- You are allowed 2 hours (120 minutes) for this exam. Please pace yourself accordingly.
- You may not use any calculator, notes, or other assistance on this exam.
- In order to receive full credit, you must show your work and carefully justify your answers. The correct answer without any work will receive little or no credit.
- Please write neatly. Illegible answers will be assumed to be incorrect.
- Read the question carefully, if the method is specified you can not use other methods.

Method of variation method:(Do not ask me what $W(x)$ is)

$$
y_{p}=-y_{1}(x) \int \frac{y_{2}(x) f(x)}{W(x)}+y_{2}(x) \int \frac{y_{1}(x) f(x)}{W(x)}
$$

Trigonometric identity you might need for the question

$$
\begin{aligned}
\cos (A) \cos (B) & =\frac{1}{2}(\cos (A+B)+\cos (A-B)) \\
\sin (A) \sin (B) & =\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\
\sin (A) \cos (B) & =\frac{1}{2}(\sin (A+B)+\sin (A-B))
\end{aligned}
$$

1. (40 points) Find the general solution of the following first order differential equations.
(a) $\frac{d y}{d x}=y \sin (x)$
(b) $2 x y^{\prime}-3 y=9 x^{3}$
(c) $x y y^{\prime}=x^{2}+2 y^{2}$
(d) $x y^{\prime}+6 y+3 x y^{\frac{4}{3}}=0$
(e) $x^{2} y^{\prime \prime}+3 x y^{\prime}=2$
2. (10 points) Solve the following initial problem.

$$
\begin{gathered}
3 y^{(3)}+2 y^{\prime \prime}=0 \\
y(0)=-1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=1
\end{gathered}
$$

3. (10 points) Find a particular solution of

$$
y^{\prime \prime}+9 y=\sin (3 x)
$$

4. (10 points) Use the method of variation of parameters to find a particular solution of

$$
y^{\prime \prime}+9 y=2 \sec (3 x)
$$

5. (15 points) First determine whether $\lambda=0$ is an eigenvalue, then find the positive eigenvalues and associated eigenfunctions.

$$
y^{\prime \prime}+\lambda y=0 ; \quad y^{\prime}(-\pi)=0 \quad y^{\prime}(\pi)=0
$$

6. (10 points) Apply the Convolution Theorem to find the inverse Laplace transform of the function.

$$
F(s)=\frac{s^{2}}{\left(s^{2}+4\right)^{2}}
$$

7. (10 points) Use Laplace transform to solve the initial problem:

$$
x^{\prime \prime}+x=\sin (2 t), \quad x(0)=0, \quad x^{\prime}(0)=0
$$

8. (15 points) Transform the given differential equation to find a nontrivial solution such that $x(0)=0$.

$$
t x^{\prime \prime}+(3 t-1) x^{\prime}+3 x=0
$$

