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1 Introduction 

Investors utilize hedging strategies to balance risk and return, aiming to minimize 

potential losses while maximizing gains. A critical aspect of effective hedging and 

portfolio optimization is understanding the co-movement of stock returns—that is, the 

dependencies between returns. However, modeling financial dependencies poses 

significant challenges due to the complex and dynamic nature of financial markets. In the 

past 5 years, Nvidia Corporation (NVDA) has experienced significant growth in its stock 

price and, notably, does not produce its own chips; instead, it relies on Taiwan 

Semiconductor Manufacturing Company Limited (TSM) for chip manufacturing (Yoon, 

2023). The intricate relationship between these two firms suggests a potential dependence 

in their stock returns. By investigating this dependence through copula models, we aim to 

enhance hedging strategies and improve portfolio management involving these stocks.  

In the field of economics, Embrechts is one of the first economists to use copula 

in 1999, to solve the problem of insurance companies suffering from property losses due 

to multiple major disasters (Embrechts et al, 1999). Many researchers analyzed the 

dependence structure of market indices (Peng et al, 2012), risk level (Embrechts, 1999), 

exchange rate (Du et al 2017), etc. But less people have studied the dependence between 

two stocks.  

This research analyzes the dependence structure between the stock returns of two 

firms, Nvidia (NVDA) and Taiwan Semiconductor Manufacturing Company (TSMC), 

using copula models. The specific objectives are to assess the presence and nature of tail 

dependence between the two stocks, model the non-linear and tail dependencies using 

various copula functions and evaluate the effectiveness of chosen model.  
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2 Background 

2.1 Time Series Model 

Before diving into correlations and copula models, we need to discuss the 

property of the data. Our raw data are the daily stock prices and are highly autocorrelated 

(dependence on their own past values). These patterns may distort how two variables, 

such as stock returns, depend on each other. This makes it more difficult to identify and 

examine their actual simultaneous relationship. Also, copula models assumed the input 

data (marginals) are independent and identically distributed. If time-dependent patterns 

remain, the data may not satisfy these assumptions, leading to mistaken results. 

Therefore, we need to eliminate the effect of time using a time series model so that the 

residuals will be independent and have constant variance if there is a good fit (Engle, 

1982). This allows the analysis to focus on the instantaneous dependence (co-

movements) between the two variables, which is the primary interest when using copula 

models. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

model, introduced by Bollerslev (1986), is an extension of the Autoregressive 

Conditional Heteroskedasticity (ARCH) model initially developed by Engle (1982). 

These models are widely used in finance and econometrics to model time-varying 

volatility in time series data, which is particularly common in financial returns.  

We will only focus on the 𝐺𝐴𝑅𝐶𝐻(1,1) model that we will use in this paper, 

which is also the simplest and most widely used specification of the GARCH family 

(Hansen and Lunde, 2005). The mathematical form is:  

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2 , 

where:  
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𝜎𝑡
2: Conditional variance.  

𝜔 > 0: Constant term.  

𝛼: Impact of recent shocks on current volatility.  

𝛽: Persistence of past volatility.  

𝜀𝑡−1
2 : Previous period’s squared residual.  

𝜎𝑡−1
2 : Previous period’s variance.  

 Next, we find the residuals by the fitted 𝐺𝐴𝑅𝐶𝐻(1,1) model. However, we need 

to be careful before using those residuals because they still contain volatility information 

(Bollerslev, 1986). Therefore, standardized residuals 𝑧𝑡 =
𝑒𝑡

𝜎𝑡
 are obtained by dividing the 

raw residuals (𝑒𝑡) by the conditional standard deviation (𝜎𝑡) estimated from the 

𝐺𝐴𝑅𝐶𝐻(1,1) model. Through the standardizing process, we can remove the time-varying 

volatility effect and make residuals, ideally, behave like white noise which are 

independent of time (Engle, 1982). Doing so can help us distinguish if the dependency is 

because of the time effect on both variables. These residuals will be explored in more 

depth in the exploratory analysis to evaluate the effectiveness of the GARCH model and 

to verify their appropriateness for copula modeling. 

2.2 Associations 

Traditional methods for measuring dependence between financial assets, such as 

the Pearson correlation coefficient, have significant limitations in capturing the true 

complexity of financial market relationships. The Pearson correlation assumes a linear 

relationship and measures only the strength and direction of a linear association between 

two variables, also known as bivariate correlation. It is defined as:  
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𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
, 

where 𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌) is the covariance of X and Y, and 𝜎𝑋  and 𝜎𝑌 are 

their respective standard deviations. Pearson’s correlation has a range from -1 to 1. If 

there exists a perfect positive linear relationship between two variables, the correlation 

equals to 1; if there is no linear relationship, the correlation equals to 0; if there is a 

perfect negative linear relationship, the correlation equals to -1 (Weisstein. Eric W, 

2024).  

 However, financial asset returns often exhibit non-linear, asymmetric, and tail-

dependent behaviors, especially during periods of market shocks (Embrechts et al, 2002). 

These non-linear dependencies mean that extreme movements in one asset may not be 

adequately reflected in the correlation measure with another asset. Consequently, relying 

solely on Pearson correlation can lead to an incomplete or misleading understanding of 

the dependence structure between assets. This limitation underscores the need for models 

that can capture non-linear dependencies and tail dependence, providing a more accurate 

and nuanced representation of how asset returns co-move under various market 

conditions. To address these limitations, we could have used the rank-based alternatives: 

Kendall’s tau (𝜏) and spearman’s rho (𝜌𝑠). These are rank-based measures employed to 

better capture non-linear dependencies.  

Kendall’s tau (𝜏), commonly referred to as Kendall rank correlation coefficient, is 

a measure of rank correlation: the similarity of the orderings of the data when ranked by 

each of the quantities (9. Kendall, 1938). Mathematically:  

𝜏 = 1 −
2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

(𝑛
2

)
,  

https://en.wikipedia.org/wiki/Ranked
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where 𝑛 is sample size, and (𝑛
2

) =
𝑛(𝑛−1)

2
 (Nelsen, 2001).  

Spearman’s rho (𝜌𝑠), also referred as Spearman's rank correlation coefficient is 

defined as the Pearson correlation coefficient between the rank variables (Spearman, 

1904). Spearman correlation between two variables is equal to the Pearson correlation 

between the rank values of those two variables. While Pearson's correlation assesses 

linear relationships, Spearman's correlation assesses monotonic relationships (whether 

linear or not). Mathematically:  

𝜌𝑠 =
𝐶𝑜𝑣[𝑅𝑎𝑛(𝑋),𝑅𝑎𝑛(𝑌)]

𝜎𝑅𝑎𝑛(𝑋)𝜎𝑅𝑎𝑛(𝑌)
,  

here 𝑅𝑎𝑛(𝑋) and 𝑅𝑎𝑛(𝑌) are rank variables corresponding to X and Y (Myers et al, 

2003).  

