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Abstract

Traced monoidal categories model processes that can feed their outputs back to their

own inputs, abstracting iteration. The category of finite dimensional Hilbert spaces with the

direct sum tensor is not traced. But surprisingly, in 2014, Bartha showed that the monoidal

subcategory of isometries is traced. The same holds for coisometries, unitary maps, and

contractions. This suggests the possibility of feeding outputs of quantum processes back to

their own inputs, analogous to iteration. In this paper, we show that Bartha’s result is not

specifically tied to Hilbert spaces, but works in any dagger additive category with Moore-

Penrose pseudoinverses (a natural dagger-categorical generalization of inverses).

1 Introduction

A trace on a symmetric monoidal category (C,⊕) is an operation that assigns to each map

f : A⊕X → B⊕X another map TrX f : A → B, satisfying some well-known axioms [13, 29]. In

string diagrams, traces are represented by looping an output of f back to the corresponding input,

as in the following diagram.

f = f
X X

A B
TrX f = f

A B

In categories of vector spaces, there are two relevant monoidal structures: the “multiplicative”

tensor ⊗ and the “additive” tensor ⊕, also known as biproduct or direct sum. The multiplicative

tensor on finite dimensional vector spaces has a well-known trace (induced by the compact closed

structure). But in this paper, we are interested in the additive tensor.

Linear maps between direct sums amount to block matrices: to specify a linear map

f : A1 ⊕·· ·⊕An → B1 ⊕·· ·⊕Bm is to specify all of the components f ji : Ai → B j. We may

organize this data either in a rectangular array as usual or in a string diagram (see Selinger [29]),

which will be illustrative.

f =

A1 ⊕ A2
( )

B1 f11 f12
⊕
B2 f21 f22

f21

f22

f12

f11

B2A2

B1A1
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Composition, i.e., matrix multiplication, is given by summing over all paths from each input to

each output.

g12

g21
g11

g22

C1

C2

f12

f21
f11

f22

A1

A2

B1

B2

g◦ f =

A1 ⊕ A2
( )

C1 g11 ◦ f11 +g12 ◦ f21 g11 ◦ f12 +g12 ◦ f22
⊕
C2 g21 ◦ f11 +g22 ◦ f21 g21 ◦ f12 +g22 ◦ f22

Hence a natural way to try to define an additive trace on a category of vector spaces is by the

following sum-over-paths formula, motivated by the accompanying string diagram.

fXA

fXX

fBX

fBA BA

X

TrX f = fBA + fBX ◦ fXA + fBX ◦ fXX ◦ fXA + fBX ◦ ( fXX )
2 ◦ fXA + · · ·

That is, we sum over all paths from the exposed input to the exposed output, as usual. However,

the sum may not converge (supposing there is even any notion of convergence), and so the

formula does not define a total operation. Indeed, there is no totally defined trace with respect to

⊕ on any category of finite (or infinite) dimensional vector spaces [12].

Therefore, it came as a surprise when Bartha [3] showed that the category of finite dimen-

sional Hilbert spaces and isometries has a well-defined additive trace. In particular, not only does

Bartha’s trace of an isometry always exist, but it is again an isometry. By duality, Bartha’s trace

also works for coisometries, and therefore also for unitary maps. Moreover, Andrés-Martı́nez

pointed out that Bartha’s trace further generalizes to all contractions [1]. These results suggest

that there might be some physical interpretation of loops in quantum systems, but we do not

know what it is.

In this paper, we show that Bartha’s result is not specifically tied to Hilbert spaces, but

works in any dagger additive category with suitable additional structure. The specific additional

structure that we need to assume is the existence of Moore-Penrose pseudoinverses.

In a nutshell, a pseudoinverse of an arrow f : A → B is an arrow f ◦ : B → A such that both

f ◦ f ◦ and f ◦ ◦ f are self-adjoint and f ◦ f ◦ ◦ f = f and f ◦ ◦ f ◦ f ◦ = f ◦. Pseudoinverses are

unique when they exist, and they generalize inverses. Moreover, the definition of pseudoinverse

is purely algebraic and makes sense in any dagger category [6].

The reader may be wondering why pseudoinverses should appear in this context. Disregard-

ing convergence issues, the sum-over-paths formula above is calculated by way of a geometric

series:

TrX f = fBA + fBX ◦
(

∞

∑
i=0

fXX
i

)

◦ fXA = fBA + fBX ◦ (1X − fXX)
−1 ◦ fXA.

Bartha’s trace can be defined by simply changing the inverse in this formula, which may or may

not exist, to a pseudoinverse. See Section 6 for more details.
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Our main result is the following:

Theorem 1. Given any dagger additive category with pseudoinverses, there is a totally defined

trace on each of the following monoidal subcategories:

• the unitaries,

• the isometries,

• the coisometries, and

• the contractions.

Moreover, in the cases of unitaries and contractions, which are dagger monoidal subcategories,

the trace is a dagger trace.

After reviewing some background material in Section 2, we introduce contractions in Sec-

tion 3 and pseudoinverses in Section 4, and prove some of their required properties. Section 5 is

devoted to the proof of the main theorem.

The remaining sections contain additional observations that are not required for our main

result, but are of independent interest. In Section 6, we discuss further properties of Bartha’s

trace formula. In Section 7, we muse about the possibility of physical interpretations. Section 8

contains more results about pseudoinverses in dagger categories. Finally, in Section 9, we have

collected various counterexamples.

Acknowledgements. We thank JS Lemay and Priyaa Varshinee Srinivasan for helpful discus-

sions. An extended abstract of this work has appeared in [8]. This work was supported by the

Natural Sciences and Engineering Research Council of Canada (NSERC) and by the U.S. Air

Force Office of Scientific Research under Award No. FA9550-21-1-0041. The authors declare

no competing interests.

2 Background

2.1 Dagger categories

We recall some basic definitions and properties of dagger categories to fix the notation for the rest

of the paper. For a more detailed treatment, see Selinger [27], Heunen and Vicary [11], Karvonen

[14].

Definition 2.1 (Dagger category). A dagger category is a category equipped with an identity-

on-objects involutive contravariant functor, denoted (–)†. In other words, for f : A → B, we have

f † : B → A, and we have the following properties:

• f †† = f ,

• (1A)
† = 1A, and

• (g◦ f )† = f † ◦g†.

For example, the category Hilb of Hilbert spaces and bounded linear maps is a dagger cate-

gory. Its full subcategory FdHilb of finite dimensional Hilbert spaces is also a dagger category.

Definition 2.2 (Properties of arrows). An arrow f : A → B in a dagger category is called an isom-

etry if f † ◦ f = 1A, a coisometry if f ◦ f † = 1B, and unitary if it is an isometry and a coisometry.

Equivalently, f is unitary if it is invertible and f−1 = f †. An arrow f : A → A is self-adjoint (or

hermitian) if f = f †.
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In this paper, we use the symbol ⊕ to denote the monoidal product, because we are mainly

interested in monoidal structures that are induced by biproducts.

Definition 2.3 (Dagger monoidal category). A dagger monoidal category is a dagger category

that is also monoidal, such that (–)† is a strict monoidal functor. More explicitly, this means that

the monoidal structure isomorphisms (i.e., associators and unitors) are unitary, and for all arrows

f and g, we have

( f ⊕g)† = f † ⊕g†.

In a dagger (monoidal) category, the isometries, coisometries, and unitary maps each form a

(monoidal) subcategory, i.e., they are closed under compositions (and monoidal products).

Definition 2.4 (Dagger finite biproduct category). A dagger finite biproduct category is a dagger

category that also has finite biproducts such that the projection maps πi : A1 ⊕A2 → Ai and the

inclusion maps ιi : Ai → A1 ⊕A2 satisfy πi = ι†
i .

As usual in any category with finite biproducts, there is a zero object 0, and we can define

the addition of arrows f ,g : A → B in the usual way by f + g = A → A⊕A
f⊕g−−→ B⊕B → B.

There are also zero maps 0: A → 0 → B. Indeed, every finite biproduct category is enriched

over commutative monoids. In the case of a dagger finite biproduct category, the dagger respects

the commutative monoid structure. Not all categories enriched in commutative monoids have

finite biproducts, and occasionally we will prefer not to assume existence of biproducts in order

to state results in the appropriate generality.

Definition 2.5 (Finite addition category). A finite addition category (or rigoid) is a category

enriched in commutative monoids. Explicitly, a finite addition category is a category where every

hom-set is equipped with the structure of a commutative monoid, subject to the distributive laws

g◦ ( f1 + f2) = g◦ f1 +g◦ f2, (g1 +g2)◦ f = g1 ◦ f +g2 ◦ f , and 0◦ f = 0 = f ◦0

for all such arrows with appropriate domain and codomain.

A dagger finite addition category is a category that is both a dagger category and a finite

addition category such that for all arrows f : A → B and g : A → B we have

( f +g)† = f † +g†.

(Note 0† = 0 by functoriality regardless.)

Most important to us is the case where we also have subtraction.

Definition 2.6 (Negatives, additive category). We say that a finite addition category has nega-

tives if for every f : A → B, there exists − f : A → B such that f +(− f ) = 0. Note that this is the

same as being enriched in abelian groups. A (dagger) finite biproduct category with negatives is

called a (dagger) additive category.

We will also need the concept of positive map.

Definition 2.7 (Positive map). A map a : A → A in a dagger category is positive if there exists

f : A → B with a = f † ◦ f .

Positive maps in Hilb are positive operators in the usual sense. Every positive map is self-

adjoint, and the sum of positive maps is positive if we have dagger biproducts. Given two maps

f ,g : A → A in a dagger finite biproduct category, we say that f ≤ g if there exists some positive

a such that g = f +a. The dagger biproducts ensure that ≤ is a partial order.
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Lemma 2.8. Let f ,g : A → A be arrows in a dagger finite biproduct category and assume f ≤ g.

(a) For all h : A → B, we have h◦ f ◦h† ≤ h◦g◦h†.

