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Abstract. This paper discusses the use of spatial graph models for the
analysis of networks that do not have a direct spatial reality, such as
web graphs, on-line social networks, or citation graphs. In a spatial graph
model, nodes are embedded in a metric space, and link formation depends
on the relative position of nodes in the space. It is argued that spatial
models form a good basis for link mining: assuming a spatial model, the
link information can be used to infer the spatial position of the nodes,
and this information can then be used for clustering and recognition of
node similarity. This paper gives a survey of spatial graph models, and
discusses their suitability for link mining.

1 Introduction

Through the advent of the Internet and especially the World Wide Web, huge
repositories of data have become available in a naturally linked form. Examples
are: on-line social networks, thematically coherent or domain-restricted segments
of the World Wide Web, and electronic libraries of scientific papers. The links
connecting entities in such data collections form a virtual network. The link
structure of this network encodes information about the data represented by the
nodes. Link mining is the process of extracting that information. Link mining can
give information about the data collection when node-specific data is unavailable
or private, as in on-line social networks, or can be combined with text mining in
web graphs or citation networks to gain a better understanding of the data.

In order to interpret the structure of the network it helps to model the pro-
cess that led to the formation of the network. The virtual networks that are
the subject of this paper are self-organizing: they are not governed by central
control or design, but formed by individual actions of autonomous agents: Face-
book users, Web page designers, authors of scientific papers. Moreover, since the
networks are virtual and link creation is free, there are no physical constraints
that limit the link structure.

The first studies of the link structure of the Web revealed that virtual self-
organizing networks exhibit a characteristic structure. The first models for such
networks mainly aimed to generate graphs with a similar substructure. For a
survey of such models, see [4,3]. The principal properties observed were:

1. A heavy tail degree distribution. A characteristic of almost all virtual net-
works is that high degree nodes are relatively common. That is, the degree
distribution P(k), where P(k) is the proportion of nodes of degree k, does



not fall off exponentially as k grows large. Often, the tail of the distribu-
tion follows a power law: P(k) ~ k=7 for some exponent v which is usually
between 2 and 3.

2. The graphs are globally sparse, but locally dense. The average degree is
O(logn), where n is the size of the network, or can even be constant. On
the other hand, locally the graph is denser than one would expect if the
links were distributed randomly. This can be measured by the value of the
clustering coefficient, which is the average density of the subgraphs induced
by the neighbourhood of a node.

3. Small distances between nodes. The local density might lead one to expect
that it can take a large number of hops to go from one node to the other,
since many links remain local. However, this is not the case: the average
distance between nodes is O(logn) or smaller.

While many of the graph models were succesful in reproducing some or all
of the observed graph properties, they are based on an assumption that is in-
compatable with the concept of link mining. Generally, nodes in such models
are indistinguishable. That is, the stochastic process that determines the link
neighbourhood of a node is only based on the existing network, not on any in-
dividual property of the node. Link mining is based on the premise that nodes
are not equal. The premise that it is possible to extract information about the
nodes from the link structure implies that this information is present but hidden,
and further, that this information influences the formation of the link structure.
Thus, the link structure is a visible manifestation of an underlying, hidden real-
ity.

Two principal tasks of link mining are those of detecting similarity between
nodes, and of identifying communities of related nodes. Thus, the hidden reality
should give information about node similarity. A natural way to model similarity
is to assume that the nodes are embedded in a metric space, where the metric
distance between nodes is a measure of the similarity between nodes. If two nodes
are similar the metric distance between them will be small, and communities will
correspond to spatial clusters.

Graph models where the nodes are embedded in a metric space and link
formation is influenced by the metric distance between nodes are called spatial
models. The main principle of spatial models is that nodes that are metrically
close are more likely to link to each other. This is a formal expression of the
intuitive notion we hold about virtual networks: Web links are likely to point
to similar pages, people that share similar interests are more likely to become
friends on Facebook, and a scientific paper mostly refers to papers on a similar
topic. This paper gives an overview of spatial models and their suitability for
link mining.