These measures are advantageous because they do not assume a linear functional 

form and are less sensitive to extreme values, which is crucial for analyzing the often-

volatile nature of financial returns. While Kendall's 𝜏 and Spearman's 𝜌𝑠 provide useful 

insights into rank correlations, they do not fully describe the joint distribution of random 

variables. This is why Sklar's theorem and copulas are valuable to analyze the financial 

data.  

2.3 Copulas 

Copula models offer a flexible framework for modeling the joint distribution of 

multiple financial assets (Embrechts et al, 2002). A copula is a mathematical function 

that links univariate marginal distribution functions to form a multivariate distribution, 

thereby allowing the separation of marginal behaviors from the dependence structure 

between variables (Nelson, 2006). One of the foundational principles underpinning 
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copula theory is Sklar's theorem (Sklar, 1959), which states that every multivariate 

cumulative distribution function  

𝐻(𝑥1,… , 𝑥𝑑) = Pr [𝑋1 ≤  𝑥1,… , 𝑋𝑑 ≤  𝑥𝑑] 

 of a continuous random vector (𝑋1, 𝑋2, … , 𝑋𝑑) can be expressed in terms of its marginals 

𝐹𝑖 (𝑥𝑖) = Pr [𝑋𝑖 ≤ 𝑥𝑖 ] and a unique copula C:  

𝐻(𝑥1, … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑑 (𝑥𝑑))  

Similarly, given any copula C and marginal distribution functions (𝐹𝑋 and 𝐹𝑌), a 

valid joint distribution 𝐹𝑋,𝑌(𝑥, 𝑦) can be constructed as 𝐶(𝐹𝑋(𝑥),𝐹𝑌(𝑦)). Also, 𝐶 ∶

 [0,1]𝑑 → [0,1] is a d-dimensional copula if C is a joint CDF (cumulative distribution 

function) of a d-dimensional random vector on the d-dimension unit space [0,1]𝑑 with 

uniform marginals (Nelson, 2006).  

Building on the theoretical foundation, the following paragraphs will introduce 

and explore five specific bivariate copula models which will be analyzed, one of which 

will be chosen to measure the dependence structure of stock returns in this thesis. Each of 

the five specific bivariate copula models offers unique capabilities in capturing different 

aspects of dependence.  

A special case outside of those five copulas is probably the simplest bivariate 

copula: The 2-dimentional Independence copula, which is a non-parametric copula of 2 

independent 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) distributed random variables,  

𝐶𝜋(𝑢, 𝑣) = 𝑢𝑣,  

where 𝑢 and 𝑣 ∈ (0,1) (Ruppert, 2011).  

 Before diving into other copulas, we need to define tail dependency to showcase 

the properties of those models. The tail dependency is showcased by tail dependence 
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coefficient, which measures the likelihood of extreme co-movements between two 

variables in the upper tail (extreme highs) or the lower tail (extreme lows) of their joint 

distribution. Mathematically, for two random variable X and Y, the upper tail dependence 

coefficient (𝜆𝑢) and lower tail dependence coefficient (𝜆𝑙 ) are defined as below:  

 𝜆𝑢 = lim
𝑞→1

𝑃(𝑌 ≤ 𝐹𝑌
−1(𝑞)|𝑋 ≤ 𝐹𝑋

−1(𝑞)),  

 𝜆𝑙 = lim
𝑞→0

𝑃(𝑌 > 𝐹𝑌
−1 (𝑞)|𝑋 > 𝐹𝑋

−1(𝑞)),  

where 𝐹−1(𝑞) = inf {𝑥 ∈ 𝑅: 𝐹(𝑥) ≥ 𝑞}, which is the inverse of the CDF for q (McNeil et 

al, 2005). Thus, if the joint distribution has tail dependency, then 𝜆𝑢  or 𝜆𝑙  or both would 

be larger than zero, if not, then equal to zero. In addition, we call a joint distribution 

symmetric in tail dependence when 𝜆𝑢 = 𝜆𝑙 > 0, asymmetric in tail dependence when 

𝜆𝑢 ≠ 𝜆𝑙, and no tail dependence when 𝜆𝑢 = 𝜆𝑙 = 0.  

 One of the most popular copulas in financial modeling due to its simplicity and 

mathematical tractability, is Gaussian/Normal copula, which is derived from the 

multivariate normal distribution. For two uniform random variables U and V, the 

Gaussian copula with correlation parameter 𝜃 is defined as (Nelson, 2006) 

𝐶𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑢, 𝑣;  𝜃) = Φ𝜃(Φ−1(𝑢), Φ−1(𝑣)), 

where:  

 Φ−1 is the inverse of the cumulative distribution function (CDF) of standard 

normal distribution,  

 Φ𝜃 is the bivariate normal CDF with correlation 𝜃.  

Properties:  

 No tail dependence, 𝜆𝑢 =  𝜆𝑙 = 0.  
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Gaussian copula is ideal for scenarios where the relationship is primarily linear, 

especially when extreme co-movements (tail dependencies) are not a primary concern. It 

serves as a baseline model to compare against more flexible copulas that can capture non-

linear and tail dependencies.  

The Student t-copula extends the Gaussian copula by incorporating degrees of 

freedom 𝑣, allowing it to model tail dependencies and capture more extreme co-

movements between variables. Mathematical definition: the joint distribution of (𝑢, 𝑣) is 

the t-copula with correlation parameter 𝜃 and degrees of freedom 𝜈 (𝜈 > 0) if  

𝐶𝑡(𝑢, 𝑣;  𝜌, 𝜈) = 𝑡𝜃,𝜈 (𝑡𝜈
−1(𝑢), 𝑡𝜈

−1(𝑣)),  

where:  

 𝑡𝜈
−1 is the inverse CDF of the univariate Student’s t-distribution with 𝜈 degrees 

of freedom.  

  𝑡𝜃,𝜈 is the bivariate Student’s t CDF with correlation 𝜃 and 𝜈 degrees of 

freedom (Embretchs et al, 2002).  

Properties:   

 Symmetric tail dependence: 𝜆𝑢 = 𝜆𝑙 > 0 

This copula is suitable for financial applications where extreme co-movements (both 

gains and losses) are of interest. It provides a more realistic modeling of risk by 

accounting for tail dependencies. 

 These copulas (Gaussian and Student t) are derived from elliptical distributions 

(normal or t-distributions) and therefore belongs to elliptical copula family. They are 

used to describe dependencies particularly when the relationships are approximately 

linear or symmetric (Mai and Scherer, 2012).  
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 On the other hand, the following three copulas belong to Archimedean copula 

family. These copulas use a generator function and can capture non-linear and 

asymmetric (tail) dependencies (De Matteis 2001).  

