Instruction

- You are allowed 3 hours for this exam. Please pace yourself accordingly.
- You may not use any calculator, notes, or other assistance on this exam.
- In order to receive full credit, you must show your work and carefully justify your answers. The correct answer without any work will receive little or no credit.
- Please write neatly. Illegible answers will be assumed to be incorrect.
- Read the question carefully, if the method is specified you can not use other methods.

Method of variation method:

$$
y_{p}=-y_{1}(x) \int \frac{y_{2}(x) f(x)}{W(x)}+y_{2}(x) \int \frac{y_{1}(x) f(x)}{W(x)}
$$

Trigonometric identity you might need for the question

$$
\begin{aligned}
\cos (A) \cos (B) & =\frac{1}{2}(\cos (A+B)+\cos (A-B)) \\
\sin (A) \sin (B) & =\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\
\sin (A) \cos (B) & =\frac{1}{2}(\sin (A+B)+\sin (A-B))
\end{aligned}
$$

Method of variation method for First order DE system:

$$
\mathbf{x}(t)=e^{A(t-a)} x_{a}+e^{A t} \int_{a}^{t} e^{-A s} f(s) d s
$$

where $\mathbf{x}_{a}=\mathbf{x}(a)$

1. (16 points) Find the general solution of the differential equation.
(a) $2 x y y^{\prime}=x^{2}+2 y^{2}$
(b) $y^{2} y^{\prime}+2 x y^{3}=6 x$
2. (10 points) Find a particular solution of the differential equation.

$$
y^{\prime \prime}+2 y^{\prime}+5 y=\sin (x)
$$

3. (10 points) Use Laplace transforms to solve the initial value problem:

$$
x^{\prime \prime}-6 x^{\prime}+8 x=2 ; \quad x(0)=x^{\prime}(0)=0
$$

4. (a) (10 points) Transform the given differential equation into a equivalent system of first-order differential equations and write it in a form of $\frac{d \mathbf{y}}{d t}=A \mathbf{y}+\mathbf{f}(t):$

$$
x^{(4)}+6 x^{\prime \prime}-3 x^{\prime}+x=\sin (3 t)
$$

(b) (10 points) Eliminate y and find the second order differential equation that x satisfies.

$$
\left\{\begin{align*}
(D+2) x+(D+2) y & =t \tag{1}\\
(2 D+3) x+(D+3) y & =t^{2}
\end{align*}\right.
$$

5. (a) (10 points) Find a fundamental matrix of the given system and apply fundamental matrix solution to find a solution satisfying the initial condition.

$$
x_{1}^{\prime}=2 x_{1}-5 x_{2} \quad x_{2}^{\prime}=4 x_{1}-2 x_{2} ; \quad x_{1}(0)=2, \quad x_{2}(0)=3
$$

(b) (5 points) Use the fundamental matrix you get in the (a) to compute $e^{A t}$. where $A=\left[\begin{array}{ll}2 & -5 \\ 4 & -2\end{array}\right]$.
6. (10 points) Use the Wronskian to determine whether the following three vector are independent or not.
$\mathbf{x}_{\mathbf{1}}(t)=\left[\begin{array}{c}2 e^{t} \\ 2 e^{t} \\ e^{t}\end{array}\right], \quad \mathbf{x}_{\mathbf{2}}(t)=\left[\begin{array}{c}2 e^{3 t} \\ 0 \\ -e^{3 t}\end{array}\right], \quad \mathbf{x}_{\mathbf{3}}(t)=\left[\begin{array}{c}2 e^{5 t} \\ -2 e^{5 t} \\ e^{5 t}\end{array}\right]$
7. (24 points) Find the general solution of the system:
(a)

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
1 & -4 \tag{2}\\
4 & 9
\end{array}\right] \mathbf{x}
$$

(b)

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ccc}
-2 & -9 & 0 \tag{3}\\
1 & 4 & 0 \\
1 & 3 & 1
\end{array}\right] \mathbf{x}
$$

8. (a) (5 points) Show that the matrix A is nilpotent and compute the matrix exponential $e^{A t}$

$$
A=\left[\begin{array}{ll}
3 & -1 \tag{4}\\
9 & -3
\end{array}\right]
$$

(b) (10 points) Use the method of variation to solve the initial value problem $\mathbf{x}^{\prime}=A x+\mathbf{f}(t)$ where $A=\left[\begin{array}{ll}3 & -1 \\ 9 & -3\end{array}\right] \mathbf{f}(t)=\left[\begin{array}{c}0 \\ t^{-2}\end{array}\right] x(1)=\left[\begin{array}{l}3 \\ 7\end{array}\right]$

The rest questions are for those who need a different scheme.

9. Find the general solution of the differential equation.
(a) $(x+y) y^{\prime}=x-y$
(b) $y^{\prime \prime}=2 y\left(y^{\prime}\right)^{3}$
10. Find the solution of the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+3 y=e^{-t}, y(0)=0, y^{\prime}(0)=\frac{5}{2}
$$

11. Transform the given differential equation to find a nontrivial solution such that $x(0)=0$. (Hint: you can find $x^{\prime}(0)$ by plug $t=0$ into the equation)

$$
t x^{\prime \prime}-(4 t+1) x^{\prime}+2(2 t+1) x=0
$$