2 Spatial models with network-based link formation

In this section we review models where the link formation is directly influenced
by the distance between the nodes. Precisely, let d be the metric of the space



in which the nodes are located. The probability that node wv; links to node
v; is a decreasing function of d(v;,v;). A review of these models can also be
found in Section 2.5 of [3]. The models have in common that link formation is
network based, which means that the stochastic process according to wich the
links attaching to a node are generated depends on the entire network, and the
node can potentially link to any node in the network, albeit with increasingly
smaller probability as the distance increases.

Most of the models presented in this Section were proposed as models for
spatial networks, characterized in [3] as “networks whose nodes occupy a pre-
cise position in two-or three-dimensional Euclidean space, and whose edges are
physical connections”. Examples of such networks are: the Internet (where the
nodes are the routers) and other physical communication networks, railway and
road networks, electric power grids, and neural networks in the brain. In spatial
networks, there are limitations on the network posed by the physical reality;
in virtual networks such limitations are largely absent. Still, the principle that
nodes that are close in space are more likely to link to each other holds both
both types. We will argue that some of these spatial models fit the reality of
virtual models.

Unless otherwise mentioned, we consider the space S in which the nodes are
embedded to be the hypercube [0,1]P, where D is the dimension. In order to
eliminate boundary effects, we use the torus metric derived from any of the L,
norms. Formally, this means that for any two points x and y in S,

d(z,y) = min{||z —y + ul|, : v e {-1,0, 1}D}.

The torus metric thus “wraps around” the boundaries of the unit cube, so every
point in S is equivalent.

In the models of spatial networks, the dimension D must equal 2 or 3, and
the metric is the Euclidean metric (derived from the Ly norm). For a realistic
model of virtual networks we expect D to be higher, while the metrics derived
from the L., norm (determined by the largest coordinate) and the L; norm
(determined by the sum of the coordinates) can be reasonable alternatives.

The nodes are embedded in S according to a given probability distribution.
For ease of analysis, this distribution is often assumed to be uniform. However,
a distribution that aims to model real data should contain clusters of closely
spaced points.

The most straightforward spatial models are those where links between nodes
are formed independently, and a link between two nodes that have distance r
to each other is formed with probability p(r). An early model for the Internet
by Waxman [23] takes p(r) = Sexp(—r/ac), where o, 5 € (0,1) are parameters,
and c is the maximum distance between any pair of points. A similar model in
studied in [14]. The exponential decay in p(r) implies that links substantially
longer than ac are highly unlikely to occur. The graph distance between two
nodes that are far apart in S dependes on the maximum metric distance that
can be spanned by a link. A good model for virtual networks will need to include
long links, i.e. links between nodes that are far apart in the space, in order to
achieve the property of small average distance between nodes.



In order to generate networks that have the desired properties, especially a
suitable degree distribution, the link neighbourhood should also depend on the
link structure of the network. This can be done if the graph is generated node
by node. Formally, starting from a small initial graph, at each time step ¢ a
new node v; is generated and embedded in S according to the predetermined
probability distribution. The new node is given a fixed number m of initial links.
For each of the links, the probability p(i,t) that an existing node v; is chosen
as the other endpoint is a function of the metric distance between v; and vy,
and graph properties of v; in the existing network; usually the node degree. The
probability p(i,t) is called the link probability.

In [26,17,20], the link probability is given as:

deg(v;)

P = oy dtor oy

where o > 0 is a parameter, and ¢(t) is a normalizing constant. In [26], this
model is studied in one dimension (D = 1). Since we use the torus metric,
we can imagine the nodes as being located in a circle. Thus, the model is a
natural extension of the “small-world” network of Watts and Strogatz [22]. For
this model, is determined exponentially that, for & < 1 the degree distribution
follows a power law, P(k) ~ k=3, and for o > 1 it is a stretched exponential,
P(k) ~ exp(—bk"), where v depends on «. For all values of «, the average
distance between nodes is of order logn.