The Clayton copula is particularly adept at modeling dependencies in the lower 

tail, making it useful for assessing the likelihood of simultaneous extreme losses. 

Mathematically, the joint distribution of (𝑢, 𝑣) is the Clayton copula with dependence 

parameter 𝜃 (𝜃 > 0) if (Cherubini et al, 2004):  

𝐶𝐶𝑙𝑎𝑦𝑡𝑜𝑛 (𝑢, 𝑣;  𝜃) = [max (𝑢−𝜃 + 𝑣 −𝜃 − 1, 0)]−
1

𝜃,  

with properties:  

 Asymmetric tail dependence: lower tail, 𝜆𝑙 > 0 and 𝜆𝑢 = 0, effectively models 

the co-occurrence of extreme losses. 

 Monotonic dependence: Model’s dependencies increase as 𝜃 increases.  

This modal is ideal for situations where the primary concern is the joint occurrence of 

extreme negative events, such as simultaneous stock price drops, which is critical for 

insurance, risk management, and hedging strategies.  

The Gumble copula, on the contrary, is designed to model dependencies in the 

upper tail, making it suitable for assessing the likelihood of simultaneous extreme gains. 

Mathematically, the joint distribution of (𝑢, 𝑣) is the Gumbel copula with dependence 

parameter 𝜃 (𝜃 > 0) if (De Matteis, 2001):  

𝐶𝐺𝑢𝑚𝑏𝑒𝑙 (𝑢, 𝑣;  𝜃) = exp {−((− ln 𝑢)𝜃 + (− ln 𝑣)𝜃)
1

𝜃},   

with properties:  
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 Asymmetric tail dependence: upper tail, 𝜆𝑢 > 0 and 𝜆𝑙 = 0, effectively models 

the co-occurrence of extreme gains.  

  Monotonic dependence: Models increasing dependencies as 𝜃 increase.  

This copula is good for scenarios where the joint occurrence of extreme positive events is 

of interest, such as simultaneous stock price surges, which can inform investment 

strategies aimed at capitalizing on upward market movements.  

 The Frank copula is known for its ability to model dependencies without 

exhibiting tail dependences. It captures moderate dependence across the entire range of 

data. While Gaussian and Frank copula both are symmetric and have no tail dependence, 

Frank copula does not require a linear correlation assumption, making it a good choice 

for various financial applications. Mathematical definition: the joint distribution of (𝑢, 𝑣) 

is the Gumbel copula with dependence parameter 𝜃 (𝜃 ≠ 0) if (Ruppert, 2011)  

𝐶𝐹𝑟𝑎𝑛𝑘(𝑢, 𝑣;  𝜃) = −
1

𝜃
ln(1 +

(𝑒−𝜃𝑢−1)(𝑒−𝜃𝑣−1)

𝑒−𝜃−1
),  

with properties:  

 No tail dependence: 𝜆𝑢 =  𝜆𝑙 = 0.  

 Bounded dependence: Models increasing dependencies as 𝜃 increase.  

Frank copula is particularly useful in scenarios where the dependency structure is 

moderate and symmetric without significant tail dependencies. It serves as a 

complementary model to copulas like Clayton and Gumbel by providing flexibility in 

capturing dependencies that are not extreme but still significant.  

Table 1 summarizes the five copula models mentioned above, with the range of 

parameters and the independent case. Figure 1 provides simulated samples of 6 copula 
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models (including independent case), where 𝜃𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 0.7, 𝜃𝑡 = 0.6 and 𝑣 = 6, 

𝜃𝐶𝑙𝑎𝑦𝑡𝑜𝑛 = 2, 𝜃𝐺𝑢𝑚𝑏𝑒𝑙 = 2, and 𝜃𝐹𝑟𝑎𝑛𝑘 = 5.  

Table 1: Few bivariate copulas. 

Name Distribution function Parameter Independence 

Gaussian 𝐶(𝑢, 𝑣) = Φ𝜃 (Φ−1(𝑢), Φ−1(𝑣)) 𝜃 ∈ [−1,1] 𝜃 = 0 

t-copula 𝐶(𝑢, 𝑣) = 𝑡𝜃,𝜈(𝑡𝜈
−1(𝑢), 𝑡𝜈

−1(𝑣)) 
𝜃 ∈ [−1,1], 

𝑣 > 0 
𝜃 = 0 

Clayton 𝐶(𝑢, 𝑣) = [max (𝑢−𝜃 + 𝑣 −𝜃 − 1, 0)]
−

1
𝜃  𝜃 ∈ (0, ∞) 𝜃 = 0 

Gumbel 𝐶(𝑢, 𝑣) = exp {−((− ln 𝑢)𝜃 + (− ln 𝑣)𝜃)
1
𝜃 } 𝜃 ∈ [1, ∞) 𝜃 = 1 

Frank 𝐶(𝑢, 𝑣) = −
1

𝜃
ln(1 +

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
) 𝜃 ∈ 𝑅, 𝜃 ≠ 0 𝜃 → 0 

 

 

Figure 1: Scatter plots of 1000 random numbers generated from the proposed bivariate 

copulas.  

In addition, there also exists other type of bivariate asymmetric copulas, which 

are different from asymmetry in the tail dependence. A copula 𝐶 is symmetric or 

exchangeable if 𝐶(𝑢, 𝑣) = 𝐶(𝑣, 𝑢) for all 𝑢, 𝑣 ∈ [0,1], where 𝑢 and 𝑣 is the uniform 
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margins, otherwise asymmetric or non-exchangeable. Therefore, asymmetric copula 

𝐶(𝑢, 𝑣) ≠ 𝐶(𝑣, 𝑢). For instance, the Frank & Gumbel copula is a combination of Frank 

and Gumbel copulas which shows asymmetry (Mukherjee et al, 2018).  

 

Figure 2: Scatter plot of random numbers generated from the Frank & Gumbel copula 

(asymmetric). 

However, we will only focus on those widely used copula models such as Gaussian, t-

Copula, Gumbel, Clayton, and Frank copulas to analyze the dependence structure 

between NVDA and TSM stock returns. The combined or mixed copula models, such as 

the "Frank & Gumbel" copula, are not considered because they introduce additional 

complexity which will not be discussed.   

3 Data 

3.1 Description  

 The financial data for Nvidia (NVDA) and Taiwan Semiconductor Manufacturing 

Company Limited (TSM) were sourced from Yahoo Finance, a reputable and widely 

used platform that provides historical stock prices and financial information. The dataset 
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consists of daily closing prices for both companies over the past five years, from Sep 24th, 

2019, to Sep 23rd, 2024. Using daily data allows for a large number of observations 

(1,258) to perform reliable statistical analysis.  

