## Math 1000 Pre-Cal Practice Solutions

1. (Working with functions)
(a) Given that $f(x)=(x+3)^{2}+x$, find $f(a+h)$ and simplify.

$$
\begin{gathered}
f(a+h)=((a+h)+3)^{2}+(a+h)=(a+h+3)^{2}+a+h=(a+h+3)(a+h+3)+a+h \\
=\left(a^{2}+a h+3 a+a h+h^{2}+3 h+3 a+3 h+9\right)+a+h=a^{2}+2 a h+6 a+6 h+h^{2}+9+a+h= \\
a^{2}+2 a h+7 a+7 h+h^{2}
\end{gathered}
$$

(b) Given that $g(x)=\sin (x)$ and $f(x)=2 x+1$, find $g(f(x))$ and $f(g(x))$.

$$
\begin{aligned}
& f(g(x))=f(\sin (x))=2 \sin (x)+1 \\
& g(f(x))=g(2 x+1)=\sin (2 x+1)
\end{aligned}
$$

(c) Given that $f(x)=\frac{\sqrt{x}}{x^{2}+1}$, find $f(2), f(4)$, and $f\left(u^{2}\right)$.

$$
\begin{gathered}
f(2)=\frac{\sqrt{2}}{2^{2}+1}=\frac{\sqrt{2}}{5} \\
f(4)=\frac{\sqrt{4}}{4^{2}+1}=\frac{2}{17} \\
f\left(u^{2}\right)=\frac{\sqrt{u^{2}}}{\left(u^{2}\right)^{2}+1}=\frac{u}{u^{4}+1}
\end{gathered}
$$

(d) Given that $f(x)=x^{3}$, evaluate

$$
\begin{gathered}
\frac{f(2+h)-f(2)}{h} \\
\frac{f(2+h)-f(2)}{h}=\frac{(2+h)^{3}-(2)^{3}}{h}=\frac{(2+h)\left(4+2 h+h^{2}\right)-8}{h} \\
=\frac{8+4 h+2 h^{2}+4 h+2 h^{2}+h^{3}-8}{h}=\frac{4 h^{2}+8 h+h^{3}}{h}=\frac{h\left(4 h+8+h^{3}\right)}{h}=h^{3}+4 h+8
\end{gathered}
$$

2. (Equations of lines)
(a) Find the equation of the line if the slope is 3 and it goes through the point $(1,1)$.

$$
y-1=3(x-1) \Longrightarrow y=3 x-3+1 \Longrightarrow y=3 x-2
$$

(b) Find the equation of the line if the slope is -1 and it goes through the point $(0,1)$.

$$
y-1=-1(x-0) \Longrightarrow y=-x+1
$$

(c) Find the equation of the line if the slope is $\frac{-1}{2}$ and it goes through the point $(2,-2)$.

$$
y-(-2)=\frac{-1}{2}(x-2) \Longrightarrow y+2=\frac{-1}{2} x+1 \Longrightarrow y=\frac{-1}{2} x+1-2 \Longrightarrow y=\frac{-1}{2} x-1
$$

3. (Laws of logarithms) Use Laws of Logs to rewrite the following:
(a)

$$
\ln \left(x^{2}\right)=2 \ln (x)
$$

(b)

$$
\frac{\ln (8)}{2}=\frac{\ln \left(2^{3}\right)}{2}=\frac{3 \ln (2)}{2}
$$

(c)

$$
\begin{gathered}
\ln \frac{(x+1)^{3}\left(3 x^{2}+5\right)^{4}}{x^{5}}=\ln \left((x+1)^{3}\left(3 x^{2}+5\right)^{4}\right)-\ln \left(x^{5}\right) \\
=\ln (x+1)^{3}+\ln \left(3 x^{2}+5\right)^{4}-\ln \left(x^{5}\right)=3 \ln (x+1)+4 \ln \left(3 x^{2}+5\right)-5 \ln (x)
\end{gathered}
$$

(d)

$$
\left.\left.\ln (8) \ln \left(2^{( } 1 / 3\right)\right)=\ln \left(2^{3}\right) \ln \left(2^{( } 1 / 3\right)\right)=3 \ln (2) \frac{1}{3} \ln (2)=\ln (2) \ln (2)=2 \ln (2)=\ln (4)
$$

4. (Working with exponents)
(a)

$$
x^{-5} x^{-4}=x^{-5+(-4)}=x^{-9}
$$

(b)

$$
\left(x^{2}\right)^{3}+x^{6}=x^{2 \cdot 3}+x^{6}=x^{6}+x^{6}=2 x^{6}
$$

(c)

$$
\left(x^{2}\right)^{3}+x^{4}=x^{2 \cdot 3}+x^{4}=x^{6}+x^{4}
$$

(d)

$$
\frac{x^{6}}{x^{4}}=x^{6-4}=x^{2}
$$

(e)

$$
\frac{x^{1 / 2}}{x^{2}}=x^{(1 / 2)-2}=x^{-3 / 2}
$$

(f)

$$
8^{2 / 3}=\left(2^{3}\right)^{2 / 3}=\left(\left(2^{3}\right)^{1 / 3}\right)^{2}=2^{2}=4
$$

5. (Trigonometry)
(a) What is $\cos \left(\frac{\pi}{2}\right)$ ?

$$
\cos \left(\frac{\pi}{2}\right)=0
$$

(b) What is the $\cos (\sin (0))$ ?

$$
\cos (\sin (0))=\cos (0)=1
$$

(c) Simplify $\frac{\tan (2 \theta)}{\sin (2 \theta)}$.

$$
\frac{\tan (2 \theta)}{\sin (2 \theta)}=\frac{1}{\sin (2 \theta)} \frac{\sin (2 \theta)}{\cos (2 \theta)}=\frac{1}{\cos (2 \theta)}=\sec (2 \theta)
$$

(d) Simplify $\frac{\cot (3 \theta)}{\sin (2 \theta)}$.

$$
\frac{\cot (3 \theta)}{\sin (2 \theta)}=\frac{1}{\sin (2 \theta)} \frac{\cos (3 \theta)}{\sin (3 \theta)}
$$

Can't be simplified any more than this.