In [17], the model is studied numerically in all dimensions, and a critical
value a. is determined so that for all a < a., the degree distribution follows a
power law, while for @ > ., it is a stretched exponential. It is also shown that
the link length distribution ¢(k), where £(k)dk is the proportion of links that
have length between k and k + dk, follows a power law.

These papers derived their results from a uniform distribution of points in
space; in [20], a non-uniform distribution is studied. Here D = 2. Any new node is
embedded randomly in S at distance r from the barycenter of the existing set of
nodes, where r is chosen probabilistically according to a probability distribution
P(r) ~ =48 where B > 0 is a parameter. Using methods from statistical
mechanics, the authors numerically determine the values of the parameters for
which the graph has a power law degree distribution.

In [2], the case where p(i,t) ~ deg(v;) exp(—d(v;,v;)/rc) is studied for D = 2.
In this case, links significantly longer than r. will be rare. In [24], a model for
the Internet is proposed where D = 2, and

deg(vi)”

P = Sy dtos, o

where both ¢ and a are parameters. Moreover, a non-uniform distribution of
nodes in space is used which mimicks actual human population densities.

In [15], nodes are placed on a grid pattern in a 2-dimensional space. Each
node is connected to its four nearest neighbours in the grid, and to one other
node. The destination of the extra link is chosen from all other nodes with



probability 7~ where r is the distance between the origin and the destination

node. Thus, this model can be considered as a grid graph superemposed on a
spatial graph model with p(7,t) = d(v;,v;)”%, D =2 and m = 1.

Most of the models just discussed can produce graph with the same properties
as those observed in many virtual networks. However, their suitability for link
mining, as discussed in the introduction, has not yet been investigated. Since
link formation is directly dependent on the metric distance between nodes, it is
reasonable to expect that precise inferences about the metric distances between
nodes can be made from the network. For example, a set of nodes that are
placed close together in the metric space will likely have higher than average
link density.

Finally, we mention three spatial models that are based on different princi-
ples. In [25], nodes are linked independently with probability proportional to the
dot product of the vectors reprenting the nodes. In [18], and later also [7], nodes
are assigned random weights w;, and two nodes v; and v; are linked precisely
when a function of the weights and the distance, for example (w; +wj;)/d(vi,v;),
exceeds a given threshold 6. In [8], each new node v; links to the node v; that
minizes a function which is the convex combination of the graph distance of v;
to the center of the graph, and the metric distance between v; and v;.

3 Spatial models with node-based link formation

Virtual networks can be very large, so it is reasonable to assume that any user is
only familiar with a small fraction of the network, and that this fraction consists
of the nodes that are similar to the node associated with the user. In the context
of spatial models, this implies that a new node can only see the part of the
network that corresponds to nodes that are metrically close. The second class of
models we survey are based on this principle.

The simplest model is the random geometric graph [19]. In this model, nodes
are embedded in a metric space according to a given probability distribution,
and two nodes are linked precisely when their distance is smaller than a given
threshold value 8. The random geometric graph was proposed as a model for
spatial networks in [11], for wireless multi-hop networks in [21], and for biological
networks in [12]. In [16], an interesting variant of the model is presented, where
the metric space is the hyperbolic space. In random geometric graphs, a link
between two nodes gives exact binary information about whether the nodes are
within distance @ of each other or not. Thus the graph distance should be highly
correlated with the metric distance, up to multiples of 6. In [5], this relationship
is confirmed for infinite random geometric graphs. In this paper also a variation
of the model is proposed, where nodes that are within distance 6 of each other
are linked independently with probability p.

A variation of the random geometric graph model where the link probability
is partially determined by the network was proposed by Flaxman et al. in [9)].
Here, nodes join the network one by one, and each new node receives m links,
and chooses its neighbours from among the nodes that are within distance 8



of it. The probability that a node v;, which is within distance 6 of the new
node, receives a link, is proportional to its degree. As in the previous model,
the threshold # limits the length of a link, so that long links become impossible.
In [10], the same authors extend the model so that, the hard threshold 6, is
determined by a function which makes it less likely that a node receives a link
if it is far removed from the new node.