(b) For all f ′,g′ : A′ → A′ with f ′ ≤ g′, we have f ⊕ f ′ ≤ g⊕g′.

Proof. Since g = f +a and g′ = f ′+a′ for some positive a and a′, we have

h◦g◦h† = h◦ f ◦h† +h◦a◦h† and g⊕g′ = ( f +a)⊕ ( f ′+a′) = ( f ⊕ f ′)+ (a⊕a′).

It is easy to see h◦a◦h† and a⊕a′ are positive, which implies both claims.

2.2 Matrices

It is well-known that maps f : A1 ⊕·· ·⊕Am → B1 ⊕·· ·⊕Bn in a finite biproduct category are

in one-to-one correspondence with matrices ( f ji), where f ji : Ai → B j. Here we describe this

correspondence in more detail.

Let C be a finite addition category, and let

A = {Ai}i∈I and B = {B j} j∈J

be finite families of objects in C.

Definition 2.9 (Matrices). A matrix f : A → B consists of an arrow f
ji

: Ai → B j in C for each

i ∈ I and j ∈ J.

If f : {Ai}i∈I → {B j} j∈J and g : {B j} j∈J →{Ck}k∈K are matrices, their composition (or prod-

uct) g◦ f : {Ai}i∈I →{Ck}k∈K is given by the usual matrix multiplication formula

(g◦ f )
ki
= ∑

j∈J

g
k j
◦ f

ji

(where the summation notation refers to addition via +).

We denote the category of finite families of objects in C and matrices by Mat(C). Note that

Mat(C) is a finite biproduct category. Moreover, if C is a dagger finite addition category, then

Mat(C) is a dagger finite biproduct category, where for each matrix f : {Ai}i∈I →{B j} j∈J we

take ( f †)
ji
= ( f

i j
)† for all i ∈ I, j ∈ J.

When C is already a (dagger) finite biproduct category, Mat(C) is (dagger) equivalent to

C. Indeed, C fully and faithfully embeds in Mat(C) as matrices between single objects, and

moreover this embedding is essentially surjective: given an arbitrary finite family {Ai}i∈I with

biproduct A in C, the canonical matrix {A}→ {Ai}i∈I whose entries are product projection maps

is (unitarily) invertible.

Hence arrows A1 ⊕·· ·⊕Am → B1 ⊕·· ·⊕Bn are in canonical correspondence with matrices

{Ai}m
i=1 →{B j}n

j=1. For f : A1 ⊕·· ·⊕Am → B1 ⊕·· ·⊕Bn, we write

f =

A1 ⊕ ··· ⊕ Am

















B1 f11 · · · f1m
⊕

···

...
. . .

...
⊕
Bn fn1 · · · fnm

.
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where f
ji

is the canonical arrow

Ai → (A1 ⊕·· ·⊕Am)
f−→ (B1 ⊕·· ·⊕Bn)→ B j.

We also frequently abuse notation and write f
B j Ai

to mean f
ji
. Given a matrix

f =

(

f11 f12

f21 f22

)

: A1 ⊕A2 → B1 ⊕B2,

we call each f ji : Ai → B j a component of f , we call
(

f1i

f2i

)

: Ai → B1 ⊕B2 a column of f , and we

call ( f j1 f j2 ) : A1 ⊕A2 → B j a row of f . We use analogous terminology for larger matrices.

Remark 2.10. In a dagger finite biproduct category, an arrow of the form

A1 ⊕ ··· ⊕ Am

( )B f1 · · · fm

is an isometry if and only if f
†
i ◦ fi = 1Ai

for all i and f
†
j ◦ fi = 0 for i 6= j.

Remark 2.11. In a dagger additive category, every isometry is a component of a unitary. Indeed,

suppose f : A → B is an isometry. Then the following arrow is unitary.

A ⊕ B
( )

A 0 f †

⊕
B f 1B − f ◦ f †

2.3 Dagger idempotents

Definition 2.12 (Dagger idempotents). A arrow p : A → A is called a dagger idempotent (or

projection) if p = p◦ p = p†.

Whenever f : B → A is an isometry, then p = f ◦ f † is a dagger idempotent. If p is of

this form, we say that p is dagger split. When dagger splittings exist, they are unique up to

unitary isomorphism. Moreover, unlike ordinary idempotents, dagger idempotents are uniquely

determined by their image (see Selinger [28]).

The idempotent completion of a category is a staple of ordinary category theory; the dagger

idempotent completion, from Selinger [28], is the analogue for dagger categories.

Definition 2.13 (Dagger idempotent completion). A morphism of idempotents from an idempo-

tent p : A → A to an idempotent q : B → B in a category C is an arrow f : A → B in C such that

f = q◦ f ◦ p (equivalently, f ◦ p = f = q◦ f ).

The category consisting of idempotents in C and morphisms of idempotents between them

is called the idempotent completion (or Karoubi envelope or Cauchy completion) of C, denoted

Split(C). Note this is indeed a category, with p : p → p acting as 1p.

When C is moreover a dagger category, the full subcategory of Split(C) spanned by dagger

idempotents is called the dagger idempotent completion (or the dagger Karoubi envelope) of C,

denoted Split†(C). Note this is indeed a dagger category, with the dagger taken as in C.

Moreover, all structure of interest (e.g., monoidal structure, biproducts, addition, negatives,

and, as we will later introduce, pseudoinverses [6]) on a dagger category transports to its dagger

idempotent completion.

Next, we discuss the relationship between idempotents and additive structure.
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Definition 2.14 (Complementary idempotents). Two idempotents p,q : A → A in a finite addi-

tion category are complementary if p+q = 1A and q◦ p = 0 = p◦q.

If the category has negatives, complements always exist, because whenever p is an idem-

potent, so is 1 − p. It is obvious that the complement is unique in that case. Interestingly,

uniqueness even holds without assuming negatives.

Lemma 2.15 (Uniqueness of complementary idempotent). Let p : A → A be an idempotent in

a finite addition category. If each of q1,q2 : A → A is a complementary idempotent of p, then

q1 = q2.

Proof. We have

q1 = (p+q2)◦q1 = q2 ◦q1 = q2 ◦ (p+q1) = q2.

Lemma 2.16 (Complementary dagger idempotents). Let p,q : A → A be complementary idem-

potents in a dagger finite addition category. Then p is a dagger idempotent if and only if q

is.

Proof. Suppose p is a dagger idempotent. Then

p+q† = (p+q)† = 1A

and

q† ◦ p = (p◦q)† = 0 = (q◦ p)† = p† ◦q.

That is, p and q† are complementary. Hence q = q† by Lemma 2.15.

Complementary dagger idempotents are an algebraic abstraction of orthogonal complement

subspace projections.

Lemma 2.17 (Direct sum decomposition). Consider a (dagger) finite addition category in which

all (dagger) idempotents (dagger) split. Given an object A with complementary idempotents

p,q : A → A, there exist objects A1,A2 with A = A1 ⊕A2 such that

p =

A1 ⊕ A2
( )

A1 1 0
⊕
A2 0 0

and q =

A1 ⊕ A2
( )

A1 0 0
⊕
A2 0 1

.

Moreover, the factorization is unique up to (unitary) isomorphisms of the direct sum factors.

Proof idea. Let A1 be a splitting of p, and let A2 be a splitting of q. The claimed properties are

easy to verify.

Remark 2.18. In Lemma 2.17 and elsewhere, we write A = A1 ⊕A2 instead of A ∼= A1 ⊕A2;

this is justified because (dagger) biproducts are defined up to (unitary) isomorphism in the first

place.
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• Naturality: For all f : A⊕X → B⊕X , g : A′ → A, and h : B → B′,

h◦TrX( f )◦g ⇀−− TrX((h⊕1X )◦ f ◦ (g⊕1X )).

• Dinaturality: For all f : A⊕X → B⊕Y and g : Y → X ,

TrX((1B ⊕g)◦ f ) ⇀↽ TrY ( f ◦ (1A ⊕g)).

• Strength: For all f : A⊕X → B⊕X and g : C → D,

g⊕TrX( f ) ⇀−− TrX(g⊕ f ).

• Vanishing I: For all f : A⊕ I → B⊕ I,

TrI( f ) ⇀↽ f .

• Vanishing II: For all f : A⊕X ⊕Y → B⊕X ⊕Y :

If TrY ( f ) is defined, then TrX⊕Y ( f ) ⇀↽ TrX(TrY ( f )).

• Yanking: For all A,

TrA(σA,A) ⇀↽ 1A,

where σA,A : A⊕A → A⊕A is the symmetry.

Figure 1: Axioms for a partially traced category. Here, we write x ⇀−− y for directed

Kleene equality, i.e.: if x is defined, then so is y and they are equal. Similarly, x ⇀↽ y

means x and y are either both undefined, or both defined and equal. The axioms for a

total trace are obtained by replacing the symbols ⇀−− and ⇀↽ by equality.

2.4 Trace

Recall that a trace on a symmetric monoidal category C is a family of operations

TrX : C(A⊕X ,B⊕X)→ C(A,B), subject to a small number of axioms [13, 17, 29]. The concept

of a partial trace is defined similarly, except that TrX is a partially defined operation [9]. The

axioms are shown in Fig. 1. Note that a total trace is just a partial trace that happens to be to-

tally defined. It was shown by Malherbe [16] and Malherbe et al. [17] that every partially traced

category can be faithfully embedded in a totally traced one, and conversely, every monoidal

subcategory of a totally traced category is partially traced.

Remarkably, the sum-over-paths formula described in the introduction, TrX f = fBA + fBX ◦
(1X − fXX)

−1 ◦ fXA, gives a partial trace on any additive category [9, 12]. More relevant to us

is the following partial trace from Malherbe et al. [17], which agrees with the sum-over-paths

formula when (1X − fXX)
−1 exists, but which is also defined for more arrows.

