one point. We find
a Hadamard 2-design 2-(4k — 1,2k, k), i.e. the complement of the
design of Example 19.3.

An obvious necessary condition for the existence of an Si{t, k,v)
is that the numbers b; of (19.2) are integers. However, this condition
is not sufficient. An S(10, 16,72) does not exist, as 18 dernonstrated
by the following theorem due to Tits (1964).




ith . We

g (10.5).
apend on
rs (J, B),
*). Then

O

St k,v)
3 disjoint

1194 to
]

set P\J
7} called

Lo)is a

Lk—1)
We find
1t of the

At k)

ondition
nstrated

PrOOF: In a Steiner system, aiy
-1 points in common. Choose a set S
in any block. For each
block By containing 7.
not in §, and any point
such block By since two such

19. Designs

THEOREM 19.5. In any nontrivial Steiner system S(t, k,v),

v (t+D(E—t+1).

two distinct blocks have at most
of t+1 points not contained
set T C § with |T| = t, there is 2 unigue
Each such Br is incident with k — 1 points
not in S is incident with at most one
blocks already have ¢ — 1 points of
S in common. This shows that the union of all blocks Br contains
(t+1)+ ¢+ Dk - t) points and the result, follows. O

Given an incidence structure with \P| = v and B} = b, the
incidence matriz N is the v by b matrix with rows indexed by the
elements p of P, columns indexed by the elements B of B, and
with the entry N(p,B) = 1 if pis incident with B, N{p,B) =0
otherwise. Note that the eniry in row p and column ¢ of NNT
is the sum of N(p, B)N (¢, B) over all blocks B, and this is the
number of blocks that contain both p and g. Dually, the entry in
row A and column B of N TN is the cardinality of AN B.

Two designs D and D’ with incidence matrices N and N’ are
called isomorphic or equivalent if there are permutation matrices P

and Q such that N’ = PNQ.
We shall often identify N with the design, i.e. we refer to the
haracteristic functions of blocks.

columns as blocks instead of as ¢
rix of a 2-design, then NN T has

Now if N is the incidence mat
the entry r everywhere o1 the diagonal and entries A in all other

positions, 1.e.

(19.7) NNT = (r— X+ AJ,

where I and J are v by v matrices.

ProsrLEM 19D. Let N be an 11 by 11 (0,1)-matrix with the fol-
lowing properties: (i) every row of N has six ones; (ii) the inner
product of any two distinct rows of N is at most 3. Show that N
is the incidence matrix of a 2-(11,6,3) design. Furthermore show

that this design is unique (up to isomorphism).

The following theorem is known as Fisher’s inequality.

iR
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TurROREM 10.6. For a 2-(v,k, A) design with b blocks and v > k
we have
b > .

PROOF: Since v > k, we have 7 > A by (19.4). Since J has one
eigenvalue v and its other eigenvalues are 0, the matrix on the right-
hand side of (19.7) hasv—1 eigenvalues (r— A) and one cigenvalue
(r— M)+ v =rk Soit Les determinant rk(r — A" # 0 and
hence N has rank v. This implies that b= O

From the argument in the preceding proof, we can make a very
important conclusion, given in the next theorem.

TuEOREM 19.7. If a 2-(v,k, A) design has b = v blocks and v is
even, then k — A must be a square.

PROOF: Since b = v, we have r = k. Now N is a v by v matrix
and by (19.7)
(det N)? = k*(k — DY

Since det N is an integer, we arc done. [

Theorern 10.6 was generalized by A. Ya. Petrenjuk (1968) to
b= (g) for any Sa(4,k,v) with v 2 k 4 2 and finally generalized to
arbitrary t-designs by Ray-Chaudhuri and Wilson (1975).

TuroREM 19.8. For an Sy(t, k,v) witht > 23 and v > k -+ s, we
have b> (3).