The random geometric graph can also be represented as follows: each node is
the centre of an associated sphere of radius 6. A new node can link to an existing
node only when it falls within its associated sphere. The SPA model, proposed
in [1], is based on the same principle, except that the radii of the spheres are
not uniform, but depend on the in-degree of the node (the SPA model generates
directed graphs). Precisely, each node v; is the center of a sphere whose radius
is chosen so that its volume equals

Aldeg_ (’Ui, t) + A2

A(v;, t) = min{ A,

1)

At each time step ¢, a new node v; is created and embedded in S uniformly at
random. For each node v; so that v; falls inside the sphere of v;, independently,
a link from v, to v; is created with probability p. Thus, a node with high degree
is “visible” over a larger area of S than a node with small degree. It was shown
in [1] that the SPA model produces graphs with a power law degree distribution,
with exponent 1+ 1/pA;. Moreover, because of the unequal size of the spheres,
long links can occur, but only to nodes of high degree. It is shown in the next
section that the SPA model can be used to retrieve the metric distances between
nodes from the network with high precision.

A related model, the geo-protean model, was proposed in [6]. Here, the size
of the network is constant, but at each step a node is deleted and a new node
is added. Nodes are ranked from 1 to n, and the sphere around a node is such
that its volume is proportional to is rank raised to the power —a. The link
neighbourhood of the new nodes is determined in a similar way as in the SPA
model. It is shown that the degree distribution, link density, average distance
between nodes, and clustering behaviour are consistent with those observed in
social networks.

4 Estimating distance from the number of common
neighbours

In this section, we show how the metric distances between nodes can be estimated
from their number of common neighbours. The model we use is the SPA model,
described in the last section. The work presented here can be found in more
detail in [13]. In this section, the dimension of S is assumed to be 2, and the
parameters of the SPA model are A; = Ay = A3 = 1.

The SPA model produces directed graphs. The term “common neighbour”
here refers to common in-neighbours. Precisely, a node w is a common neighbour
of nodes u and v if there exist directed links from w to v and from w to v. In



the SPA model, this can only occur if w is younger than u and v, and, at its
birth, w lies in the intersection of the spheres of influence of v and v. We use
en(u,v,t) to denote the number of common in-neighbours of u and v at time t¢.

First of all, we show that a blind approach to using the co-citation measure
does not work. From the description of the SPA model it is clear that there exists
a correlation between the spatial distance and number of common in-neighbours
of a given pair of nodes. However, as shown in Figure 4, when we plot spatial
distance versus number of common neighbours without further processing, no
relation between the two is apparent.

The data presented in Figure 4 was obtained from a graph with 100K nodes.
The graph was generated from points randomly distributed in the unit square in
R? according to the SPA model, with n = 100, 000 and p = 0.95. It is important
to note that the data was generated using the original SPA model as described
in the previous section (so the volume of the sphere of influence is proportional
to the real degree, not the expected degree).
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Fig. 1. Actual distance vs. number of common neighbours.

By analyzing the model, we can extract the relationship between the number
of common neighbours and the metric distance. First, we make a simplifying
assumption. In [1], it was shown that the expected degree, at time t, of node
v; born at time 7 is proportional to (¢/i)P. Assuming that the degree each node
equals its expected degree, we obtain that the volume of the sphere of a node
equals

o
A(’Ui,t) = Zt . (1)

The radius r(v;,t) of the sphere of influence of node v; at time ¢ can now
be deduced from its volume as given above. Since we are using the Euclidean
metric, this radius is given by:

r(vist) = /A(vi, t) /m = w=1/2i7P/24=(=p)/2

The relationship between the number of common neighbours and the metric
distance of two nodes v; and v; at distance d(vi,vj) = d can now be given as
follows:



1. Ifd > r(v;, j+1)+r(vj, j+1), then v; and v; can have no common neighbours.

2. If d < r(vi,n) — r(v;,n), then the expected number of common neighbours
equals (1+ o(1))p(n/j)""

3. If r(vi,m) —r(vj,n) <d <r(vy,j+1) +7r(v;,j+ 1), then

E en(v;,v;,n) = pr~ 7 (Z) (i77) (d*%) <1+o <(;>p/2)>
(2)

These formulas lead to an estimate d of the metric distance between two
nodes, based on the number of common neighbours of the pair. Note that from
case 1 and 2, we can only obtain a lower and upper bound on the distance,
respectively. If two nodes v; and v; have no common neighbours, then we can
assume we are in case 1, and thus d > (v, j + 1) +7(v;,§ +1). If en(vi, vj,n) ~
pdeg™ (vj,n), then we are likely in case 2, and thus we get the upper bound
d < r(v;,n) —r(v;,n). In our simulation, in order to eliminate case 1, we consider
only pairs that have at least 20 common neighbours (19.2K pairs). To eliminate
case 2, we require that the number of common neighbours should be less than
p/2 times the lowest degree of the pair. This reduces the data set to 2.4K pairs.

When we are likely in case 3, we can derive a precise estimate of the distance.
We base our estimate on Equation (2), where we ignore the O((£)?/2) term.
Namely, when ¢ and j are of the same order, then this expression is the average
of the lower and upper bound as derived in the proof of the theorem, and when
1 < 7 the term is asymptotically negligible. The estimated distance between
nodes v; and vj, given that their number of common neighbours equals £, is

then given by
d= (=) (772) (77 ().

Note that ¢ and j appear in the formula above, so the estimated distance
depends not only on the number of common neighbours of the two nodes, but
also on their age. In our simulation data, the age of the nodes is known, and
used in the estimate of d. Figure 4 shows estimated distance vs. real distance
between all pairs of nodes that are likely to be in case 3.

While there is clearly some agreement between estimated and real distance,
the results can be improved if we use, instead of the real age, the estimated age.
The estimated time of birth a(v) of a node v which has in-degree k at time n
will be:

a(v) = nk=/P.

Thus, we can compute d again, but this time based on the estimated birth
times. This method has the added advantage that it can be more conveniently
applied to real-life data, where the degree of a node is much easier to obtain than
its age. Figure 4 again shows estimated vs. real distance for the exact same data
set, but now estimated age is used in its calculation. This time, we see almost
perfect agreement between estimate and reality.



Fig. 2. Actual distance vs. estimated distance for eligible pairs from simulated data,
calculated using the age (left) and estimated age from degree (right) of both nodes.

5 Conclusion

For the purpose of link mining, it is useful to assume a spatial model even when
the data represented by the network have no direct spatial reality. The data can
instead be considered to be embedded in a multi-dimensional space in such a
way that metric closeness indicates similarity.

In this paper, I have given a survey of spatial models. Most of those mod-
els where conceived as models for networks that have a direct spatial reality.
I propose that these models can be adapted to virtual networks, and that an
analysis of these models can lead to precise instructions on how to infer infor-
mation about the metric distances between nodes from the network data. As
an example, I have shown in the last section how, in one model, the number of
common neighbours gives a precise estimate of the metric distance.

Much further work in this field is needed, both theoretical and experimental.
A theoretical analysis of the models in Section 2 may lead to useful measures for
link mining. These measures should then be applied to real data. A challenge is
to find data where a “ground truth” embedding of the nodes in metric space is
present. One proposition is to use data from real spatial networks to validate the
models and measures. Another suggestion is to work with citation graphs and
Web graphs, and use the text information associated with the nodes (scientific
papers or Web pages) to obtain an embedding of the nodes in space, for example
through word-document representations and Latent Semantic Indexing. This
embedding can then be compared with the embedding obtained through link
mining.
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