Definition 2.19 (Kernel-image trace). Let f : A⊕X → B⊕X be an arrow in an additive cat-

egory. The kernel-image trace TrX
ki f : A → B is defined if there exist arrows i : A → X and

k : X → B such that

fXA = (1X − fXX)◦ i and k ◦ (1X − fXX) = fBX ,
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as in the following commutative diagram

A X

X B.

1X − fXX
fXA

fBX

i

k

In this case, we define

TrX
ki f = fBA + k ◦ (1X − fXX)◦ i.

(Otherwise, the kernel-image trace is undefined.) Note TrX
ki is independent of the choice of each

i and k, since

fBA + fBX ◦ i = TrX
ki f = fBA + k ◦ fXA.

Proposition 2.20 (17). The kernel-image trace is a partial trace.

Remark 2.21. In a dagger category, a (partial) trace is called a dagger (partial) trace if Tr( f †) =
(Tr f )†. In a dagger additive category, the kernel-image trace is always a dagger partial trace,

because its definition is self-dual.

The kernel-image trace (Definition 2.19) is quite central in this paper: we will prove Theo-

rem 1 by showing that the kernel-image trace is totally defined, and hence gives a total trace on

the desired subcategories.

3 Contractions

3.1 Basic properties

In the category of Hilbert spaces, a contraction is a map f : A → B such that for all v ∈ A,

‖ f (v)‖ ≤ ‖v‖. The following definition generalizes this concept to arbitrary dagger additive

categories.

Definition 3.1 (Contraction). A contraction in a dagger additive category is an arrow f : A → B

such that f † ◦ f ≤ 1A. In other words, such that there exists an arrow g : A → B′ with f † ◦ f +
g† ◦g = 1A. Note that this is the case if and only if the map

(

f
g

)

: A → B⊕B′ is an isometry. A

cocontraction is defined dually.

In particular, every isometry, coisometry, and unitary map is a contraction. Also, biproduct

projections and injections are contractions.

Note that Definition 3.1 could be stated in a dagger finite addition category even without

assuming negatives or biproducts, but many of the useful properties of contractions rely on

the full dagger additive structure. A point in case is the next proposition, which gives several

alternative characterizations of contractions, none of which would be equivalent in the absence

of negatives (see counterexamples 9.18 and 9.19).

Proposition 3.2 (Characterizations of contractions). Let f : A → B be an arrow in a dagger

additive category. The following are equivalent.

(a) f is a component of a unitary.
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(b) f is a contraction.

(c) f is a cocontraction.

(d) f is of the form e◦m for some isometry m : A → X and coisometry e : X → B.

(e) f is a composition of isometries and coisometries.

We delay the proof until we have established some lemmas. The following lemma tells us

that contractions, like isometries, form a monoidal subcategory.

Lemma 3.3. Contractions are closed under composition and monoidal products.

Proof. For composition, let f : A → B and g : B →C be contractions. Then f † ◦ f ≤ 1A and

g† ◦g ≤ 1B. Using Lemma 2.8(a), we get

(g◦ f )† ◦ (g◦ f ) = f † ◦g† ◦g◦ f ≤ f † ◦1B ◦ f = f † ◦ f ≤ 1A.

Therefore, f ◦g is a contraction. For monoidal products, let f : A → B and g : A′ → B′ be con-

tractions. Using Lemma 2.8(b), we get

( f ⊕g)† ◦ ( f ⊕g) = ( f † ◦ f )⊕ (g† ◦g)≤ 1A ⊕1A′ = 1A⊕A′.

Therefore, f ⊕g is a contraction.

Lemma 3.4 (Contractions as components of unitaries). In a dagger additive category, contrac-

tions are precisely the components of unitaries. In particular, contractions coincide with cocon-

tractions.

Proof. First, a component of a unitary is a composition of three contractions u jk = π j ◦u◦ ιk, and

is therefore a contraction itself. Conversely, every contraction is a component of an isometry (as

remarked in Definition 3.1), which in turn is a component of a unitary by Remark 2.11. Finally,

since being a component of a unitary is a self-dual concept, so is being a contraction.

We can now prove Proposition 3.2.

Proof of Proposition 3.2. The equivalence (a) ⇐⇒ (b) ⇐⇒ (c) is Lemma 3.4. For (b) =⇒
(d), assume f † ◦ f + g† ◦ g = 1. Then f = e ◦m, where e = (1 0) is a coisometry and m =
(

f
g

)

is an isometry. The implication (d) =⇒ (e) is trivial, and (e) =⇒ (b) follows because

contractions are closed under composition by Lemma 3.3.

3.2 Contractions and definiteness

Contractions have even better properties when the underlying dagger category satisfies the fol-

lowing condition.

Definition 3.5 (Definite). A dagger category with a zero object is definite if for all arrows f , we

have that f † ◦ f = 0 implies f = 0.

In the familiar context of Hilbert spaces, the columns or rows of a contraction have norm at

most 1. An analogue of this principle holds in any definite dagger additive category.

Lemma 3.6 (Maxed-out column). In a definite dagger additive category, assume f =
(

f1

f2

)

is a

contraction. If f1 is an isometry, then f2 = 0.
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Proof. It suffices to show the result when f is an isometry, because every contraction is a row of

an isometry. We have 1A = f † ◦ f = f
†
1 ◦ f1 + f

†
2 ◦ f2 = 1A + f

†
2 ◦ f2. Subtracting 1A from both

sides, we get 0 = f
†
2 ◦ f2. Now by definiteness, f2 = 0.

Corollary 3.7 (Maxed-out row and column). In a definite dagger additive category, assume

f =

(

1 f12

f21 f22

)

is a contraction. Then f12 = 0 and f21 = 0.

Proof. f12 = 0 follows from Lemma 3.6 and f21 = 0 follows from its dual.

The first part of the following is basically Corollary 3.7 in more algebraic language. The

second part amounts to the observation that the fixed points of a contraction f are also fixed by

f †.

Corollary 3.8 (Fixed points of contraction). Suppose f : A → A is a contraction and p : A → A

is a dagger idempotent in a definite dagger additive category.

(a) If p◦ f ◦ p = p, then f ◦ p = p = p◦ f .

(b) f ◦ p = p if and only if p◦ f = p.

Proof. Without loss of generality, we can assume all dagger idempotents split, because otherwise

we can pass to the dagger idempotent completion. Let A = A1 ⊕A2 be the decomposition of A

obtained by splitting p and its complement as in Lemma 2.17. Write

f =

A1 ⊕ A2
( )

A1 f11 f12
⊕
A2 f21 f22

.

To prove (a), note that p ◦ f ◦ p = p means that f11 = 1, which by Corollary 3.7 implies that

f12 = 0 and f21 = 0, hence f ◦ p = p = p◦ f . Claim (b) follows from (a).

4 Pseudoinverses

4.1 Definition of pseudoinverse

Every linear map f : V →W between finite dimensional Hilbert spaces is of the form

f =

(ker f )⊥ ⊕ ker f
( )im f a 0

⊕
(im f )⊥ 0 0

,

where a is invertible. This section is about dagger additive categories in which an analogous fact

holds. Observe that, given the above decomposition of f : V →W , we automatically get a map

f ◦ : W →V in the other direction via

f ◦ =

im f ⊕ (im f )⊥
( )

(ker f )⊥ a−1 0
⊕

ker f 0 0
.

11



We note that this “almost inverse” f ◦ of f satisfies the following four properties:

f = f ◦ f ◦ ◦ f , f ◦ = f ◦ ◦ f ◦ f ◦, f ◦ ◦ f = ( f ◦ ◦ f )†, f ◦ f ◦ = ( f ◦ f ◦)†. (1)

It so happens that these four laws uniquely determine f ◦ given f .

Definition 4.1 (Pseudoinverse). In a dagger category, a pseudoinverse (or Moore-Penrose pseu-

doinverse) of a map f : A → B is an arrow f ◦ : B → A such that the equations (1) hold. A pseu-

doinverse dagger category (in Cockett and Lemay [6], Moore-Penrose dagger category) is a

dagger category in which every arrow has a pseudoinverse.

Before we prove uniqueness, here is a bit of background on pseudoinverses. They were

introduced by Moore [18] and rediscovered by Penrose [20]. For an overview, see Ben-Israel

[4] or Baksalary and Trenkler [2]. Pseudoinverses were studied in abstract dagger categories by

Puystjens and Robinson [21, 22, 23, 24, 25] and recently by Cockett and Lemay [6].

Example 4.2. In Hilb, an arrow f : A → B is pseudoinvertible if and only if the image of f is

closed. In FdHilb, every arrow is pseudoinvertible.

We note the following equivalent characterization of pseudoinverses; it will simplify the

proof of uniqueness in Proposition 4.4 below.

Lemma 4.3 (Second definition of pseudoinverse). Pseudoinverses f and f ◦ in a dagger category

are equivalently characterized by the equations

f = f ◦† ◦ f † ◦ f , f = f ◦ f † ◦ f ◦†, f ◦ = f † ◦ f ◦† ◦ f ◦, f ◦ = f ◦ ◦ f ◦† ◦ f †. (2)

Proof. From (2), we derive

f ◦ f ◦ = f ◦† ◦ f † ◦ f ◦ f ◦ = f ◦† ◦ f † and f ◦ ◦ f = f † ◦ f ◦† ◦ f ◦ ◦ f = f † ◦ f ◦†,

i.e., f ◦ f ◦ = ( f ◦ f ◦)† and f ◦ ◦ f = ( f ◦ ◦ f )†. Hence the two definitions are equivalent as f and

f ◦ are permitted to slide past each other, picking up daggers.

Proposition 4.4 (Uniqueness of pseudoinverse). If f ◦ and f • are both pseudoinverses of f , then

f ◦ = f •.

Proof. f ◦ = f † ◦ f ◦† ◦ f ◦ = f • ◦ f ◦ f † ◦ f ◦† ◦ f ◦ = f • ◦ f ◦ f ◦. Symmetrically, f • = f • ◦ f ◦
f ◦.