Proo¥: We introduce the higher smeidence matrices of the t-design
D = Syt k,v). Fori=0,1,2,...,let N; denote the (%) by b ma-
trix with rows indexed by the i-element subsets of points, columns
indexed by the blocks, and with entry 1 in row Y and column B
if Y C B, 0 otherwise. For0<i<j <, weuse Wi; to denote
the i-th incidence matrix of the incidence structure whose blocks
are all the j-element subsets of a v-set. Thus Wy Is a () by ()
matrix.
We claim that

i

NNT =5 b, Wiy Wi
1:=0

Th
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To see this, note that N,N_ has rows indexed by s-element subsets
E and columns indexed by s-element subsets £ of the points, and
for given F and F, the entry in row E and column F of NyN, ST is
the number of blocks that contain both E and F. This number is
bos—p, Where p = {E'N F|. The entry in row £ and column F' of
WL W;; is the number of i-subsets of the points contained in both
E and F, ie. (¥). So the (E, F)-entry on the righthand side of
the equation is S _; bh,_;(#), and from (19.6) it follows that this is

2
bos—p-

The (*) by (;) matrices b _ WL Wi, are all positive semidefinite,
and BSW, W, = b3] is positive definite since b5 > 0 (v > k+s)
Therefore N,N] is positive definite and hence nonsingular. The
rank of N,NJ is equal to the rank of N, i.e. N has rank (3), and
this cannot exceed the number of columns of N, which is b. O

“If equality holds in the Wilson-Petrenjuk inequality, Theorem
19.8, then the 2s-design is called tight. The only known examples
with s > 1 and v > k - s are the unique Steiner system 5 (4,7,23)
that we treat in the next chapter and its complement.

Tt is useful to give some idea of the history of t-designs. Only
finitely many Steiner systems S5 (t, k,v) with t > 4 are known. The
most famous are the designs S(5,8,24) and (5,6,12) found by E.
Witt (1938) and the derived 4-designs. These will appear in the
next chapter. R. H. F. Denniston (1976) constructed 5(5,6,24),
S(5,7,28), 5(5,6,48), and 5(5,6,84). W. H. Mills (1978) con-
structed an S(5,6,72). Again, the derived designs are Steiner sys-
tems. Since then, no others have been found. In 1972, W. O.
Alltop constructed the first infinite sequence of 5-designs without
repeated blocks. We remark that it is easy to show that t-designs
with repeated blocks exist for any t, but for a long time many design
theorists believed that nontrivial t-designs without repeated blocks
did not exist for ¢ > 6. The first simple 6-design was found by D.
W. Teavitt and S. S. Magliveras in 1982, and in 1986 D. L. Kreher
and S. P. Radziszowski found the smallest possible simple 6-design,
an S4(6,7,14). The big sensation in this area was the paper by L.
Teirlinck (1987) proving that nontrivial simple t-designs exist for
sll £, His construction produces designs with tremendously large
parameters and hence the construction of small examples is still an

A A
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open problem. For a number of special parameter sets, it has been
shown that the corresponding designs do not exist.

For the remainder of this chapter we shall mainly be interested
in 2-designs. When t = 2, we often omit this parameter in the
“4_(v,k, \)" notation and speak of (v, k, A)-designs.

A class of designs of special interest are the 2-designs with b = v.
In this case the incidence matrix N of the design is a square matrix
and these designs should be called square designs. However, the
confusing name symmeiric designs is standard terminology. (Note
that N is not necessarily symmetric.) For a symmetric 2-(v, k, A)
design (19.4) becomes

Mo —1) =k{k—1).

Some authors use the name projective design, a name derived from
the fact that a 2-(v,k, 1) design with b = v is called a projective
plane (see Example 19.7). Despite the fact that we are not happy
with the name, we shall use the terminology symmetric designs for
these designs.

PrOBLEM 19E. Let D be a 2-(v, k, A) design with b blocks and r
blocks through every point. Let B be any block. Show that the
number of blocks that meet B is at least '

k(r — DY/[(E— 1A= 1)+ (- 1)

Show that equality holds if and only if any block not disjoint from
B meets it in a constant number of points.

EXAMPLE 10.6. Take as points the elements of Z7 and as blocks
all triples B, := {z,z + 1,z + 3} with € Z;. It is easy to check
that this yields an S(2, 3,7). The following Fig. 19.2 is often drawn.
The lines repesent blocks, but one block must be represented by the
circle.
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Figure 19.2

This design is known as the Fano plane. The idea of the construc-
tion will be extended in Chapter 97. Tt is based on the fact that the
six differences among the elements of {0, 1,3} are exactly all the
nonzero elements of 7. 1f we wish to find the block containing say
{1,6}, we observe that 6 — 1 = 1 — 3 and we therefore take £ =9
and find z+1 =627 3 = 1, i.e. the pair 18 indeed in Bs. The
reader should have no difficulty finding an 5(2,4,13) in the same
way, using Zis.

