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Modulated scale-free network in Euclidean space
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A random network is grown by introducing at unit rate randomly selected nodes on the Euclidean space. A
node is randomly connected to itth predecessor of degrde with a directed link of length¢ using a
probability proportional td;€“. Our numerical study indicates that the network is scale free for all values of
a>«a. and the degree distribution decays stretched exponentially for the other valuesTog link length
distribution follows a power lawD (€)~ €, whereéd is calculated exactly for the whole range of valuesvof
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Statistical properties of many different networks are beingof small-world propertie§9]. Recently, a number of interest-
studied recently with much interest. Examples include théng works in the context of SFN have been published
World Wide Web[1], the internet structur2], neural net- [10,11].
works[3], collaboration network4], etc. Broadly these net- Study of the internet’s topological structure is important
works are classified into four different groups, namély, for designing efficient routing protocols and modeling inter-
networks on regular latticesii) random network$5] (iii ), net traffic. Waxman model describes the internet with expo-
small-world networkg6], and(iv) scale-free networkg7,8].  nentially decaying link length distributionD(€)~exp

It has been observed that the degree distributions of nodgs-¢/¢,) [12]. Faloutsoset al. observed the scale-free degree
for two very important networks, e.g., World Wide WEb|]  distribution of the interne{2]. Yook et al. observed that
which is a network of webpagdsodeg and the hyperlinks nodes of the router level network maps of North America are
(links) among various pages and the internet netw@ijkof  distributed on a fractal set and the link length distribution is

routers or autonomous systems follow power law as inversely proportional to the link lengthsl3]. They also
argued that a competition exists between the preferential at-
P(k)~k~7. (1)  tachment of the nodes and the weightage of the link lengths
[13].

In this paper our aim is to study how a scale-free network
fined on the Euclidean space behaves when the usual BA
attachment probability as in ER) is modulated by a link
length ¢ dependent factof“. Our important observation is

These networks are called scale-free networks and the engé
nenty varies between 2 and 3 for these networks. Basaba
and Albert(BA) proposed a simple model for an evolving

SFN that has the following two essential ingredients. even for the uniform random distribution of nodes we obtain

(i) A network grows from an initial set ah, nodes with o ; S
m<m, links among them. Further, at every time step a newthe power law variation of the link length distribution for all

node is introduced and is randomly connectedntprevious yalues Ofa including the empirically obs_erved inv_erse_ varia-

nodes tion whereas the Waxman’s exponential behavior is never
(i) Any of thesem links of the new node introduced at opsgrved. We argue that for a country with homqgeneously

time t connects a previous nodewith an attachment prob- distributed router density, our results seem to be important.

ability mi(t) which is linearly proportional to the degree S faﬁzc'gfsgyoén tr:\:;l? d||r2 r?gs'g;sn’ d(\;vneﬂ nglséi?é danoilrjl?slt
ki(t) of theith node at time, q y plane. y p

within this area are the nodes of the network. The network
grows by systematically introducing one node at a time with

A ~ki(t). (20 randomly chosen coordinates, §);0=<x,y<1 with uniform
probabilities. The attachment probability that the new node
For the BA modely=3 [8]. introduced at time& would be connected to iigh predeces-

The physical distance, or the Euclidean distance betweesor (0<i<t—1) is
the nodes plays an important role in cases such as electrical
networks, the internet, or even in postal and transport net- i(t) ~k;(t) €, 3
works, etc. In these networks one tries to minimize the
lengths of the connections, e.g., electrical wires, ethernewvheref is the Euclidean distance between thieand theth
cables, or say travel distances of postal carriers. Static nenode anda is a continuously varying parameter.
works, in which connection probabilities depend on the Eu- The case withe=0 is the usual BA model. For the nega-
clidean distance have already been considered in the contetite values ofa, the largest value of the modulation factor
£“ corresponds to the smallest valuetofTherefore, in the
limit of «— —<0, only the smallest value df corresponding
*Electronic address: manna@boson.bose.res.in to the nearest node will contribute with probability 1. Simi-
TElectronic address: parongama@vsnl.net larly, for >0 large{ values will be more probable and the
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FIG. 1. Modulated scale-free networks within a unit square for . )
different values of the modulation parametefor the same distri- 0.0 0 1 —, l.l.i/z 3 4
bution of 512 nodes. Fag= +« and—« a newly introduced node
is linked only to its farthest and nearest predecessors, respectively, F|G. 2. (a) The probability density distributio® (¢) of the link
whereas fora=0 it is connected to one of the previous nodes |engths ¢ in d=2 for five different @ values: 1/2(circle), 0
according to the BA rule. (squarg, —1/2 (diamond, —1 (triangle up, and —3/2 (triangle

left) for networks of 7=2%2. (b) &(«) varies linearly witha for

limit of a— + corresponds to only nonzero contribution «>—4 ind=2 and fora>—2 in d=1. The saturation values of
from the furthest nodéFig. 1. ) are—_3 and—2 for_d:2 (filled C|rcle)_ _andd:; (opaque circlg