Note that the notion of pseudoinverse is self-dual and therefore respected by dagger: if

f : A → B is pseudoinvertible, then so is f † with ( f †)
◦
= ( f ◦)†. Also note that if f is pseu-

doinvertible, then f ◦ f ◦ and f ◦ ◦ f are dagger idempotents. More specifically, f ◦ f ◦ represents

projection onto the image of f , and f ◦ ◦ f represents projection onto the coimage of f (i.e., the

orthogonal complement of the kernel). We hence obtain the following decomposition, which is

analogous to what happens in FdHilb.

Proposition 4.5 (Generalized singular value decomposition [6]). Let f : A → B be an arrow in

a dagger additive category in which all dagger idempotents split. Then f is pseudoinvertible if

and only if we can write A = A1 ⊕A2 and B = B1 ⊕B2 such that

f =

A1 ⊕ A2
( )

B1 a 0
⊕
B2 0 0

and f ◦ =

B1 ⊕ B2
( )

A1 a−1 0
⊕
A2 0 0

,

where a : A1 → B1 is invertible. Moreover, the factorization of f is unique up to unitary isomor-

phisms of the direct sum factors.
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Proof. Clearly, if f can be written in the stated form, then f is pseudoinvertible with pseu-

doinverse as stated. For the left-to-right implication, assume f is pseudoinvertible. Consider

the dagger idempotents f ◦ ◦ f : A → A and f ◦ f ◦ : B → B. By splitting them and their comple-

ments as in Lemma 2.17, we can write A = A1 ⊕A2 and B = B1⊕B2, where f ◦ ◦ f = ιA
1 ◦πA

1 and

f ◦ f ◦ = ιB
1 ◦πB

1 . Let a= πB
1 ◦ f ◦ιA

1 : A1 → B1. Then f = f ◦ f ◦ ◦ f ◦ f ◦◦ f = ιB
1 ◦πB

1 ◦ f ◦ιA
1 ◦πA

1 =
ιB
1 ◦a◦πA

1 , hence f is of the claimed form. Moreover, it is easy to verify that a−1 = πA
1 ◦ f ◦ ◦ ιB

1 .

Uniqueness is as in Lemma 2.17.

4.2 EP maps

The generalized singular value decomposition of Proposition 4.5 is especially nice if f is a so-

called EP-map, which we now define. This definition captures the notion of an endomorphism

whose kernel and image are orthogonal complements.

Definition 4.6 (EP maps). An EP map (or range hermitian map) in a dagger category is a

pseudoinvertible endomorphism f : A → A such that f ◦ ◦ f = f ◦ f ◦.

The term “EP” was introduced by Schwerdtfeger [26], who does not explain what these

letters stand for. Given that f ◦ ◦ f and f ◦ f ◦ are projections that are equal to each other, a useful

mnemonic is that EP stands for “equal projections”.

Remark 4.7 (Normal operators are EP). If f is pseudoinvertible and f † ◦ f = f ◦ f †, then f is
EP:

f ◦ ◦ f = f † ◦ f ◦† = f † ◦ f ◦ f ◦ ◦ f ◦† = f † ◦ f ◦ ( f † ◦ f )
◦
= f ◦ f † ◦ ( f ◦ f †)

◦
= f ◦ f † ◦ f ◦† ◦ f ◦ = f ◦ f ◦.

The following proposition characterizes EP maps in the style of Proposition 4.5.

Proposition 4.8. Let f : A → A be an arrow in a dagger additive category in which all dagger

idempotents split. Then f is EP if and only if we can write A = A1 ⊕A2 such that

f =

A1 ⊕ A2
( )

A1 a 0
⊕
A2 0 0

,

where a : A1 → A1 is invertible.

Proof. Like the proof of Proposition 4.5, but using the fact that the idempotents f ◦ f ◦ and f ◦ ◦ f

are equal and therefore have the same splitting.

Before we say more about EP maps, we need the following lemma.

Lemma 4.9. In a dagger category with a zero object, if f : A → B is pseudoinvertible and f † ◦
f = 0, then f = 0. In particular, every pseudoinverse dagger category with a zero object is

definite.

Proof. Using (2) from Lemma 4.3, we have f = f ◦† ◦ f † ◦ f = 0.

We saw in Corollary 3.8 that the fixed points of a contraction f are also fixed by f †. The

following lemma is the same fact in different language: g = 1− f being EP means that 1−g◦ ◦g

(the projection onto the fixed points of f ) is equal to 1− g ◦ g◦ (the projection onto the fixed

points of f †).
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Lemma 4.10 (Contractions and EP maps). Let f : A → A be a contraction in a pseudoinverse

dagger additive category. Then g = 1A − f is EP.

Proof. Observe that (1A−g)◦(1A−g◦◦g) = 1A−g◦◦g. By Lemma 4.9, the category is definite,

and thus we can apply Corollary 3.8 to obtain (1A −g◦ ◦g)◦(1A −g) = 1A−g◦ ◦g. Simplifying,

we get g◦ ◦g◦g = g. Similarly, g◦g◦g◦ = g, hence g◦◦g = g◦ ◦g◦g◦g◦ = g◦g◦, as claimed.

5 Proof of the main result

The purpose of this section is to prove Theorem 1. That is, in a pseudoinverse dagger additive

category, the monoidal subcategories of unitaries, isometries, coisometries, and contractions are

traced. The proof in the case of isometries proceeds in two steps: In Lemma 5.1, we show that

the kernel-image trace of a contraction (and therefore, of an isometry) is always defined. This

is the only part of the proof that uses pseudoinverses. In Lemma 5.2, we show that the kernel-

image trace of an isometry is again an isometry. These two facts imply that the kernel-image

trace is totally defined on the category of isometries. Since it is already known to be a partial

trace, these facts are sufficient to prove that the category of isometries is totally traced. The case

of contractions is proved similarly, and the other cases are easy consequences.

Lemma 5.1 (Trace is defined for contractions). In a pseudoinverse dagger additive category, the

kernel-image trace is always defined for contractions.

Proof. Let f : A⊕X → B⊕X be a contraction. Then fXX is also a contraction, because it can

be written as a composition of three contractions fXX = X
ιX−→ A⊕X

f−→ B⊕X
πX−→ X . Then by

Lemma 4.10, 1X − fXX is an EP map. For the rest of this proof, we assume that all idempotents

split; this is without loss of generality because we can pass to the dagger idempotent completion.

Note that the dagger idempotent completion still has pseudoinverses [6], as is straightforward to

check. Because 1X − fXX is an EP map, by Proposition 4.8, we can write

1X − fXX =

X1 ⊕ X2
( )

X1 a 0
⊕
X2 0 0

,

where we have decomposed X into a sum of two objects X1 ⊕X2 and a : X1 → X1 is invertible.

Writing f in matrix form, we now have

f =

A ⊕ X1 ⊕ X2
















B fBA fBX1
fBX2

⊕
X1 fX1A 1X1

−a 0
⊕
X2 fX2A 0 1X2

.

Using Corollary 3.7, we get fX2A = 0 and fBX2
= 0. To show that the kernel-image trace of f is

defined, we must show that there exist i and k to complete the following diagram:

A X

X B

(

a 0
0 0

)

(

fX1A

0

)

( fBX1
0)

i

k

14



But this can be achieved with i =

(

a−1 ◦ fX1A

0

)

and k =
(

fBX1
◦a−1 0

)

.

In the next lemma, we do not assume pseudoinverses, so the kernel-image trace of a given

isometry may not exist. However, we show that if it does exist, it is an isometry.

Lemma 5.2 (Trace of isometry). In a dagger additive category, the kernel-image trace of an

isometry, if it exists, is an isometry.

Proof. Consider an arrow f : A⊕X → B⊕X with components

f =

A ⊕ X
( )

B fBA fBX
⊕
X fXA fXX

Assume that f is an isometry, so that we have

f
†
BX ◦ fBX + f

†
XX ◦ fXX = 1X ,

f
†
BA ◦ fBA + f

†
XA ◦ fXA = 1A,

f
†
BX ◦ fBA + f

†
XX ◦ fXA = 0.

(3)

Also assume that TrX
ki f exists, so in particular there exists i : A → X satisfying

fXA = (1X − fXX)◦ i. (4)

To show that TrX
ki f is an isometry, we calculate

(TrX
ki f )† ◦TrX

ki f = ( f
†
BA + i† ◦ f

†
BX )◦ ( fBA + fBX ◦ i)

= f
†
BA ◦ fBA + f

†
BA ◦ fBX ◦ i+ i† ◦ f

†
BX ◦ fBA + i† ◦ f

†
BX ◦ fBX ◦ i

(by (3)) = f
†
BA

◦ fBA − f
†
XA

◦ fXX ◦ i− i† ◦ f
†
XX ◦ fXA + i† ◦ (1X − f

†
XX ◦ fXX )◦ i

(by (4)) = f
†
BA ◦ fBA − i† ◦ (1X − f

†
XX)◦ fXX ◦ i− i† ◦ f

†
XX ◦ (1X − fXX)◦ i+ i† ◦ (1X − f

†
XX ◦ fXX)◦ i

= f
†
BA ◦ fBA + i† ◦ (− fXX + f

†
XX ◦ fXX )◦ i+ i† ◦ (− f

†
XX + f

†
XX ◦ fXX)◦ i+ i† ◦ (1X − f

†
XX ◦ fXX)◦ i

= f
†
BA

◦ fBA + i† ◦ (1X − f
†
XX − fXX + f

†
XX ◦ fXX )◦ i

= f
†
BA ◦ fBA + i† ◦ (1X − f

†
XX)◦ (1X − fXX)◦ i

(by (4)) = f
†
BA ◦ fBA + f

†
XA ◦ fXA

(by (3)) = 1A.

Note that the proof only used the i of the kernel-image trace and not the k. We use this fact

to immediately obtain the following.

Lemma 5.3 (Trace of contraction). In a dagger additive category, the kernel-image trace of a

contraction, if it exists, is a contraction.