A symmetric design with A = 1 is called a projective plane. 1 ks
the size of the blocks, thenn=Fk—118 calied the order of the plane
(why this 18 done will become clear in Example 19.7). Expressed
in m, the parameters of a projective plane of order n are:

p=n?+n+1, k=n+1, A=1

The blocks are usually called lines. The Fano plane is the (unique)
projective plane of order 2.

ExAMPLE 19.7. Clonsider the vector space ]13(13. This vector space
contains (¢° —1)/(@— 1) = ¢ +aqgtl 1-dimensional subspaces and
the same number of 2-dimensional subspaces. We now construct an
incidence structure (P, B,1), where D and B are these two clagses
of subspaces of IF(? If a 1-dimensional subspace 18 contained in 2
9dimensional subspace, we $ay they are incident. It is immediately
clear that we have thus defined a projective plane of order ¢, L.e.
a 2-(¢* +a+Lg+ 1,1) design. This design s usnally denoted
by PG(2,q) or PGy(q), which stands for projective geometry of
dimension 2 and order g.
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The construction defined above can also be applied if we re-
place I, by R. We then obtain the classical real projective plane,
where points are the 1-dimensional subspaces and lines are the
2-dimensional subspaces. This geometry contrasts with classical
affine geometry in the fact that no two lines are parallel. When
speaking about the designs defined above, we use terminology from
geometry.

ProBLEM 19F. Find a subset S = {s1,...,s85} of Zy such that
the elements of Zo; as points and the 21 blocks S + z (z € Zy)
form a projective plane of order 4. (Hint: there is a solution § for
which 29 = §.)

ProsLEM 19CG. Let (R, C, S; L) be a Latin square of order 6. De-
fine P := R x C. Let B be the set of blocks

Bij =
{(z,y) eRxC:z=iory=jor L{z,y) = L(1,5)} \ {{i,5)}

for (i,5) € R x C.

(1) Show that this defines a 2-(36,15,6) design.
(2) Show that a regular Hadamard matrix of order 36 exists.

ProBLEM 19H. Let D be a 3-(v,k,\) design. Suppose that the
derived design of D with respect to a point p (i.e. the case i = 1 in
the Corollary to Theorem 19.3) is a symmetric design.
Show that A(v —2) = (k — 1){k — 2).
Show that any two blocks of D meet in 0 or A+ 1 points.
Show that the set of points not on a block B together with
the blocks disjoint from B form a 2-design D.
Apply Fisher’s inequality to the design D® and deduce that
v = 2k or otherwise k = (A+1)(A+2) or k = 2(A+1){(A+2).

What are the possibilities for the design D7 Do we know any
designs with these properties?

ProBLEM 190I. Let O be a subset of the points of a projective plane
of order n such. that no three points of O are on one line. Show
that |O] < n+1if nis odd and that |O] <n-+2if nis even. A
set of n + 1 points, no three on a line, is called an oval; a set of




19. Designs 199

n + 2 points, no three on a line, is a hyperoval. Two constructions
of PGy(4) were given in Example 19.7 and Problem 19F. In each
case, construct a hyperoval.

PROBLEM 10J. Let O be a hyperoval (with g+2 points) in PGa(g),
g = 2". Any of the ¢° — 1 points p ¢ O has the property that there
are exactly 3(¢ + 2) secants of O through p. Take five points on O
" and split them into

{{p e}, {pw il {9}

This can be done in 15 ways. The two pairs determine two secants
that meet in a point p ¢ O. The line through p and ps meets Oina
point, that we call pg. This defines 15 (not necessarily distinct) 6-
tuples of points on O, containing the given five points. This defines
an Sy(5,6,q + 2) (a construction due to D. Jungnickel and S. A.
Vanstone). Construct a hyperoval O in PGs(q) and then show
that the 5-design is not a simple design. (Hint: use coordinates, cf.
Example 19.7.)

Any 2-(n? n,1) design is called an affine plane. The points and
lines of the plane (= 2-dimensional vector space) ]qu form an affine
plane of order ¢g. For such a design we use the notation AG(n)
(2-dimensional affine geometry of order n).