 The initial variables include the date and daily closing price for both firms 

represented as NVDA for Nvidia and TSM for Taiwan Semiconductor Manufacturing 

Company. We generated a new column titled “Time” that contains only natural numbers 

from 1 to 1,259 as time index to replace the categorical data with the numeric data. The 

steps involved in preparation after downloading the data include:  

• Data cleaning: checked for missing values, removed dividend rows, and aligned 

the data and time of two variables.  

• Rate of returns calculation: computed daily rate of returns for each stock using the 

formula: 
𝑃𝑡−𝑃𝑡−1

𝑃𝑡−1
, where 𝑃𝑡  is the closing price at time 𝑡 and 𝑃𝑡−1 is the closing 

price at time 𝑡 − 1.  

• The log returns are defined as ln (
𝑃𝑡

𝑃𝑡−1
). 

We focus on rate of returns instead of the raw price because the rate provides a 

percentage change of value, which allow us to make comparisons between different 

stocks that have various pricing scales. For example, an increase of $1 on a $100 stock 

versus a $10 stock is very different. Also, rate of returns directly measure the profitability 

of an investment, which is a key metric for investors.  

3.2 Visualizations 

 We generated plots of the time series for the original stock (closing) price:  
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Figure 3: Time series plots of NVDA and TSM stock (closing) prices. 

And rate of returns for both firms: 

 

Figure 4: Time series plots of NVDA and TSM rate of returns. 

These two figures above show the non-stationary property of stock prices, where they 

have a natural upward trend over time. The rate of returns is stationary since they 

fluctuate around the mean and do not have obvious long-term trends.  
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 Additionally, Figure 5 below shows the rate of return plot and log-return plot with 

respect to the relations between those two firms.  

 

Figure 5: Scatter plots for rate of returns (left) and log-returns (right).  

There is no obvious difference between the plot of rate of returns and log returns. This 

can also be shown through the histograms of rate of returns and log returns (Appendix, 

Figure 6 and 7). The histograms show an approximately bell-shaped curve with some 

outliers; however, they seem be more spread out than normal distribution, therefore we 

might need further examination for normalities. Overall, for simplicity, we will only 

focus on the rate of returns.  

3.3 Statistical Summaries 

Table 3: Statistical summary of Nvidia (NVDA) rate of returns. 

Summary of NVDA Returns 

Min 1st Quartile Median Mean 3rd Quartile Max 

-0.1844 -0.0155 0.0031 0.0032 0.0221 0.2436 

 

Table 4: Statistical summary of Taiwan Semiconductor Manufacturing Company Limited 

(TSM) rate of returns. 

Summary of TSM Returns 

Min 1st Quartile Median Mean 3rd Quartile Max 

-0.1403 -0.0122 0.0005 0.0014 0.0139 0.1265 
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 The statistical summaries contain mean, median, 1st and 3rd quartile, and 

maximum and minimum values. Most returns fall within the range between -20% to 20%, 

and the mean for NVDA is approximately 0.32%, suggesting a slight overall upward 

trend among the period analyzed. On the other hand, TSM's mean rate of return is 0.14%, 

indicating more moderate growth because it has a higher start price. Both stocks exhibit 

considerable variability, as reflected by their respective standard deviations of 3.38% 

(NVDA) and 2.37% (TSM).   

3.4 Association Analysis  

The association analysis aims to understand the linear and non-linear 

dependencies between NVDA and TSM returns. Understanding associations provides 

insights into how closely the returns of these two companies move together, which is 

crucial for assessing co-movement risk and developing effective hedging strategies. The 

R code is included in Appendix 6.3.  

 Pearson’s correlation coefficient of the stock price of NVDA and TSM is 0.7754 

which is a positive correlation, indicating a mod-strong linear relationship between the 

two stock prices, implying that their daily closing prices move together quite 

significantly, i.e. when NVDA's stock price increases, TSM's stock price also tends to 

increase, and vice versa. The high positive correlation of this magnitude typically 

indicates that both stocks are highly affected by similar market conditions or industry 

trends. This makes sense as Nvidia relies on Taiwan Semiconductor Manufacturing 

Company to produce chips, as we mentioned in the introduction. In addition, the Pearson 

correlation between NVDA and TSM’s rate of returns is 0.6685, still indicating a positive 

relationship, although a bit weaker than the correlation between their stock prices. Since 
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the rate of returns focus on percentage changes rather than absolute values, their 

correlation is less influenced by the shared long-term trends.  

The Spearman’s rho of returns is 0.6662 and the Kendall’s tau is 0.4870. 

Spearman’s rho of NVDA and TSM rate of returns shows a relatively strong monotonic 

and positive relationship. And the Kendall’s tau emphasizes the consistency of the co-

movement across observations. The value (0.478) indicated that roughly half of the pairs 

of observations are concordant (both move in the same direction), reinforcing the 

tendency of the two variables to increase or decrease together, ad maintaining the 

possibilities of some inconsistencies.  

4 Results 

4.1 Residuals  

 We used a GARCH(1,1) model to obtain standardized residuals from the rate of 

returns of each of the two companies. We need to examine whether this time series model 

is appropriate for our data. Thus, we visually inspect the residuals for any remaining 

autocorrelation after fitting a GARCH(1,1) model, and no lags appear significant. 

Therefore, the model is indeed capturing the daily dynamics appropriately (Hansen and 

Lunde, 2005).  
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Figure 8: ACF plots of standardized residuals after fitting 𝐺𝐴𝑅𝐶𝐻(1,1) model.  

 In addition, we run the Ljung-Box test which is a formal statistical test used to 

determine whether any significant autocorrelation remains in the residuals after fitting a 

model (Bollerslev, 1986). The corresponding p-values are 0.6944 and 0.1391 for NVDA 

and TSM standardized residuals, respectively. There is insufficient evidence that the null 

hypothesis of "no autocorrelation" can be rejected, implying that the residuals are 

independent, and the model has good fit. A statistical summary of standardized residuals 

can be found in Appendix 6.2, Table 5.  

The histograms in Figure 9 show that both NVDA and TSM residuals exhibit a 

distribution centered around the 0, and some extreme values on both the positive and 

negative ends suggests occasional outliers, consistent with the heavy-tailed nature of 

financial data.  
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Figure 9: Histograms of standardized residuals of NVDA (left) and TSM (right).  