Proof. Suppose f : A⊕X → B⊕X is a contraction. By the definition of contraction, there exists

an object B′ and an arrow g : A⊕X → B′ such that f † ◦ f +g† ◦g = 1A⊕X , or in other words, such

that

h =

A ⊕ X












B′ gB′A gB′X
⊕
B fBA fBX
⊕
X fXA fXX
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is an isometry. Now assume that the kernel-image trace of f exists. While this does not necessar-

ily imply that the kernel-image trace of h exists, we nevertheless get the existence of i : A → X

such that fXA = (1X − fXX)◦ i. As seen in the proof of Lemma 5.2, this is sufficient to show that

(

gB′A

fBA

)

+

(

gB′X

fBX

)

◦ i =

(

gB′A +gB′X ◦ i

fBA + fBX ◦ i

)

is an isometry. Thus, the kernel-image trace of f , which is fBA + fBX ◦ i, is a contraction, as

claimed.

We are now ready to prove our main theorem.

Proof of Theorem 1. Lemmas 5.1, 5.2, and 5.3 show that the kernel-image trace of the ambient

category is total on isometries and contractions. Dually, the same holds for coisometries. Hence

the trace is also total on their intersection, the unitaries. Moreover, in the cases of unitaries and

contractions, the trace is a dagger trace by Remark 2.21.

6 The pseudotrace is not a trace

In the proof of our main theorem, pseudoinverses play a minor, but crucial role: they are only

used to prove that the kernel-image trace is total. In Bartha’s original work [3], pseudoinverses

play a larger part, because he uses them directly to define the trace on the category of finite

dimensional Hilbert spaces and isometries via the following formula:

TrX
ps f = fBA + fBX ◦ (1X − fXX)

◦ ◦ fXA. (5)

In fact, the above formula is defined for all linear maps f (not necessarily isometries), and, as we

show below, it agrees with the kernel-image trace whenever the latter exists. However, Bartha’s

operation is not a trace on the category of all linear maps, because it fails to satisfy the trace

axioms. We call it the pseudotrace.

Definition 6.1 (Pseudotrace). In a dagger additive category, the pseudotrace of f : A⊕X → B⊕X

is defined by (5), if the pseudoinverse of 1X − fXX exists, and undefined otherwise. In particular,

if the category has pseudoinverses, this is a totally defined operation.

Warning 6.2. In general, the pseudotrace is not a trace. This is clear because it is totally defined

on FdHilb, and Hoshino [12] showed that there is no total trace on any nontrivial additive cat-

egory. Nevertheless, it is interesting to consider which of the six trace axioms fail, and why. It

turns out that only dinaturality and vanishing II are violated; see Counterexample 9.13.

Proposition 6.3 (Pseudotrace and kernel-image trace). In a dagger additive category, whenever

the pseudotrace and kernel-image trace are both defined, they coincide.

Proof. Let f : A⊕X → B⊕X be an arrow with both TrX
ki f and TrX

ps f defined. Taking i and k as

in Definition 2.19, we have

TrX
ki f = fBA + k ◦ (1X − fXX)◦ i

= fBA + k ◦ (1X − fXX)◦ (1X − fXX)
◦ ◦ (1X − fXX)◦ i

= fBA + fBX ◦ (1X − fXX)
◦ ◦ fXA

= TrX
ps f .
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7 Non-physicality of the trace?

One may ask whether the trace operation on Hilbert spaces and unitaries (or isometries, or con-

tractions) has a physical interpretation, e.g., whether there is some physical device that can

perform this operation when presented with an input unitary in the form of a black box. One

potential issue is that the trace is not a continuous operation, i.e., an infinitesimal variation in

the input may cause a large variation in the output. Another potential issue is that neither the

pseudotrace (Definition 6.1) nor the kernel-image trace is total on infinite dimensional Hilbert

spaces, even when restricted to contractions, isometries, coisometries, or unitaries. The next two

remarks make this precise.

Remark 7.1 (Non-continuity of trace). The trace on finite dimensional Hilbert spaces with uni-

tary maps is not a continuous operation. Take for example the θ -parameterized family of rota-

tions
(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)

.

The trace along the second row and column is 1 for θ = 0 but is −1 for 0 < θ < 2π . On the

other hand, the trace is continuous on strict contractions, because in that case the pseudoinverse

in (5) is an actual inverse, which is a continuous operation.

Remark 7.2 (Nonexistence of trace in infinite dimensions). Let f : ℓ2 → ℓ2 be the contraction on

the Hilbert space of square-summable sequences that multiplies the nth term of every sequence

by 1
n
. Consider the unitary map ℓ2 ⊕ ℓ2 → ℓ2 ⊕ ℓ2 defined by

(

−(1ℓ2 − f )
√

1ℓ2 − (1ℓ2 − f )2

√

1ℓ2 − (1ℓ2 − f )2 1ℓ2 − f

)

.

The pseudotrace along the second row and column does not exist, as f is not pseudoinvertible

(i.e., f does not have a closed image; see Example 4.2). Indeed, if there were an induced

invertible map from the coimage of f (here the entire space) to the image of f , then its inverse

would have to be unbounded. Neither does the kernel-image trace exist, as
√

1ℓ2 − (1ℓ2 − f )2

does not factor through f . Indeed, if there were k with
√

1ℓ2 − (1ℓ2 − f )2 = k ◦ f , then k would

have to be unbounded.

8 More on pseudoinverses

In this section, we collect some additional results about pseudoinverses that were not required to

prove Theorem 1, but are interesting in their own right.

8.1 Pseudoinverses and dagger idempotents

Pseudoinverses arise inevitably in relation to dagger idempotents. Recall that a morphism of

idempotents f : p → q is an arrow f such that q ◦ f ◦ p = f . As shown in Cockett and Lemay

[6], the pseudoinvertible arrows in any dagger category C exactly correspond to isomorphisms

of dagger idempotents (that is, isomorphisms in the dagger idempotent completion of C):

Proposition 8.1 (Pseudoinverses via dagger idempotents [6]). In a dagger category, an ar-

row f : A → B is pseudoinvertible if and only if there are dagger idempotents p : A → A and

q : B → B such that f is an isomorphism of dagger idempotents f : p → q. Furthermore, the
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inverse isomorphism of dagger idempotents q → p is given by f ◦, and we have p = f ◦ ◦ f and

q = f ◦ f ◦.

Proof. To say f : p → q is an isomorphism of dagger idempotents with inverse g : q → p means

f = q◦ f ◦ p and g = p◦g◦q with g◦ f = p and f ◦g = q. Since p and q are dagger idempotents,

we have (g◦ f )† = g◦ f and ( f ◦g)† = f ◦g. Moreover f ◦g◦ f = f and g◦ f ◦g = g, so g = f ◦.

Conversely, assume f is pseudoinvertible and let p = f ◦ ◦ f and q = f ◦ f ◦. We have that

f : p → q and f ◦ : q → p are morphisms of dagger idempotents, because f = f ◦ f ◦ ◦ f ◦ f ◦ ◦ f

and f ◦ = f ◦ ◦ f ◦ f ◦ ◦ f ◦ f ◦. The compositions f ◦ ◦ f and f ◦ f ◦ are respectively the identities

on p and q.

In a dagger additive category, we obtain four dagger idempotents of interest (written in the

matrix form of Proposition 4.5, assuming that the dagger splittings exist):

f ◦ f ◦ =

im f ⊕ (im f )⊥

( )im f 1 0
⊕

(im f )⊥ 0 0
f ◦ ◦ f =

(ker f )⊥ ⊕ ker f

( )(ker f )⊥ 1 0
⊕

ker f 0 0

1− f ◦ f ◦ =

im f ⊕ (im f )⊥

( )im f 0 0
⊕

(im f )⊥ 0 1
1− f ◦ ◦ f =

(ker f )⊥ ⊕ ker f

( )(ker f )⊥ 0 0
⊕

ker f 0 1

They are, respectively, the projections onto the image, the coimage, the cokernel, and the kernel

of f . The following propositions show that these names are justified.

Proposition 8.2 (Image via pseudoinverse). Let f : A → B be a pseudoinvertible arrow in a

dagger category such that f ◦ f ◦ splits via the mono m : X → B. Then m is the image of f (i.e.,

the universal subobject through which f factors).

Proof. We have m = f ◦ f ◦ ◦m, so m factors through every arrow that f factors through.

Note that f ◦ and f † have the same image projection, namely f ◦ ◦ f = f † ◦ f †◦. This is also

the coimage projection of f (and of f †◦). Dually, f ◦ and f † have the same coimage projection,

namely f ◦ f ◦ = f †◦ ◦ f †, which is also the image projection of f (and of f †◦).

Proposition 8.3 (Kernel via pseudoinverse). Let f : A → B be a pseudoinvertible arrow in a

dagger finite addition category, with p and f ◦ ◦ f complementary dagger idempotents. Then f

has a (dagger) kernel (in the standard sense of Heunen and Karvonen [10]) if and only if p

(dagger) splits. The splitting is given by the inclusion map of the kernel.

Proof. Observe that for all arrows m : X → A, we have f ◦m = 0 if and only if m = p ◦ m.

Indeed, if f ◦m = 0, then m = ( f ◦ ◦ f + p) ◦m = p◦m. Conversely, if m = p◦m then f ◦m =
f ◦ f ◦ ◦ f ◦ p ◦m = 0. A universal such arrow m is equivalently characterized as a kernel of f

or as an equalizer of p and 1A. But an equalizer of an idempotent and an identity is the same

as a mono splitting the idempotent, as desired. Moreover, a dagger kernel is by definition a

kernel that is an isometry. It suffices to observe that every splitting of a dagger idempotent by an

isometry m is a dagger splitting:

e = e◦m† ◦m = m† ◦ e† ◦m† = m†.
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We saw in Proposition 4.5 that in a dagger additive category with dagger splittings of dagger

idempotents, pseudoinvertible arrows have a simple matrix decomposition. In fact, an analogous

result holds more generally:

Proposition 8.4 (Generalized compact singular value decomposition [6]). Let f : A → B be an

arrow in a dagger category. Then f is pseudoinvertible with f ◦ ◦ f and f ◦ f ◦ dagger split if and

only if we can write f =m◦a◦e where e : A → A′ is a coisometry, a : A′ → B′ is an isomorphism,

and m : B′ → B is an isometry. In this case, f ◦ = e† ◦a−1 ◦m†. Moreover, the decomposition is

unique up to unitary isomorphisms.