ExaMmPLE 19.8. Let D be a projective plane of order n. II we
delete one line and all the points on that line, we find an affine
plane of order n.

PronLEM 19K. Let D be any affine plane of order n. If By and
B, are two blocks, then we write By ~ By if the two blocks are
the same or if they have no points in common. Show that ~ is.
an equivalence relation. A class of this relation is called a parallel
class. Show that there exists a projective plane of order n such that
D can be obtained from that plane by the construction of Example
19.8.

We shail now show that if N is the incidence matrix of a symmet-
ric design D, then N T is also the incidence matrix of a symmetric
design D', called the dual of D.
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THEOREM 19.9. Let N be the incidence matrix of a symmetric 2-
(v,k, A) design. Then N is also the incidence matrix of a design.

Proor: Consider any block B of the design. For 0 <i <k let q;
be the number of blocks (£ B) that have ¢ points in common with
B. Then counting blocks, pairs (p, B') with p € B B’ and triples
(p,q, B") with p # ¢ and {p, ¢} € BN B’ we find;

k

D a=v-1, éz’ai=k(k—1), i(;)aﬁ(@(,\q),

i=0 i=0

from which we find Zf=0 (1 — A)%a; = 0. Hence, any block B’ # B
has A points in common with B, i.e. N'N = (k— NI+ XJ. O

Note that in Example 19.7, we did not need to specify whether
the set P was the 1-dimensional subspaces or the 2-dimensional
subspaces. In the latter situation, we have the dual of the former.

In many cases the designs D and DT are not isomorphic.

Let D be a symmetric 2-(v,k, A) design. There are two other
ways to obtain a design from D. These two designs are called the
derived design and residual design of D. This could be somewhat
confusing since we have already introduced that terminology. We
shall always indicate which of the two we mean. Take any block B
of D. The residual of D with respect to B has P\ B as point set and
as blocks all B\B with B’ # B. It is a 2-(v — k, k — X, A) design.
The derived design has B as point set and as blocks all B'NB with
B'# B. It is a 2-(k, A\, A — 1) design. If a design with parameters
v, k,b,7, A is the residual of a symmetric design, then 7 = k - A\
Any 2-design for which this equation holds is called a quasiresidual
design. If such a design is not the residual of a symmetric design, .
then we say that it is nonembeddoble. The assertion of Problem
19K is that every affine plane is embeddable in a projective plane,
A theorem due to W. 8. Connor (1952), that we shall leave unsil
Chapter 21, states that every quasiresidual design with A = 2 ig
embeddable.

010
ExXaMPLE 19.9. Let €' = (001) and let &; denote a 3 by 3
o 100
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matrix with ones in column 3 and zeros elsewhere. Then

B I I I
N=1|E I ¢ C
Ey I c?* C
is the 9 by 12 incidence matrix of AG(3). Define
1100
111111000000 ”00\
1100

111000111000

1010
A= 111000000111 Be=l1010
’ po0111111000 )

poo111900111 1010

1001
gpoopooriiiil

1001

1001

Form the 24 by 16 matrix

A O
D=1 N B
N J-B

One easily checks that DT is the 16 by 24 incidence matrix of a 2-
(16,6,3) design. This is & quasiresidual design. However, it cannot
he the residual of a 2-(25,9,3) symmetric design because the inner
product of row ¢+ 6 androwi-+150of D, 1 <8 <9, equals 4 and,
by Theorem 19.9, the inner product of the columns of the incidence
matrix of a 2-(25,9,3) design is 3. This shows that nonembeddable
designs with A=3 exist.

The combination of a counting argument and a suitable quadratic
form that we used to prove Theorem 19.9 is widely used in cornbina-
torics. However, sometimes it 18 casier to use algebraic methods as
we shall demonstrate in the following theorem, due to Ryser. (The
reader can try to prove the theorem by using counting arguments. )

TuroreM 19.10. Let D= (P,B,1) be an incidence structure with
1P| = |B] = v, blocksize k, such that any two blocks meet In A

points. Then D is a symmetric 2-design.
PROOF: Let N be the incidence mafrix of D. Then

(19.8) NTN = (k- NI+ A,
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and
(19.9) JN =kJ.