4.2 Copula model selection 

Since the tail dependence coefficients can provide an empirical basis for choosing 

among candidate copula models (Patton, 2006). To determine an appropriate copula 

model for the standardized residuals, we calculate the tail dependencies of the 

standardized residuals with a preset threshold and compare them with those various 

copula models (mentioned in section 2.3). We set the threshold to be 0.1 and 0.9 as lower 

and upper quantiles, respectively, yielding 46 observations above the upper quantile and 

64 observations below the lower quantile. The upper tail dependence coefficient (𝜆𝑢) 

equals 0.0366 and lower tail dependence coefficient (𝜆𝑙 ) equals 0.0509, which shows 

statistically significant (p-value < 0.0001) weak tail dependence in the permutation test 

(Appendix 6.3). These results indicate weak but slightly stronger co-movement during 

extreme negative returns.  

By the properties (mentioned in section 2.3) of those bivariate copula models in 

Table 1, the Clayton copula would be able to measure lower tail dependence, and the 
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Student t-copula which measures both tail dependences. Thus, these two copula models 

may be appropriate for our data.  

Therefore, we run the parametric bootstrap-based goodness-of-fit test for Clayton 

copula and Student t-copula. Our null hypothesis is that the specified copula model is a 

sufficient fit for the observed data. The result shows that for t-copula, the first parameter 

(𝜃) is 0.67, the second parameter (v) is 6.33, and p-value equals 0.1084. Thus, there is 

insufficient evidence to reject the null hypothesis for t-copula. On the other hand, the test 

results of Clayton copula show that parameter (𝜃) is 1.86, and p-value equals 0.0005. 

Therefore, the results indicate sufficient evidence to reject the null hypothesis for Clayton 

copula (Appendix 6.3). Overall, t-copula is more sufficient to use than Clayton copula for 

standardized residuals.  

We can find the same conclusion through comparing the rank plots of our 

observed data (Figure 11) with simulated plots of Clayton copula and Student t-copula 

(Figure 12). In Figure 11, we transformed the standardized residuals into a uniform 

distribution with the range of [0,1], by ranking them and dividing their rank with the 

number of residuals. In Figure 12, we generate simulations of two-dimensional Student t-

copula and Clayton copula with 1000 points and unknown parameters (Appendix 6.3).  
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Figure 11: Rank plot of standardized residuals 

 

Figure 12: Rank Plots of simulated Clayton (left) and Student t (right) copula models 

with 1000 random data points.  

The rank plots of our observed data and simulated t-copula plot look similar to each 

other, so that t-copula is the best bivariate copula model that measures the dependence of 

the residuals of NVDA and TSM stock returns among the five bivariate copula models 

listed in Table 1. This result is matched with other researches. For instance, in “The t 

Copula and Related Copulas” written by Demarta and McNeil in 2005, conclude that 

“The multivariate t-distribution is a natural choice for modeling asset returns due to its 

ability to account for heavy tails and tail dependence.”  

 The tail dependence coefficient of the t-copula is defined as: 

𝜆 = 2𝑡𝑣+1(−√
𝑣+1

1−𝜌
),  

where ν is the degrees of freedom, ρ is the correlation parameter which is our 𝜃, and 𝑡𝑣+1 

is the CDF of the t-distribution with 𝑣 + 1 degrees of freedom (Demarta & McNeil, 

2005). Given the parameters 𝜃 = 0.67 and 𝑣 = 6.33, the tail dependence coefficient for 

t-copula 𝜆 = 0.002 (Appendix 6.3).  
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5 Conclusion 

This study evaluated the dependence structure between the residuals of NVDA 

and TSM returns using copula models, specifically the t-Copula model. Traditional 

correlations such as Pearson correlation, Spearman’s rho, and Kendall’s tau, provided 

initial insights into the linear and monotonic relationships between these stocks. 

However, these quantiles fall short of considering complex dependence structures present 

in financial data. 

The t-copula was selected for its ability to address these limitations, offering a 

more detailed view of the dependence structure in this data set. Unlike traditional 

correlations, the t-Copula can model tail dependence, which is the likelihood of extreme 

co-movements in both stocks’ rates of returns. From the results, we know that Nvidia and 

Taiwan Semiconductor Manufacturing Company (TSMC) stock returns have a strong 

tendency to move together. In addition, as the degrees of freedom (𝑣) increase, the t-

copula behaves increasingly like a Gaussian copula with lighter tails (Demarta and 

McNeil, 2005). Thus, 𝑣 = 6.33 in our t-copula model suggests a potential of moderate 

heavy tails. However, the estimated tail dependence coefficient (𝜆 = 0.002) suggests that 

extreme co-movements between the NVDA and TSM are rare, which is consistent with 

the value of previous empirical (upper and lower) tail dependence coefficient. This 

finding demonstrates that while t-copula can accommodate moderate tail dependencies, 

the actual tail dependence in the dataset is relatively low.  

From a hedging perspective to balance risk and earnings, the weak tail 

dependence obtained suggests that NVDA and TSM are unlikely to experience 

simultaneous extreme losses or gains. This finding implies that holding NVDA and TSM 
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in a portfolio can provide diversified benefits, particularly during market shocks, as 

extreme joint losses are rare. However, the moderate linear dependence 𝜃 = 0.67 

between the two stocks shows the existence of regular co-movements, which may limit 

the hedging benefit under normal market conditions. Other similar pairs of firms that rely 

on each other can be further discussed to determine how this type of stock pairs should be 

handled in different market conditions.  

In summary, the t-Copula offers a more complete and accurate representation of 

the dependency structure between NVDA and TSM than traditional correlation-based 

methods. By capturing both regular and extreme dependencies, the t-Copula enhances our 

ability to model and manage the risks associated with these assets in portfolio 

applications.  
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Appendix A: Figures and Tables 

Figure 6.  

Histograms of NVDA and TSM stock returns.  

 

Figure 7.  

Histograms of NVDA and TSM stock log-returns.  
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Table 1.  

Few bivariate copulas. 

Name Distribution function Parameter Independence 

Gaussian 𝐶(𝑢, 𝑣) = Φ𝜃 (Φ−1(𝑢), Φ−1(𝑣)) 𝜃 ∈ [−1,1] 𝜃 = 0 

t-copula 𝐶(𝑢, 𝑣) = 𝑡𝜃,𝜈(𝑡𝜈
−1(𝑢), 𝑡𝜈

−1(𝑣)) 
𝜃 ∈ [−1,1], 

𝑣 > 0 
𝜃 = 0 

Clayton 𝐶(𝑢, 𝑣) = [max (𝑢−𝜃 + 𝑣 −𝜃 − 1, 0)]
−

1
𝜃  𝜃 ∈ (0, ∞) 𝜃 = 0 

Gumbel 𝐶(𝑢, 𝑣) = exp {−((− ln 𝑢)𝜃 + (− ln 𝑣)𝜃)
1
𝜃 } 𝜃 ∈ [1, ∞) 𝜃 = 1 

Frank 𝐶(𝑢, 𝑣) = −
1

𝜃
ln(1 +

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
) 𝜃 ∈ 𝑅, 𝜃 ≠ 0 𝜃 → 0 

 

Table 2.  