Proof idea. This follows from Proposition 8.1, since e, a, and m correspond directly to an iso-

morphism of dagger split dagger idempotents.

We also obtain the following generalization of Proposition 4.8.

Corollary 8.5. Let f : A → A be an arrow in a dagger category. Then f is EP with f ◦◦ f = f ◦ f ◦

dagger split if and only if we can write f = m◦a◦m† where a : A′ → A′ is an isomorphism and

m : A′ → A is an isometry. In this case, f ◦ =m◦a−1 ◦m†. Moreover, the decomposition is unique

up to unitary isomorphism.

The following simple lemma is often useful.

Lemma 8.6 (Pseudoinvertible monos split). In a dagger category, every pseudoinvertible mono

(dually, epi) is split by its pseudoinverse.

Proof. Suppose m : A → B is a pseudoinvertible mono. We have m = m ◦ m◦ ◦ m. Thus by

cancellation m◦ ◦m = 1A.

We also have the following characterization of pseudoinvertible monos.

Definition 8.7 (Closed mono [7]). A mono m : A → B is closed if m† ◦m is invertible. Closed

epis are defined dually.

Lemma 8.8 (Closed is pseudoinvertible). In a dagger category, a mono m : A → B is pseudoin-

vertible if and only if it is closed. In this case, m◦ = (m† ◦m)−1 ◦m†.

Proof. If m† ◦m is invertible, it is straightforward to see that (m† ◦m)−1 ◦m† is a pseudoinverse

of m. Conversely, suppose m is a pseudoinvertible mono. Then m◦ ◦m = 1B by Lemma 8.6.

Using this and (2) from Lemma 4.3, we can check that m◦ ◦m◦† is an inverse of m† ◦m, hence m

is closed.

The following proposition is an interesting consequence of Lemma 8.6.

Proposition 8.9. Every pseudoinverse dagger additive category in which all dagger idempotents

split is an abelian category (in the standard sense of Mac Lane [15]).

Proof. By Proposition 8.3, all kernels exist. Moreover, every mono m is normal as m is a kernel

of 1−m◦m◦, using both Proposition 8.3 and Lemma 8.6. Dually, all cokernels exist and every

epi is normal.
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8.2 Some formulas for pseudoinverses

Unlike inverses, pseudoinverses do not in general compose (see Counterexample 9.5). It is

therefore of interest when there exist formulas for the pseudoinverse of a composition of arrows.

In this section, we discuss various such formulas. Most of these are well-known in the literature

on pseudoinverses of matrices (see e.g. Campbell and Meyer [5]), but here we generalize them

to an abstract dagger category. However, the general composition formula of Proposition 8.13

does not appear in the literature as far as we know.

We begin with some cases where pseudoinverses actually do compose.

Proposition 8.10 (Composition of pseudoinverses). In a dagger category, if f : A → B and

g : B →C are pseudoinvertible with f ◦ f ◦ = g◦ ◦g, then g◦ f is pseudoinvertible with (g◦ f )◦ =
f ◦ ◦g◦. Moreover, g◦ f ◦ f ◦ ◦g◦ = g◦g◦ and f ◦ ◦g◦ ◦g◦ f = f ◦ ◦ f .

Proof. This follows from Proposition 8.1, as a composition of isomorphisms of idempotents is

an isomorphism of idempotents.

Proposition 8.11 (Pseudoinverse via epi-mono factorization [21]). Let e : A → B be an epi and

m : B →C be a mono in a dagger category. Then m◦e is pseudoinvertible if and only if e and m

are closed, i.e., (e◦ e†)−1 and (m† ◦m)−1 exist. In this case,

(m◦ e)◦ = e† ◦ (e◦ e†)−1 ◦ (m† ◦m)−1 ◦m†.

Proof. Suppose m◦ e is pseudoinvertible. By checking the pseudoinverse equations (1), we will

show that (m◦ e)◦ ◦m is a pseudoinverse of e, which means that e is closed by Lemma 8.8. First

of all, (m◦ e)◦ ◦m◦e is self-adjoint. Next, cancelling the epi e and the mono m from the equation

m ◦ e ◦ (m◦ e)◦ ◦m ◦ e = m ◦ e, we obtain e ◦ (m◦ e)◦ ◦m = 1B, which is also self-adjoint. The

remaining pseudoinverse equations follow immediately. Dually, m is also closed. Conversely,

suppose e is a closed epi and m is a closed mono. By Lemma 8.8, e and m are pseudoinvertible

with e◦ = e† ◦ (e ◦ e†)−1 and m◦ = (m† ◦m)−1 ◦m†. Then e ◦ e◦ = 1B = m◦ ◦m by Lemma 8.6,

and hence (m◦ e)◦ = e◦ ◦m◦ by Proposition 8.10, as desired.

In contrast to the previous two propositions, the next one gives a formula for (g◦ f )◦ that

does not assume any special properties of f and g. It says that the pseudoinverse of g◦ f is given

by the pseudoinverse of “g restricted to the image of f ” followed by the pseudoinverse of “ f

restricted to the coimage of g”, when these are defined.

Proposition 8.12 (Binary composition formula for pseudoinverses). We have

(g◦ f )◦ = (g◦ ◦g◦ f )◦ ◦ (g◦ f ◦ f ◦)◦

whenever the right side of this equation is defined.

Instead of proving Proposition 8.12 directly, we prove the following more general result.

Proposition 8.13 (General composition formula for pseudoinverses). Consider morphisms

f1, . . . , fn such that the composite f1 ◦ · · · ◦ fn is defined. Let

ai = ( f1 ◦ · · · ◦ fi−1)
◦ ◦ f1 ◦ · · · ◦ fn ◦ ( fi+1 ◦ · · · ◦ fn)

◦.

Provided that a1, . . . ,an are defined and pseudoinvertible, we have

( f1 ◦ · · · ◦ fn)
◦ = an

◦ ◦ · · · ◦a1
◦.
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Note that the domain and codomain of ai are respectively the codomain and domain of fi,

so we have expressed the pseudoinverse of the composition as a composition of corresponding

arrows in the opposite direction (although each of these arrows is arguably no simpler than what

we started with).

Proof. We will show that f1 ◦· · ·◦ fn and an
◦ ◦· · ·◦a1

◦ satisfy the pseudoinverse equations (1). It

is convenient to define λi = f1 ◦· · · ◦ fi−1 and ρi = fi+1 ◦· · · ◦ fn. Note that with these definitions,

ai = λi
◦ ◦λi ◦ fi ◦ρi ◦ρi

◦. The key step in our proof will be to show that

λi+1 ◦ai
◦ ◦ρi−1 = f1 ◦ · · · ◦ fn (6)

for all i, from which each of the pseudoinverse equations follows relatively quickly, as we will

see. First, we observe

ρi ◦ρi
◦ ◦ai

◦ = ai
◦ = ai

◦ ◦λi
◦ ◦λi. (7)

Indeed, note that the dagger idempotent ai
◦ ◦ai factors through the dagger idempotent ρi ◦ρi

◦ on

the right. Therefore, it also does so on the left, i.e., ρi ◦ρi
◦ ◦ai

◦ ◦ai = ai
◦ ◦ai. Multiplying by

ai
◦, we obtain the first equality of (7); the second one is dual.

Now we can prove (6):

λi+1 ◦ai
◦ ◦ρi−1

(by (7)) = λi+1 ◦ρi ◦ρi
◦ ◦ai

◦ ◦λi
◦ ◦λi ◦ρi−1

(refactoring) = λi ◦ fi ◦ρi ◦ρi
◦ ◦ai

◦ ◦λi
◦ ◦λi ◦ fi ◦ρi

(by (1)) = λi ◦λi
◦ ◦λi ◦ fi ◦ρi ◦ρi

◦ ◦ai
◦ ◦λi

◦ ◦λi ◦ fi ◦ρi ◦ρi
◦ ◦ρi

(definition of ai) = λi ◦ai ◦ai
◦ ◦ai ◦ρi

(by (1)) = λi ◦ai ◦ρi

(definition of ai) = λi ◦λi
◦ ◦λi ◦ fi ◦ρi ◦ρi

◦ ◦ρi

(by (1)) = λi ◦ fi ◦ρi

= f1 ◦ · · · ◦ fn.