By Theoremm 19.9, we are done if we can show thab NJ =kJ. From
(19.8) we see that N is nonsingular and hence (19.9) can be read
as J = kJN'. From (19.8) we find INTN = (k— A+ w)J and

therefore
JNT =(k— A+ M)IN"t=(k— A+ k™,

i.e. N has constant rowsums. Then these rowsums must be k. This
proves the theorerm and yields (k - A4 M)kt = k as was to be
expected from (19.3) and (19.4). [

As a preparation for the best known nonexistence theorem for
designs, We need two results, both due to Lagrange. For the first,
consider the matrix H of (18.6) with n = 1, 1e A = ()

y = (y1,92, 43,00 DY Y 7 xH, where x = (21,72, 73,
from (18.7) we find

(19.10) (ai R ENALC v ad+adal) = (4 F 13+ v+

Using this identity, Lagrange proved that every integer is the sum
of four squares. Clearly the identity shows that it 18 sufficient to
prove this for primes. For an elegant proof that a prime is the sum
of four squares We refer to Chandrasekharai (1968).

The following nonexistence theorem is known 2s the Bruck-
Ryser-Chowla theorem.

TueorREM 19.11. If v, k, A are integers such that M(u—1) = k(k—
1), then for the existence of & symmetric 2-(v,k, A) design it is
necessary that:
(i) ifw is even then k — A Is a square;
(ii) ifvis odd, then the equation 22 = (k— Nz + (—~1)("’”l)/2>\y2
has a solution in Integers &, Yy, %, not all zero. '

PrROOF: Assertion (1) was proved in Theorem 19.7. So assume thab
v is odd. Let D be a symmetric 9-(v,k, A) design with incidence




-kJ. From
311 be read
- Auv)J and

be k. This
was to be
O

1eorem for
r the first,
;). Define
134). Then

Y3+ 5
is the sum
iHeient to

ig the sum

he Bruck-

1) = k(k—
esign it I

)(v—l)/? AyQ

sume that
incidence

19. Designs 203

matrix N = (n;;) and write n := k — A. We now introduce v linear
forms L; in the variables zy,...,z, by

v
Li e Z')’Lij.’ﬂj, 1 S’LS’U
j=1

Then the equation NTN = (k — \)I + AJ implies that
(1911) L4+ L2=n(?+ - +22) + M@+ +3)”

By Lagrange’s theorem, n can be written as n = i+t a?. This
and (19.10) allow us to take four of the variables z; and write

(19.12)  n(a? +af,, + ol +ats) = (4 + Y T i T Yike),

where each y; is a linear form in the four variables z;, ..., Ziy3-

We now first assume that v = 1 {mod 4). By applying this to
(19.11) four variables at a time and introducing w for @i+ +xy,
we reduce (19.11) to

(19.13) L2+ L=y 4 byl +nal+ 2w,

Since H in (18.6) is invertible, we can express the variables z; for
1 < j < v—1 as linear forms in the corresponding y; and hence
w is a linear form in these variables and x,. Next, we reduce the
number of variables in the following way. If the linear form L,
expressed in y1,...,Ys 1, %y, docs not have coeflicient +1 for y1,
then we set L; = 1, and if the coefficient is +1, we set L, = —,
and in both cases, we subsequently solve this equation for y; as
a linear expression in the remaining variables y; and z,. This is
substituted in the expression w. So (19.11) has been reduced to

Lt L=+ i+l + b,

We proceed in this way for ya,...,%-1. In each step, w is replaced
by another linear form in the remaining variables, and hence we
end up with

L2 = na? + M,

v =
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in which both L, and w are rational multiples of the variable .
1f we multiply this by the common denominator of the factors, we

find an equation
2= (k- N2’ + Vs

in integers. This proves the assertion that if v = 1 (mod 4). Ifv =
3 (mod 4), the same procedure is applied to (19.13) after adding
nx> 41 to both sides, where Ty 18 & new variable. The equation is
then finally reduced to Ny, = Yo+ Aw? and again we multiply

by & common denominator to find an equation of type
(k- Na? = 22+ My’

in accordance with assertion (ii). O

EXAMPLE 19.10. From Example 19.7, we know that a projective
plane of order n exists for 2 < n < 9, except possibly for n = 6.
By Theorem 19.11, a necessary condition for the existence of &
projective plane of order 6 is that the equation z* = 627 — y* has a
nontrivial solution. If such a solution exists, then also one for which
z, y, and z have no prime factor in common, i.e. z and y are both
odd. Then 22 and y* are both = 1 (mod 8). Since 6z (mod 8) is
either O or 6, we see that the equation has only the trivial solution
(0,0,0). Therefore a projective plane of order 6 does not exist.