We start with only one initial node correspondingrto ~ féSPectively(c) Scaling of the probability density far =~ and
=m,=1 and connect a new node to only one of its previoud®’ 7=2" 2 and 2%in d=2.
nodes. Therefore, every node has only one outgoing link .
(Kou=1) but can have a number of incoming link;{). which implies §(«)=a+d—1. Therefore, at a particular
The network thus formed has a tree structure, without anyalue ofa=a.=1-d, §(a)=0 and the distribution is uni-
loops. Similar to the BA model, we expect that the mainform in any dimensionD(¢) grows with ¢ for a>a. and
results of our model should be robust with respect to thélecays witht for a<a.. Growing, uniform, and decaying
value ofm, used[8]. distributions are shown in Fig.(@ for different values ofx

The link lengths of this network vary over a wide range. Which confirma,=—1 in d=2. Similar calculations ird
We defineD(€)d¢ as the probability that a randomly se- =1 show uniform distribution for,=0.
lected link has the length betweénand ¢ +d¢ and assume Since we distribute nodes within the unit square and link
a power law distributiorD (€)~¢?. Since the network with lengths are measured using the periodic boundary conditions
a=0 has no length dependence and since the nodes are 18long both thec andy directions, the distance between any
cated in random positions in space with uniform probabili-two nodes can be at moét=2""2 Consequently, all ori-
ties,D(¢) for a=0 should depend only on the volume of the entations of links of lengths up to 1/2 are equally likely.
spherical shell betweefiand¢ +d¢ andD(¢)~¢%~*inthe  However, links of lengths greater than 1/2 have to be ori-

d-dimensional space. Far+0, this distribution is modified ~ented more towards diagonal directions, iye= *x lines to
by the factor¢“ of Eq. (3) giving properly fit in and therefore their orientations are not equally

likely. This anisotropic effect is observed =2 when
D(¢) decays at a faster rate for ¥Z <{, since isotropy of
D(¢)~¢atd-1 (4) the orientation of these links is lost and therefore they are
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less probable. In contrast, we do not see such a region in one 0.7 - - -
dimension, in agreement with the theoretical analysis.

However,d(«) saturates at a minimum valug, below a
certain value ofx which is calculated exactly in the limit of
a— —o. Since, in this limit a new node is always connected
to its closest neighbor, the probability that the-(1)-th node
has a link of length betweef and € +d¢{ is

Dy(€)d¢=a¢9 t(1—be) tde, (5)
whereb¢? is the volume of a hypersphere thdimensions N 04T
anda=bd. Therefore, for a network evolved up to a tirfig L
the link length distribution of the whole network is Vozt .

T T 4 1 1
D(£)de=3 D,(£)de=atd"1deS t(1—bed)L, 00 1o s o O s 10
t=1 t=1
(6) FIG. 3. For networks witty= 212, variations of(a) the probabil-

o . . ity P(1) of a node of degree 1 artd) average lengtlf («) of a link
In the limit 7— this series converges for largeto D(€)  with «. Opaque circles are fal=1 and the filled circles are for
~¢ 971 giving 8,=—(d+1). However, for small¢, d=2.
D(£)=c,¢9 1—c,¢2971 ignoring higher-order corrections
wherec;~O(t?) andc,~ O(t%) for larget. This implies that we see a stretched exponential variatifk) ~ exp(—kA@)

; 71/
D({.)f). Ejmf)Stl havbe athmaanlgm a IT' lior all d>d'17 as  and (@) increases to 1, i.e., to a pure exponential form at
veniied below by the scaling analysis. =or one dimension,, _ _ ., It, therefore, appears that the transition from the

however, no S.UCh maximum is expected and .the power % etched exponential to the scale-free behavior is perhaps
decay starts right from the small valuestfAgain, sinced taking place at the specific value ef=—1 in d=2, and in
varies Ilnearlly (\;V't.hatiis. 5(§)thg; 1 '(;] general, the general, ai;=1—d in thed dimension. However, a similar
fmlnlmurlr|1 va ule m 'Ss ained ak= andremains same study in one dimension shows all indications thatis very

or smartier vaiues otr. likely to be around—0.5, certainly greater than-1 but

Our numerical findings nicely support these results: Weseems to be smaller than zero. Therefore, we conjecture that
check thaté saturates nearly ai,,=—3 for a<—4 for d