Statistical summary of raw data 

Summary of Original Data (stock prices) 

Date NVDA TSM 

Length: 1258 Min              : 4.29 Min              : 43.89 

Class: character 1st Quartile : 13.13 1st Quartile : 80.26 

Mode: character Median         : 19.30 Median         : 96.05 

  Mean            : 31.26 Mean            : 98.95 

  3rd Quartile : 41.02 3rd Quartile : 118.24 

  Maximum    : 135.58 Maximum    :191.05 

 

Table 5.  

Statistical Summary of Standardized Residuals of NVDA and TSM 

Standardized Residuals 

  Minimum 1st Quartile Median Mean 3rd Quartile Max 

NVDA -3.645 -0.577 -0.011 -0.003 0.601 9.571 

TSM -3.681 -0.583 -0.02 0.02 0.567 5.627 
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Appendix B: R Code 

install.packages("readxl")  # The readxl package is widely used for reading Excel files 

(.xls and .xlsx) into R 

library(readxl)                            # Load the package 

Data <-  read_excel("Data Analysis.xlsx")  # Import the dataset 

str(Data)                                  # See the structure of Data 

summary(Data)                              # Summary statistics 

 

# Calculate stock returns 

library(dplyr)                   # Load the dplyr package to use its lag() function 

Data <- Data %>% arrange(Time)   # Make sure the Data is sorted in chronological order. 

 

# The lag() function in R is used to shift a vector or time series 

Data$NVDAreturn <- (Data$NVDA - lag(Data$NVDA)) / lag(Data$NVDA) 

Data$TSMreturn <- (Data$TSM - lag(Data$TSM)) / lag(Data$TSM) 

 

# Log returns 

Data <- Data %>% mutate(NVDAreturn_log = log(NVDA / lag(NVDA))) 

Data <- Data %>% mutate(TSMreturn_log = log(TSM / lag(TSM))) 

 

#Remove the NA value generated by shifting the rows 

Data <- Data %>% filter(!is.na(NVDAreturn), !is.na(TSMreturn)) 

 

# Summary of the returns 

summary(Data$NVDAreturn) 

summary(Data$TSMreturn) 

 

# Standard deviation of returns 

sd(Data$NVDAreturn) 

sd(Data$TSMreturn) 

 

# Calculate correlations 

cor(Data$NVDA,Data$TSM)                                     # correlation of the price 

cor(Data$NVDAreturn,Data$TSMreturn)                         # correlation of the return 

cor(Data$NVDAreturn, Data$TSMreturn, method = "spearman")   # spearman's rho   

cor(Data$NVDAreturn, Data$TSMreturn, method = "kendall")    # Kendall's tau 

 

### Visualize the data 

# Stock price by time 

plot(Data$Time, Data$NVDA,                    

     xlab = "Time",                        

     ylab = "NVDA",  

     main = "NVDA Prices")                

plot(Data$Time, Data$TSM, 

     xlab = "Time",           
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     ylab = "TSM",  

     main = "TSM Prices") 

 

# Stock returns by time 

plot(Data$Time, Data$NVDAreturn, 

     col = "darkgreen",                    

     xlab = "Time",                        

     ylab = "NVDAreturn",                  

     main = "Rate of retuns for NVDA")     

plot(Data$Time, Data$TSMreturn, 

     col = "darkred",                    

     xlab = "Time",           

     ylab = "TSMreturns",  

     main = "Rate of returns for TSM") 

 

# Histogram of Returns 

hist(Data$NVDAreturn,  

     breaks = 60,                

     col = "lightgreen",             

     border = "black",           

     main = "Histogram of NVDA Returns",  

     xlab = "NVDA Return",             

     ylab = "Frequency",         

     xlim = c(-0.2, 0.2),            

     ylim = c(0, 200),         

     las = 1)                    

hist(Data$TSMreturn,  

     breaks = 60,                

     col = "orange",             

     border = "black",            

     main = "Histogram of TSM Returns",  

     xlab = "TSM Return",             

     ylab = "Frequency",          

     xlim = c(-0.2, 0.2),             

     ylim = c(0, 200),            

     las = 1)  

 

# Histograms of Log return 

hist(Data$NVDAreturn_log,  

     breaks = 50,                

     col = "darkgreen",             

     border = "black",            

     main = "Histogram of NVDA Log-Returns",  

     xlab = "NVDA Log-Return",             

     ylab = "Frequency",          

     xlim = c(-0.2,0.2),             
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     ylim = c(0, 200))  

hist(Data$TSMreturn_log,  

     breaks = 50,                

     col = "red",             

     border = "black",            

     main = "Histogram of TSM Log-Returns",  

     xlab = "TSM Log-Return",             

     ylab = "Frequency",          

     xlim = c(-0.2,0.2),             

     ylim = c(0, 150)) 

 

#ggplot for returns 

library(ggplot2)  

ggplot(Data, aes(x = NVDAreturn, y = TSMreturn)) + 

  geom_point(color = "blue", alpha = 0.6) + 

  labs(title = "Scatter Plot of NVDA vs TSM Returns", 

       x = "NVDA Returns",  

       y = "TSM Returns") + 

  theme_minimal() + 

  theme(plot.title = element_text(hjust = 0.5, size = 16, face = "bold"), 

        axis.text = element_text(size = 12), 

        axis.title = element_text(size = 14)) 

 

#ggplot for log_returns 

ggplot(Data, aes(x = Data$NVDAreturn_log, y = Data$TSMreturn_log)) + 

  geom_point(color = "black", alpha = 0.6) + 

  labs(title = "Scatter Plot of Log(NVDA) vs Log(TSM) Returns", 

       x = "NVDA Log_returns",  

       y = "TSM Log_returns") + 

  theme_minimal() + 

  theme(plot.title = element_text(hjust = 0.5, size = 16, face = "bold"), 

        axis.text = element_text(size = 12), 

        axis.title = element_text(size = 14)) 

 

### Example of Asymmetric Copula (Frank & Gumbel Copula) 

library(copula) 

gumbel_cop <- gumbelCopula(param = 5, dim = 2)    # Strong upper tail dependence for 

diagonal concentration 

frank_cop <- frankCopula(param = 2, dim = 2)      # Moderate dependence to add slight 

banding 

 

 # Set probabilities for sampling from each copula 

p_gumbel <- 0.85  # 80% from Gumbel to emphasize the diagonal 

p_frank <- 0.15   # 20% from Frank to add banding 

 