If we try the same thing for a plane of order 10, we find the
equation 22 = 10z% — ¢?, which has the solution z = 1, ¥ = 1,
» — 3. In this case Theorem 19.11 tells ug nothing. A few years ago
it was announced that a computer search involving several hundred
hours on & Cray 1, had excluded the existence of a projective plane
of order 10. This is the only case where the nonexistence of a
symmetric 2-design has been shown using something other than
Theorem 19.11.

ClOROLLARY. If there exists a projective plane of order n =1 or 2
(mod 4), then n is the sum of two integral squares.

PRroOF: The condition n = 1 or 2 (mod 4) implies that v = n? +
n+1=3 (mod 4). Theorem 19.11 asserts that n is the sum of two
rational squares. 1t is well known that n is the sum of two rational
squares if and only if n is the sum of two integral squares. {This
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follows from the condition that n is the sum of two integral squares
if and only if no prime divisor of the square free part of n is = 3
(mod 4).) O

PROBLEM 19L. Show that a symmetric 2-{29,8 2} design does not
exist.

ProOBLEM 19M. Suppose M is a rational square matrix of order v
and that MM T = ml. Show that if v is odd, then m is a square.
Show that if v = 2 (mod 4), then m is the sum of two rational
squares.

(Note that one consequence of this latter result is that the exis-
tence of a conference matrix of order n = 2 (mod 4) implies that
n — 1 is the sum of two squares.)

A great deal of work has been done on the construction of 2-
designs. We shall only ireat a number of examples that will give
some idea of the kind of methods that have been used. The smallest
nontrivial pair (k,\) to consider is (3,1). A 2-(v,3,1) design is
called a Steiner triple system. Omne uses the notation STS(v) for
such a design. By (19.3) and (19.4) a necessary condition for the
existence of such a design is that v = 1 (mod 6) or v = 3 {mod 6).
We shall show that this condition is also sufficient. This will be done
by direct construction in Examples 19.11 and 19.15. However, it is
useful to see a number of examples of a more complicated approach.
The methods that we demonstrate can be used for the construction
of other designs than Steiner triple systems. Furthermore, they can
be used to produce designs with certain subdesigns (see Problem
19N) or prescribed automorphism group. The idea of this approach
is to find direct constructions for small examples and some recursive
constructions, and subsequently show that, for any v that satisfies
the necessary conditions, an S7'S(v) can be constructed by the
recursive methods, using the list of known small examples. We
shall see below that this in fact reduces to a (not very difficult)
problem in number theory. As stated above, we restrict ourselves
to a number of examples. The reader may wish to try to show that
our examples suffice to find an ST S(v) for all possible values of v,
without using Examples 19.11 and 19.15.

We consider the trivial design with only one block of size 3
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as ST8(3). We have already seen constructions of ST'S(T) =
PGo(2) and STS(9) = AG5(3). In Example 18.1, we constructed

an STS(15).
— 2t + 1. We define P = Z, xZ3. As

ExaMpPLE 19.11. Let n =
blocks we take all triples {(z, 0), (,1), (x,2)} with = € Z, and all

triples {(z,4), (,%): (3(z +¥), 8+ 1)} with z # y in Zp and @ € Zs.
This simple construction provides an STS (6t + 3) for every t.

1 be a prime power and let o be a

ExaMPLE 10.12. Let g = 6¢ +
is a cyclic group generated Dy «.

primitive element in I, ie I
We define

(19.14) Big = (ai+rg, o, e HEy 0S i<t, Eel.

We claim that the elements of IFy as points and the blocks B¢ form

an STS(q). The idea of the proof is the same as in Example 19.6.
Note that oft = 1, o® = —1 and define s by o = (@® —1). We

consider the six differences of pairs from Bop. These are:

_(a2i _ 1) — C¥s~'r3t’

2
2t ] 8,
5+51
H

aélt _ a?t Oé:H—Zt’ _(a4t _ aZt) = o
aﬁt _ a4t — as-{-ﬁlt: _(1 _ a4t) = af

il

+t

Tt follows that for any n # 0in IF,, there is a unique i, 0 <1 <1,
such that 1 occurs as the difference of two elements of B;g. Hence
for any z and y in IF;, there is a unique 4 and a unique ¢ ¢ TF, such
that the pair x,y occurs in the block DB;g.