; ) a.=1—d though our numerical analysis in one dimension
=2 andé,= —2 for a<—2 ind=1 [Fig. 2(b)]. We look at ¢ full frm thi iction. At th ite limit
the distribution in more detail id=2 for small values of . does not fully confirm this prediction. At the opposite limi

on d . ¢ ) _ £~0 01 of a=o, i.e., when each node is connected to its farthest
n decreasingy from a maximum appears &t=". neighbor, the degree distribution is found to be exponentially

[Fig. 2c)], l.e.,_dflslsf mcreasesI from zer:o the dls_trlbutlon &ecaying and it appears that it happens onlyat since
grows very rapidly as a power law, reachés a maximum, ang, o g, = 40 we found scaling of the distribution.

then decays. For a particular valueaf D(¢) scales nicely We note a few more important properties of this network

with the duration7 of growth as neara.. The first moment of the degree distributiok) is
D(0)~TY2G(¢TY). 7) exactly 2 since the sum of the degrees of all nodesZs 2

In Fig. 2(c) we plot these collapsed data which fit very well [ ' ' ' '

to the following form of the scaling function: 140 .
G(x)=a'x"1(x%+c")?. (8) «
! ! ! H H ”‘7\' 135 ]
Values of all the constants’,b’,c’,d’ of this expression are =,
dependent orv. No such maximum irD(€) at the small ':-
values of¢ is observed in one dimension. %’ 130 ]

We studied the cumulative degree distributidi(k)
=[¥P(k)dk~k!~” and assume the following scaling be-
havior:

125

0 2000 4000 6000 8000

t
where the scaling function7(x)—x*~” when x<1 and FIG. 4. Average degree of the nodk(t,7)) at timet for a
JF(x)—const forx>1. This implies thaty=1+#5/{. For  two-dimensional network of duratiofi=2%* multiplied by t¥2 is
example, forae=—1 atd=2 a good data collapse is 0b- piotted for differenta. For a=3,2,1~1 plots are parallel to the
tained forp=1 and{=1/2 giving y=3 and the same result axis for larget. The curves deviate fow=—3/2, —2, and
is obtained for all values oft>—1. However, fora<—1  for —3.

F(k,T)~T"FKITY), 9
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counting each link twice, whereas the number of nodeg is tribution exponenty by the relation;3(y—1)=1. We have
+1. As the cutoff of the degree distribution variesZsthe calcucllatecFK_ k(t‘iﬂ> mI t\é\ﬁ d%nsqulons for dllfferent va:ue\sN of
; S T¢ 7 . a and in Fig. 4 we plotk(t,7) )t~ vston a linear scale. We

(k) is def|r_1ed ay, kp(k)d.k/fl P(k)dk. Assumingy=>2 observe that for all values af>—1 the plot is horizontal,
the mean is §— 1)/(y—2) in the large7 limit. This gives _implying that 3=1/2 for this range ofx values.
7:3 correctly. Since each nodg ha_s exactly one outgoing To summarize, we studied a growing random network
link, the mean number of incoming links averaggd over aIIWhere the attachment probability, to a previous nodeé
nodes must be equal to 1. The fraction of nodes with nonzeraepends jointly on the degree of the ndg@s well as on the
inc_om_ing links ShOL_"d be % P_(l)' !n Fig. 3(&) we plot the a-th power of the link lengtlf as7r; ~k;€“. By tuninga we
\iarlatlon ofP(ll) with ;;3 ':c'hls>var|esTfhr0mf0-477h7 atr= find that for a<a. the degree distribution of the resulting

* kt)o vefry close tol_ K Ofex “Cé( erefore, edmean network is stretched exponential whereas dor « the net-
nltljm (ejr 0 w_u;lokmln% " ;/per nod in(a)z avferage OVET \ork is scale free. We also observe that the link length dis-
all nodes withkin # IS [(1-P(1))7]=3 for a>a.. __tribution follows a power lawD (€) ~ ¢ for the whole range
Th's is checked ’.‘“me”ca”y- We also keep track OT the Vanans the parametetr in contrast to the Waxman’s exponential
tion of average link |eng.t|6€(a)> as th_e characte_nshc dis- distribution[12]. The exponen® grows linearly witha for
tance of this system which is shown in FighB Since for «=—2d and saturates at (d+ 1) for a< — 2d. Our inter-
< ac smaller links are more probablt,(e)) is very small oy ohservation is whem= —d the network has the prop-

—1/2
and approaches zero 8", For a>ag, (¢(a)) grows erty of real Internet network where the link length distribu-
with «. Finally, the fraction of anisotropic link§(¢>1/2) 4 0\ aries inversely with the link length.

also grows from zero ak= «..
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