On to the pseudoinverse equations. We first show that f1 ◦ · · · ◦ fn ◦an
◦ ◦ · · · ◦a1

◦ is self-adjoint;

in particular, we have that

f1 ◦ · · · ◦ fn ◦an
◦ ◦ · · · ◦a1

◦ = f1 ◦a1
◦ = a1 ◦a1

◦, (8)

which is a dagger idempotent. Indeed, we obtain the first equality of (8) by applying (6) and (7)

repeatedly:

f1 ◦ · · · ◦ fi ◦ai
◦ ◦ · · · ◦a1

◦ = λi+1 ◦ai
◦ ◦ai−1

◦ ◦ · · · ◦a1
◦

(by (7)) = λi+1 ◦ai
◦ ◦ρi−1 ◦ρi−1

◦ ◦ai−1
◦ ◦ · · · ◦a1

◦

(by (6)) = f1 ◦ · · · ◦ fn ◦ρi−1
◦ ◦ai−1

◦ ◦ · · · ◦a1
◦

= f1 ◦ · · · ◦ fi−1 ◦ρi−1 ◦ρi−1
◦ ◦ai−1

◦ ◦ · · · ◦a1
◦

(by (7)) = f1 ◦ · · · ◦ fi−1 ◦ai−1
◦ ◦ · · · ◦a1

◦

and we have the second equality of (8) because f1 ◦ a1
◦ = f1 ◦ρ1 ◦ρ1

◦ ◦ a1
◦ = a1 ◦ a1

◦, using

(7). The self-adjointness of an
◦ ◦ · · · ◦a1

◦ ◦ f1 ◦ · · · ◦ fn is dual. Also by (8), we have an
◦ ◦ · · · ◦

a1
◦ ◦ f1 ◦ · · · ◦ fn ◦an

◦ ◦ · · · ◦a1
◦ = an

◦ ◦ · · · ◦a1
◦ ◦a1 ◦a1

◦ = an
◦ ◦ · · · ◦a1

◦. Finally, again by (8),

we have f1 ◦ · · · ◦ fn ◦an ◦ · · · ◦a1
◦ ◦ f1 ◦ · · · ◦ fn = f1 ◦a1

◦ ◦ f1 ◦ · · · ◦ fn, but the latter is equal to

f1 ◦ · · · ◦ fn by (6) with i = n. Thus, an
◦ ◦ · · · ◦a1

◦ satisfies all the properties of a pseudoinverse

of f1 ◦ · · · ◦ fn.
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8.3 Examples of pseudoinverse dagger additive categories

Although this paper is about pseudoinverse dagger additive categories, so far we have not given

many examples of them. In this section, we discuss some constructions that yield examples, as

well as some restrictions on possible examples.

Of course, the most canonical pseudoinverse dagger additive category is the category of com-

plex matrices; this is the setting in which pseudoinverses were first developed [18]. The follow-

ing proposition precisely characterizes which dagger categories admit pseudoinverses, provided

that they already admit splittings of idempotents. We will use this to obtain further examples

below.

Proposition 8.14. Let C be a dagger category in which all dagger idempotents split. Then C

has pseudoinverses if and only if (a) every morphism has an epi-mono factorization and (b) all

monos are closed (Definition 8.7).

Here we merely assume all dagger idempotents split, not that all dagger idempotents dagger

split. In fact, there are natural examples where not all dagger idempotents dagger split; see

Counterexample 9.10.

Proof. We start with the right-to-left implication. Note that in a dagger category, if all monos

are closed, then so are all epis by self-duality. By Proposition 8.11, it is clear that (a) and

(b) imply the existence of pseudoinverses. Conversely, for the left-to-right implication, assume

pseudoinverses exist. To prove (a), consider any f : A → B. Split the idempotent f ◦ ◦ f via mono

m and epi e. Then f = f ◦ f ◦ ◦ f = f ◦m◦ e. Note that f ◦m is a split mono via e◦ f ◦ ◦ f ◦m =
e ◦m ◦ e ◦m = 1. Therefore e and f ◦m give the desired epi-mono factorization of f . To prove

(b), we just need that pseudoinvertible monos are closed, which is Lemma 8.8.

Example 8.15. Let F be any dagger subfield of C (i.e., a subfield closed under conjugation).

Then Mat(F) is a pseudoinverse dagger additive category. This follows from Proposition 8.14.

Note that the category of matrices over any field has split idempotents and epi-mono factoriza-

tions. The fact that monos are closed holds over the complex numbers, and therefore over every

dagger subfield, since inverses are computed using the field operations.

Remark 8.16. Note that the formula of Proposition 8.11 gives a practical method for comput-

ing pseudoinverses in Mat(F), because the relevant epi-mono factorizations and inverses are

calculated using the dagger field operations.

One might ask under what conditions pseudoinverses exist in Mat(F), when F is an arbitrary

dagger field (not necessarily a subfield of the complex numbers). Pearl [19] observed that the

pseudoinverse of a matrix f over a dagger field exists if and only if rank( f ) = rank( f † ◦ f ) =
rank( f ◦ f †). This follows from Proposition 8.11. However, as the following lemma shows, if

Mat(F) has all pseudoinverses, then F must have characteristic 0.

Lemma 8.17. In a pseudoinverse dagger additive category, Q embeds into the endomorphism

ring at each non-zero object.

Proof. Let n ∈ N≥1, and let δ : A → An be the canonical n-ary diagonal map. By symmetry, we

have δ ◦ = (d · · · d) for some d : A → A. Since δ is mono, by Lemma 8.6, we have δ ◦ ◦δ = 1A,

hence n · d = 1A. Thus n · 1A has a multiplicative inverse. As Q is the universal ring in which

every natural number has a multiplicative inverse, and Q has no proper quotients, the result

follows.
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Example 8.18 (Finite dimensional rational Hilbert spaces). Given any pseudoinverse dagger

additive category, its dagger idempotent completion is also a pseudoinverse dagger additive cat-

egory. In particular, consider the dagger idempotent completion of Mat(Q). Although this

equivalent to Mat(Q) as a category, it is distinct from Mat(Q) as a dagger category, since not

all dagger idempotents split in Mat(Q) (see Counterexample 9.10). More explicitly, this is the

dagger category of finite dimensional rational vector spaces equipped with rational-valued inner

products (e.g., Q equipped with 〈x,y〉 = 2xy).

Example 8.19 (Free pseudoinverse dagger additive categories). Since pseudoinverse dagger ad-

ditive categories are essentially algebraic, we can consider freely generated structures. It follows

from Lemma 8.17 that the free pseudoinverse dagger additive category on an object is equivalent

to Mat(Q). But more exotic examples exist, such as the free pseudoinverse dagger category on

an object with an endomorphism; see Counterexample 9.2.

Finally, since pseudoinverse dagger additive categories are essentially algebraic, one can

trivially construct more examples by taking products or limits of existing examples.

9 Counterexamples

This section consists of several counterexamples, which preclude various strengthenings of re-

sults in the paper. Our main theorem gives a sufficient condition for the monoidal subcategory

of contractions in a dagger additive category to be traced: the existence of pseudoinverses. How-

ever, this is not a necessary condition.

Counterexample 9.1 (Trace without pseudoinverses). The kernel-image trace on the dagger

additive category Mat(Z) of integer-valued matrices is totally defined on contractions. Indeed,

since contractions are equivalently submatrices of unitaries, they are the matrices with entries

in {−1,0,1} with at most one nonzero entry per row and per column, and one may check that

all kernel-image traces of such matrices exist. However, not all arrows (even those of the form

1− f with f a contraction) are pseudoinvertible, e.g., the matrix (2).

Given the examples we have seen so far, it is reasonable to ask whether all pseudoinverse

dagger additive categories are dagger additive subcategories of matrices over the complex num-

bers. However, this is not the case.

Counterexample 9.2 (Non-complex-matrix pseudoinverse dagger additive category). The free

pseudoinverse dagger additive category on an object ∗ and an arrow f : ∗ → ∗ does not embed

into any dagger additive category of matrices over a field. Indeed, given an endomorphism f of

a finite dimensional vector space, the image eventually stabilizes with repeated application, i.e.

(assuming relevant pseudoinverses exist), f n ◦( f n)◦ = f n+1 ◦( f n+1)
◦

for some n. But such n can

be arbitrarily high, so in the free instance this cannot happen for any particular n.

We saw in Remark 2.11 that in a dagger additive category, every isometry is a component

of a unitary. If moreover all dagger idempotents dagger split, then every isometry is a column

of a unitary, using Lemma 2.17. We note that this stronger statement does not hold without the

assumption of dagger splittings.

Counterexample 9.3 (Non-unitary-column isometry). Consider the full dagger finite biproduct

subcategory of FdHilb of spaces with dimension not equal to 1. The inclusion of a 2-dimensional

subspace into a 3-dimensional space is then not a column of a unitary.

23



We saw in Corollary 3.7 that for a contraction in a definite dagger additive category, any row

or column with a 1 has all other entries 0. This does not hold without assuming definiteness.

Counterexample 9.4 (Non-maxed-out row). In Mat(F2), the matrix (1 1 1) is a coisometry.

Next, we give some more counterexamples relating to pseudoinverses. Pseudoinverses do

not compose: in general we do not have (g◦ f )◦ = f ◦ ◦ g◦. However, this does hold when the

image projection of f and the coimage projection of g coincide, as in Proposition 8.10. We

observe that it is not sufficient to merely assume that the image projection of f factors through

the coimage projection of g.

Counterexample 9.5 (Non-composition of pseudoinverses). Consider the dagger idempotent

p =
(

1 0
0 0

)

and the invertible matrix a =
(

1 1
0 1

)

in FdHilb. We have a◦ p = p, and thus (a◦ p)◦ =
p◦ = p, whereas p◦ ◦a◦ = p◦a−1 =

(

1 −1
0 0

)

.

It may even happen that f and g are pseudoinvertible but g◦ f is not:

Counterexample 9.6 (Nonexistence of pseudoinverse of composite). Consider Mat(C) equipped

with transpose rather than conjugate transpose as dagger. The matrix p =
(

1 0
0 0

)

is a dagger

idempotent (hence pseudoinvertible), and the matrix a =
(

1 0
i 1

)

is invertible, but their composite

a◦ p =
(

1 0
i 0

)

is not pseudoinvertible.

On the other hand, the next example shows that it is still possible to have (g◦ f )◦ = f ◦ ◦g◦ in

cases where the image projection of f and coimage projection of g are incompatible (do not even

commute); in particular, the sufficient condition given in Proposition 8.10 is not necessary. (See

Cockett and Lemay [6] for a necessary and sufficient condition for pseudoinverses to compose.)

Counterexample 9.7 (Composition of pseudoinverses). In the dagger category of finite sets and

relations (i.e., boolean-valued matrices), the pseudoinverse of the idempotent p =
(

1 0
1 0

)

is the

idempotent p◦ =
(

1 1
0 0

)

. Hence (pp)◦ = p◦ ◦ p◦. However, the image projection p◦ p◦ =
(

1 1
1 1

)

does not commute with the coimage projection p◦ ◦ p =
(

1 0
0 0

)

.