0.6 and 19.12 is known as the method

The method of Fxamples 1
Lwow a more complicated use of

of differences. Example 19.15 will s

the same idea.
We now know that an STS(v) exists for v = 13,19,25,31,37,43

and 49 as well as the values mentioned above. This includes all
v = 1 (mod 6) less than 50. In fact, we now know at least one
§7'5(v) for each feasible value of v less than 100, except v = 59,

v =85, v =91
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EXAMPLE 18.13. Let there be an ST'S(v;) on the point set V; (i =
1,2). We take Vi x V; as a new point set and define as blocks all
triples: {{(z1,41), (22, 1), {z3,3)} for which
(1) 21 =z = 23 and {y1, %2, %3} is a block of STS(vg);
(2) {z1, 22,23} is a block of ST'S(v1) and 31 = y» = ys;
(3) {1,722, 23} is a block of ST'S(v1) and {y1, 7,73} is a block
of STS{vs}.

It is practically obvious that this defines an §7'S (v1vg9). The reader
should check that we have defined the correct number of blocks.

This construction provides us with an S7T'S(91).

EXAMPLE 19.14. We show a slightly more complicated construc-
tion. Suppose that we have an STS(v;) on the point set V5 =
{1,2,...,u1} with block set $;, and furthermore suppose that the
blocks that are completely contained in V = {s41,..., v}, where
s = v1 — v, form an STS(v). Let Sy be the set of triples of an
ST'S(va) on the point set Vo = {1,2,...,m}.

We counsider a new point set

P=VU{(zy)  1<z<s, 1<y <wl

This set has v -+ va(v1 — v) points. We introduce a set B of four
kinds of blocks:

(1) those of the subsystem ST'S(v);

(2) {{a,y),(b,y),c} withc€ V, {a,b,c} € S and y € Vi

(3) {(a, ), (b,y), (c,y)} with {e,b, c} a block in S} with no point
inV,and y € V5

4) {(z1, 11}, (22, y2), (z3,43)}, where {y1, 7,93} is a block in S5
and the integers xj, xo, 23 satisfy

Ty +x2+23=0 (mod s).

Again, one easily checks that any two points of P uniquely deter-
mine a block in B. Hence P and B are the points and blocks of a
Steiner triple system on v + vy(v; — v) points. A simple example
is obtained by letting the subsystem be just one block, i.e. v = 3.
Taking v; =7, vo = 13, we find an STS(55).

We have thus constructed an STS(v) for every feasible value of
v less than 100, except v = 85.
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PRroBLEM 19N. (a) Show that if an STS(vy) and an ST'S (v9) both
exist, then there Is an STS(vive —v2 + 1) Use this construction t0
find an STS(85).

(b) Construct an §TS(15) on the set {0,1,- .-, 14} such that it
contains & Fano plane on {0,1,... .6} as a subsystem.

ExamMpLE 19.15. Consider as point set Za; X 75U {co}. Addition
of elernents is coordinatewise with the extra convention co+ (%, i) =
oo. For notational convenience we sometimes write the second co-
ordinate as an index, i.e. T; instead of (z,1). We now define four
types of “base blocks”™:

(1) {00,01,02};

(2) {Ooaeoatl}) {C)0,0]_,tg}, {001027-60};