 # Generate samples based on the mixture of copulas 
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k <- 1257 

u_mixture <- matrix(0, k, 2) 

set.seed(1215) 

for (i in 1:k) { 

  if (runif(1) < p_gumbel) { 

    u_mixture[i, ] <- rCopula(1, gumbel_cop)  # Sample from Gumbel copula 

  } else { 

    u_mixture[i, ] <- rCopula(1, frank_cop)   # Sample from Frank copula 

  } 

} 

 

  # Plot the result to show the banded diagonal sequence 

plot(u_mixture, pch = 21, bg = "white", col = "black", 

     xlab = "u", ylab = "v", main = "Frank & Gumbel Copula", xlim = c(0, 1), ylim = c(0, 

1)) 

 

  # Optionally, add a diagonal reference line to emphasize the banding 

abline(a = 0, b = 1, col = "red", lty = 2, lwd = 2) 

 

### Simulated samples for 6 Copula model 

n_samples <- 1000 

rho_t <- 0.6         # t-Copula correlation 

df_t <- 6            # t-Copula degrees of freedom 

rho_gaussian <- 0.7  # Gaussian correlation 

theta_clayton <- 2   # Clayton copula parameter 

theta_gumbel <- 2    # Gumbel copula parameter 

theta_frank <- 5     # Frank copula parameter 

 

 # Create Copula models 

sample_gaussian <- normalCopula(rho_gaussian, dim = 2) 

sample_t <- tCopula(param = rho_t, dim = 2, df = df_t) 

sample_clayton <- claytonCopula(theta_clayton) 

sample_gumbel <- gumbelCopula(theta_gumbel) 

sample_frank <- frankCopula(theta_frank) 

 

set.seed(1215)  

sample_independent_data <- cbind(runif(n_samples), runif(n_samples))  # Independent 

case 

sample_gaussian_data <- rCopula(n_samples, sample_gaussian) 

sample_t_copula_data <- rCopula(n_samples, sample_t) 

sample_clayton_data <- rCopula(n_samples, sample_clayton) 

sample_gumbel_data <- rCopula(n_samples, sample_gumbel) 

sample_frank_data <- rCopula(n_samples, sample_frank) 

 

 # Combine all datasets and labels 
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sample_datasets <- list(sample_independent_data, sample_gaussian_data, 

sample_t_copula_data, sample_clayton_data, sample_gumbel_data, sample_frank_data)  

sample_titles <- c("Independent Case", "Gaussian Copula", "t-Copula", "Clayton 

Copula", "Gumbel Copula", "Frank Copula") 

 

 # Plot scatter plots 

par(mfrow = c(2, 3))  # Arrange plots in 2 rows and 3 columns 

for (i in 1:length(sample_datasets)) { 

  plot(sample_datasets[[i]][, 1], sample_datasets[[i]][, 2], 

       main = sample_titles[i], 

       xlab = "u", ylab = "v", 

       pch = 1 , col = "black", xlim = c(0, 1), ylim = c(0, 1)) 

} 

 

#Fit with normal distribution 

library(MASS) 

fit_NVDA <- fitdistr(Data$NVDAreturn, "normal") 

fit_TSM <- fitdistr(Data$TSMreturn, "normal") 

 

# Transform the returns to uniform [0,1] using the CDFs of the fitted marginals 

Uni_NVDA <- pnorm(Data$NVDAreturn, mean = fit_NVDA$estimate[1], sd = 

fit_NVDA$estimate[2]) 

Uni_TSM <- pnorm(Data$TSMreturn, mean = fit_TSM$estimate[1], sd = 

fit_TSM$estimate[2]) 

 

#Rank Plots 

Data$Rank_NVDA <- rank(Data$NVDAreturn)  #Rank of returns 

Data$Rank_TSM <- rank(Data$TSMreturn) 

library(ggplot2) 

ggplot(Data, aes(x = Rank_NVDA, y = Rank_TSM)) + 

  geom_point(color = "blue", alpha = 0.6) + 

  labs(title = "Rank Plot of Nvidia Returns vs TSM Returns", 

       x = "Rank of Nvidia Returns", 

       y = "Rank of TSM Returns") + 

  theme_minimal() + 

  theme(plot.title = element_text(hjust = 0.5, size = 16, face = "bold"), 

        axis.text = element_text(size = 12), 

        axis.title = element_text(size = 14)) 

 

# Tail Dependence 

upper_quantile = 0.95 

lower_quantile = 0.05 

NVDA_Uthreshold <- quantile(Data$NVDAreturn, upper_quantile) 

TSM_Uthreshold <- quantile(Data$TSMreturn, upper_quantile) 

NVDA_Lthreshold <- quantile(Data$NVDAreturn, lower_quantile) 

TSM_Lthreshold <- quantile(Data$TSMreturn, lower_quantile) 
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# Count how often both NVDA and TSM returns are greater than their 95th percentiles 

upper_tail_events <- sum(Data$NVDAreturn > NVDA_Uthreshold & Data$TSMreturn > 

TSM_Uthreshold) 

# Count how often both NVDA and TSM returns are less than their 5th percentiles 

lower_tail_events <- sum(Data$NVDAreturn < NVDA_Lthreshold & Data$TSMreturn < 

TSM_Lthreshold) 

m <- nrow(Data) 

 

# Non-parametric tail dependence coefficient 

upper_tail_dependence <- upper_tail_events / m  # upper tail 

lower_tail_dependence <- lower_tail_events / m  # lower tail 

 

### Apply the GARCH Time Series Model 

install.packages("rugarch") 

library(rugarch) 

 

# Specify GARCH(1,1) model for NVDA returns 

garch_NVDA <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = 

c(1, 1)), 

                        mean.model = list(armaOrder = c(0, 0), include.mean = TRUE), 

                        distribution.model = "norm") 

# Fit GARCH(1,1) model to NVDA returns 

fit_garch_NVDA <- ugarchfit(spec = garch_NVDA, data = Data$NVDAreturn) 

 

# Specify GARCH(1,1) model for TSM returns 

garch_TSM <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 

1)), 

                       mean.model = list(armaOrder = c(0, 0), include.mean = TRUE), 

                       distribution.model = "norm") 

# Fit GARCH(1,1) model to TSM returns 

fit_garch_TSM <- ugarchfit(spec = garch_TSM, data = Data$TSMreturn) 

 

###Residuals 

# Extract raw residuals from both GARTH models and save in a numeric vector 

res_NVDA <- as.numeric(residuals(fit_garch_NVDA)) 

res_TSM <- as.numeric(residuals(fit_garch_TSM)) 

 

# Extract standardized residuals (residuals divided by the estimated volatility) 

stded_res_NVDA <- as.numeric(residuals(fit_garch_NVDA, standardize = TRUE)) 

stded_res_TSM <- as.numeric(residuals(fit_garch_TSM, standardize = TRUE)) 