In Proposition 8.12, we saw that (g◦ f )◦ = (g◦ ◦g◦ f )◦◦(g◦ f ◦ f ◦)◦ whenever the right side

is defined. Then in Proposition 8.13, we gave a more general formula for longer compositions.

The general formula is perhaps not the most obvious generalization of the binary formula; one

might alternatively expect e.g. (h◦g◦ f )◦ = (g◦ ◦g◦ f )◦ ◦(h◦ ◦h◦g◦ f ◦ f ◦)◦ ◦(h◦g◦g◦)◦. But

that formula does not hold in general.

Counterexample 9.8 (Failure of alternative pseudoinverse composition formula). When g is

an identity, the supposed formula (h◦g◦ f )◦ = (g◦ ◦g◦ f )◦ ◦ (h◦ ◦h◦g◦ f ◦ f ◦)◦ ◦ (h◦g◦g◦)◦

becomes (h◦ f )◦ = f ◦ ◦ (h◦ ◦h◦ f ◦ f ◦)◦ ◦h◦. Now take f = p =
(

1 0
0 0

)

, and h = a =
(

1 1
0 1

)

, as

in Counterexample 9.5. Then (h◦ f )◦ = (a◦ p)◦ = p =
(

1 0
0 0

)

and f ◦ ◦ (h◦ ◦h◦ f ◦ f ◦)◦ ◦ h◦ =
p◦a−1 =

(

1 −1
0 0

)

.

We saw in Lemma 8.6 that every pseudoinvertible mono is a split mono. However, the

converse does not hold in general.

Counterexample 9.9 (Non-pseudoinvertible split mono). In Mat(Z), m =
(

1
1

)

is a split mono.

If its pseudoinverse existed, it would also be the pseudoinverse in Mat(Q). However, the pseu-

doinverse in Mat(Q) is (1
2

1
2
), which is not in Mat(Z).

Proposition 8.14 gave a simple characterization of pseudoinverse dagger categories in which

all idempotents split. The following counterexample shows that in such cases, not all dagger

idempotents need to be dagger split.

24



Counterexample 9.10 (Non-dagger-split split dagger idempotent). In Mat(Q), the dagger idem-

potent 1
2

(

1 1
1 1

)

splits (say, as
(

1
1

)

◦ (1
2

1
2
)), but it does not dagger split, since in Mat(R) this

idempotent only dagger splits via either the mono 1√
2

(

1
1

)

or its negation.

The following counterexamples show that when we do not assume the existence of all pseu-

doinverses, the pseudotrace (Definition 6.1) may be defined in cases where the kernel-image

trace is undefined or vice versa (even restricting to unitaries).

Counterexample 9.11 (Non-pseudotrace kernel-image trace). In Mat(Z), the unitary
(

1 0
0 −1

)

does not have a pseudotrace along the second row and column, as 1− (−1) = 2 is not pseudoin-

vertible. It does have a kernel-image trace equal to 1+0(2)0 = 1.

Counterexample 9.12 (Non-kernel-image-trace pseudotrace). In Mat(Z[x]/〈x2〉), the unitary
(−1 x

x 1

)

has pseudotrace along the second row and column, as 1− 1 = 0 is pseudoinvertible. It

does not have a kernel-image trace, as x is not of the form 0◦ i for any i.

The next counterexample shows that in a pseudoinverse dagger additive category, the pseu-

dotrace does not behave as a trace on the maps that are not contractions.

Counterexample 9.13 (Pseudotrace not trace). In FdHilb, the pseudotrace is not a trace. In

fact, exactly two of the six axioms fail, namely dinaturality and vanishing II. To see dinaturality

fail, let X = C2 and A = C, and consider f : A⊕X → A⊕X and g : X → X defined by

f =





0 1 0

1 1 0

0 0 1



 and g =

(

1 −1

0 1

)

.

Then we find

TrX
ps((1A ⊕g)◦ f ) = 0 and TrX

ps( f ◦ (1A ⊕g)) =−1,

violating dinaturality. To see vanishing II fail, let A = X =Y = C and consider

f : A⊕X ⊕Y → A⊕X ⊕Y defined by

f =





0 1 0

1 0 1

0 1 0



 .

Then TrX⊕Y
ps ( f ) = 1

4
and TrX

ps(TrY
ps( f )) = 0, violating vanishing II.

Finally, we give several counterexamples that show certain results about dagger additive

categories do not hold in the absence of negatives. It follows from Proposition 8.3 that any

isometry m in a dagger additive category is the dagger kernel of 1−m◦m†. However, isometries

need not be kernels if we do not assume the existence of negatives.

Counterexample 9.14 (Non-kernel isometry). In the dagger finite biproduct category of finite

sets and relations (i.e., boolean-valued matrices), the isometry
(

1
1

)

is not a kernel.

We saw in Lemma 2.17 that complementary split idempotents are tantamount to direct sum

decompositions. In an additive category, idempotents p and q are complementary if and only if

p+q = 1, which does not hold in the absence of negatives.
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Counterexample 9.15 (Not-quite-complementary idempotents). Consider the (dagger) finite

biproduct category of finite sets and relations. Letting p = q = 1{∗}, we have p+ q = 1{∗},

but pq 6= 0. Thus, p and q are not complementary. Also, both p and q are split via {∗}, but {∗}
is not isomorphic to {∗}⊕{∗}.

Complementary split idempotents are split by (co)kernels of one another, by an argument

similar to the proof of Proposition 8.3. Thus each idempotent can be recovered from the other

as the (necessarily unique) idempotent split by its kernel and cokernel. Hence, in the absence of

negatives, it is reasonable to ask whether idempotents that are split by (co)kernels of one another

are necessarily complementary. However, this is not the case.

Counterexample 9.16 (Non-complementary mutual (co)kernels). In the finite biproduct cate-

gory of bounded semilattices (equivalently, modules over the booleans), consider the following

semilattice, with evident “projection-like” idempotents onto the shown sublattices:

0

•

•

•
•
•

•

•

•

•

ւ

0

•

• ց

0

•

•

These idempotents are split by (co)kernels of one another, but they are not complementary.

The kernel-image trace is a partial trace on any additive category. It is reasonable to ask

whether the same formula works in an arbitrary finite biproduct category, simply leaving the

trace undefined where the relevant subtraction is not defined. However, this does not give a

partial trace in general.

Counterexample 9.17 (Kernel-image non-trace). Consider Mat(N[x,y]/〈xy〉). The matrix

(xy) = 0 has a negative, so the kernel-image trace formula (tracing out the entire input and

output) 0+0(1−0)0 is defined. On the other hand, the matrix (yx) does not have a negative, so

the kernel-image trace formula is undefined. This violates the dinaturality law for partial traces.

In Proposition 3.2 we saw five equivalent characterizations of contractions in a dagger ad-

ditive category. However, these conditions are not equivalent in a mere dagger finite biproduct

category (i.e., without assuming negatives). In fact, they are all distinct, with implications be-

tween them as follows:

(a)

(b) (c)

(d)

(e)

To distinguish them, it suffices to see that (b) is distinct from (c) and that (d) is distinct from

(e); it is then clear that the self-dual definitions are distinct from the non-self-dual definitions.

To say (c) is distinct from (d) means that contractions are not the same as cocontractions.
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Counterexample 9.18 (Non-cocontraction contraction). Consider the dagger finite biproduct

category of finite sets and relations (i.e., boolean-valued matrices). The isometries are the matri-

ces featuring at least one 1 per column and at most one 1 per row. The matrix
(

1
1

)

is an isometry,

thus a contraction, but not a component of a coisometry, thus not a cocontraction.

To say (d) is distinct from (e) means that not every coisometry followed by an isometry is

equal to an isometry followed by a coisometry.

Counterexample 9.19 (Non-isometry-then-coisometry coisometry-then-isometry). Consider

N[x,x†]〈x†x = 1〉 (the free dagger rig on an isometry x). Its elements have explicit normal forms,

as finite expressions ∑i, j≥0 ni, jx
j(x†)i. In the corresponding dagger finite biproduct category of

matrices, the isometries are the matrices having entries in {0,1,x,x2, . . .} with one nonzero entry

per column and at most one nonzero entry per row. Clearly the matrix (xx†) cannot be expressed

as an isometry followed by a coisometry.

Conclusion and future work

We showed that in every pseudoinverse dagger additive category, each of the subcategories of

isometries, coisometries, unitary maps, and contractions forms a totally traced category. This

generalizes a result by Bartha in the case of finite dimensional Hilbert spaces. One of the main

ingredients of this construction is the notion of pseudoinverse, which was originally studied for

matrices by Moore and Penrose, but makes sense in any dagger category. Contractions can also

be defined in any dagger category (as compositions of isometries and coisometries), but they

only behave as expected if one assumes additive structure and definiteness. The latter follows

from the existence of pseudoinverses.

The study of pseudoinverses in dagger categories is also worthwhile in its own right, and

we included some results that we think are interesting. In Propositions 8.2 and 8.3, we showed

how to work with images and kernels of arrows in terms of pseudoinverses, without explicitly

assuming the existence of any limit structure. In Proposition 8.13, we gave a general formula for

the pseudoinverse of a composition of n arrows, which we have not seen elsewhere. We would

also like to highlight Proposition 8.14, which yields a convenient way to check whether a given

dagger category has pseudoinverses, provided that idempotents are already known to split.

As for future work, one might ask whether Bartha’s trace has a physical interpretation. As we

mentioned in Section 7, we do not know the answer, but some potential evidence to the contrary

is that the trace on contractions is not a continuous operation, and that it does not exist in infinite

dimensional spaces.

It would also be interesting to investigate whether the assumptions under which contractions

are traced could be further reduced. Indeed, as we have seen in Counterexample 9.1, there are

examples of dagger additive categories in which the contractions are totally traced but not all

pseudoinverses exist. But on the other hand, Remark 7.2 shows that it is not sufficient to merely

assume, say, the existence of dagger kernels.
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