(3) {0,%1, (—i)1}s {0y, i2, ()2}, {0y, 00, (1Yo}, i =1, st

(4) {to,d1, (1=}, {t1, 12, (1—d)2} {tg,i0, (11}, #=1Loonbs
We have 6t + 1 base blocks. For a = 0,1,...,t — 1 we add the
element (a,0) {Le. ag) to each of the elements of every base block,
thus producing £(6t-+1) blocks. We claim that these are the triples
of an STS(6t+1). 1t is trivial that the base blocks of type 2 yield a
set of blocks in which every pair of points, one of which is oo, oceurs
exactly once. The cyclic nature of the definition of the base blocks
shows that it is sufficient for us to check that all pairs {ag, bo} with
a # b and all pairs {ao, b} occur in the triples we have defined. If
o < band b—a = 2s, then the pair {ag, by} occurs in the triple
obtained from {02, so, (—5)o} “translated” by the element (b—s, 0).
Similarly, if b—a 1S odd, we find the required pair by transiating a
base block of type 4. Now consider & pair {ag,bi}. Ha=b<1— 1,
we find the pair by translating the base block of type 1 by (a,0).
If a # band a <t, we have to look for the pair in a translate of a
base block of type 2 or of type 3. We must search for a base block
in which the difference h-goccurs as y — & for two elements y1, Zo-
For type 2, this difference is ¢ and in the blocks {00, %1, (—in} we
find the differences 4, 1 <i<t-1,and i=ot—i,1<i<t -1,
indeed every difference oncel Now, the rest of the details can be
left as an exercise.

This example shows that if v = 6t + 1, then an STS (v) exists.
Combined with Example 19.11 we nave a construction for every
feasible value of v.
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We end this chapter with an amusing application of the Fano
plane. At present the idea is not used in practice but the problem
itself has a practical origin, and maybe some day generalizations of
the following method will be used. Suppose one wishes to store one
of the integers 1 to 71n a so-called “write-once memory”. This is a
binary memory, originally filled with zeros, for which it 1s possible
to change certain bits to ones but not back again, i.e. the state 11is
permanent. This happens in practice with paper tape, into which
holes are punched, or compact discs, where a laser creates pits in
certain positions. In both cases, we cannot erase what was written
in the memory. To store the integers 1 to 7, we need a memory of
three bits. What if one wishes to use the memory four consecutive
times? The simplest solution is t0 have a 12-bit memory that is
partitioned into four 3_bit sections, one for each consecutive usage.
We assume that the memory is very expensive and we would like
to be able to use a shorter memory for the same purpose. We shall
now show that seven bits suffice, a saving of more than 40%.

Figure 19.3

Let P = {1,2,...,7} be the set of points of PGy(2) and let
7 denote the set of lines. To store one of the integers 1 to 7in a
memory with positions numbered 1 to 7, we use the following rules.
As a general rule: if we wish to store ¢ and the memory is in a state
corresponding to 1 (from a previous usage), then we do nothing.
Otherwise the rules are:

(1) if the memory is empty, store 4 by putting a 1 in position i

(2) to store j when the memory is in state 4, put a 1 in position
k, where {i,5,k} € £;

(3) to store i when the memory contains two 1’s, not correspond-
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ing to 4, put in two more 1’s, such that i is one of the four
1’s and the other three form a line in £. No matter what
the two original 1's were, this is possible (sometimes in two
Ways);

(4) if the memory contains four 1’s, we may assume that we are
in the situation of Fig. 19.3. To store 3, we do nothing (by
the general rule); to store one of the missing numbers, we
put 1’s in the other two positions; to store 1,2, 0r4, storeal
in the empty position on the line through 3 and the number
we wish to store.

We leave it as an exercise for the reader to forrmutate the rules
for reading the memory. Note that the memory uniquely reads
the integer presently stored in the memory but it cannot see how
often an integer has been stored or what was stored on the previous

usage.

Notes.

The first occurrence of a 2-design may be AG2(3) in a paper by
Pliicker (1839). One usually attributes the introduction of Steiner
systems to Woolkouse (1844); of course not to Steiner! Quite often
they are said to originate with a problem of T. P. Kirkman (1847).
T, P. Kirkman (1806-1895), a self-educated man, was a minister of
the Church of England. He was an amateur mathematician with
many contributions to the subject. Probably the best known is his
15 schoolgirls problem. The problem is to arrange 15 schoolgirls
in parties of three for seven days’ walks such that every two of
them walk together exactly once. This amounts to congtructing an
S1'S(15) for which the set of triples can be partitioned into seven
“barallel classes”.

Jakob Steiner (1796-1863) was an important geometer of his
time. He became interested in what we now call Steiner systems in
1853 when he studied the configuration of 28 double tangents of a
plane quartic curve. -

Sir Ronald A. Fisher (1890-1962) is considered to be one of the
most prominent statisticians. Besides important contributions to
statistics (multivariate analysis) and genetics, he is known for his
work on the application of statistical theory to agriculture and the