 

# ACF plot to check for autocorrelation in standardized residuals 

par(mfrow = c(1, 1)) 

acf(stded_res_NVDA, main = "ACF of Standardized Residuals (NVDA)") 

acf(stded_res_TSM, main = "ACF of Standardized Residuals (TSM)") 
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# Ljung-Box test to statistically check for autocorrelation 

Box.test(stded_res_NVDA, lag = 30, type = "Ljung-Box") 

Box.test(stded_res_TSM, lag = 30, type = "Ljung-Box") 

 

 # Print Summaries (Optional) 

print(fit_garch_NVDA) 

print(fit_garch_TSM) 

 

### Tail Dependence for residuals  

# Transform residuals to uniform [0,1] using empirical CDF 

Rank_NVDAres <- rank(stded_res_NVDA)  #Rank of standardized residuals 

Rank_TSMres <- rank(stded_res_TSM) 

u_NVDAres <- Rank_NVDAres / (length(stded_res_NVDA) + 1)  #to avoid exact 0 or 1 

u_TSMres <- Rank_TSMres / (length(stded_res_TSM) + 1) 

 

# Set the quantile thresholds for upper and lower tails 

U_quantile = 0.9 

L_quantile = 0.1 

UT_dep <- mean(u_NVDAres > U_quantile & u_TSMres > U_quantile)  #46 obs 

LT_dep <- mean(u_NVDAres < L_quantile & u_TSMres < L_quantile)  #64 obs 

print(UT_dep)                            # Upper tail dependence coefficient 

print(LT_dep)                            # Lower tail dependence coefficient 

 

## Examine significant of tail dependence 

set.seed(1215) 

n_permutations <- 10000 

UT_perm <- numeric(n_permutations) 

LT_perm <- numeric(n_permutations) 

for (i in 1:n_permutations) { 

  permuted_NVDA <- sample(u_NVDAres) 

  UT_perm[i] <- mean(permuted_NVDA > U_quantile & u_TSMres > U_quantile) 

  LT_perm[i] <- mean(permuted_NVDA < L_quantile & u_TSMres < L_quantile) 

} 

 

# p-values 

U_p_value <- mean(UT_perm >= UT_dep) 

L_p_value <- mean(LT_perm >= LT_dep) 

print(U_p_value)  # p-value for upper tail dependence: p < 0.0001 

print(L_p_value)  # p-value for lower tail dependence: p < 0.0001 

 

# Standardized residuals for NVDA and TSM returns over time 

par(mfrow = c(1, 1)) 

plot(Data$Time, stded_res_NVDA, type = "l", col = "green",  

     main = "Raw Residuals of NVDA Returns Over Time", xlab = "Time", ylab = 

"Residuals") 
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plot(Data$Time, stded_res_TSM, type = "l", col = "red", 

     main = "Raw Residuals of TSM Returns Over Time", xlab = "Time", ylab = 

"Residuals") 

 

# Histogram of standardized residuals for NVDA and TSM 

hist(stded_res_NVDA, breaks = 50, col = "lightgreen",  

     main = "Histogram of Standardized Residuals (NVDA)", xlab = "Standardized 

Residuals") 

hist(stded_res_TSM, breaks = 50, col = "lightyellow",  

     main = "Histogram of Standardized Residuals (TSM)", xlab = "Standardized 

Residuals") 

 

# Q-Q Plots 

qqnorm(stded_res_NVDA, main = "Q-Q Plot of Standardized Residuals (NVDA)") 

qqline(stded_res_NVDA, col = "red") 

qqnorm(stded_res_TSM, main = "Q-Q Plot of Standardized Residuals (TSM)") 

qqline(stded_res_TSM, col = "red") 

 

# Rank plot for standardized residuals 

library(ggplot2) 

resrank_data <- data.frame(Rank_NVDAres = Rank_NVDAres, Rank_TSMres = 

Rank_TSMres) 

ggplot(resrank_data, aes(u_NVDAres, y = u_TSMres)) + 

  geom_point(alpha = 0.6) + 

  labs(title = "Rank Plot of Residuals", 

       x = "Rank of NVDA Residuals", 

       y = "Rank of TSM Residuals") + 

  theme_minimal(base_size = 14) + 

  theme(plot.title = element_text(hjust = 0.5, face = "bold")) 

 

### Choose Copula Models 

library(copula) 

# Transform residuals to uniform [0,1] using empirical CDF 

data <- data.frame(u_NVDAres, u_TSMres) 

t_cop <- tCopula(dim = 2, dispstr = "un")  # unknown parameter 

clayton_cop <- claytonCopula(dim = 2) 

fit_t <- fitCopula(t_cop, data, method = "ml") 

fit_clayton <- fitCopula(clayton_cop, data, method = "ml") 

 

### Goodness of fit test 

gof_t <- gofCopula(fit_t@copula, data, method = "SnC") 

gof_clayton <- gofCopula(fit_clayton@copula, data, method = "SnC") 

print(gof_t) 

print(gof_clayton) 

 

## Generate simulated plots from chosen copula model 
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n_points <- length(u_NVDAres) 

t_copula_sim <- rCopula(n_points, fit_t@copula) 

clayton_copula_sim <- rCopula(n_points, fit_clayton@copula) 

t_copula_data <- data.frame(u_NVDAres = t_copula_sim[,1], u_TSMres = 

t_copula_sim[,2]) 

ggplot(t_copula_data, aes(x = u_NVDAres, y = u_TSMres)) + 

  geom_point(alpha = 0.6) + 

  labs(title = "Simulated Rank Plot from t-Copula", 

       x = "Rank of NVDA Residuals (Simulated)", y = "Rank of TSM Residuals 

(Simulated)") + 

  theme_minimal(base_size = 12) + 

  theme(plot.title = element_text(hjust = 0.5, face = "bold")) 

clayton_copula_data <- data.frame(u_NVDAres = clayton_copula_sim[,1], u_TSMres = 

clayton_copula_sim[,2]) 

ggplot(clayton_copula_data, aes(x = u_NVDAres, y = u_TSMres)) + 

  geom_point(alpha = 0.6) + 

  labs(title = "Simulated Rank Plot from Clayton Copula", 

       x = "Rank of NVDA Residuals (Simulated)", y = "Rank of TSM Residuals 

(Simulated)") + 

  theme_minimal(base_size = 12) + 

  theme(plot.title = element_text(hjust = 0.5, face = "bold")) 

 

# Tail dependence coefficient of t-copula 

rho = 0.67 

df_tcop = 6.33 

lumda_t <- 2 * pt(-sqrt((df_tcop + 1) / (1 - rho)), df = df_tcop + 1) 

print(lumda_t) 


