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Abstract. In this paper, we show that the absolute value of the discriminant of the k-
generalized Fibonacci polynomial Xk −Xk−1 − · · · −X − 1 is a member of the k-generalized

Fibonacci sequence (F
(k)
n )n≥0 only when k = 2, 3.

1. Introduction

Let k ≥ 2 be an integer. The sequence of k-generalized Fibonacci numbers {F (k)
n }n∈Z has

initial terms F
(k)
2−k = · · · = F

(k)
0 = 0, F

(k)
1 = 1 and satisfies the recurrence

F
(k)
n+k = F

(k)
n+k−1 + · · ·+ F (k)

n for all n ∈ Z.

Here are a few terms of the k-generalized Fibonacci sequence with positive indices.

k Name First nonzero terms with positive indices
2 Fibonacci 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .
3 Tribonacci 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, . . .
4 Tetranacci 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, . . .
5 Pentanacci 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930, . . .
6 Hexanacci 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617, . . .
7 Heptanacci 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936, . . .
8 Octanacci 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, . . .
9 Nonanacci 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, . . .
10 Decanacci 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172, . . .

Let

fk(X) := Xk −Xk−1 − · · · −X − 1

be the characteristic polynomial of the k-generalized Fibonacci sequence. This is sometimes
referred to as the k-generalized Fibonacci polynomial. Let Disc(fk) be the discriminant of
fk(X). This number has been computed in many places (see, for example Lemma 2.3 in [6]).
Its formula is

Disc(fk(X)) = (−1)(
k+1
2 )−1

(
2k+1kk − (k + 1)k+1

(k − 1)2

)
.

For k = 2, 3, we get that |Disc(fk)| = 5, 44 and a quick look at the above table convinces us

that 5 = F
(2)
5 and 44 = F

(3)
8 . We ask whether there are other instances when |Disc(fk)| is a

member of {F (k)
n }n≥0? The answer is no and this is the main theorem of this paper.

Theorem 1. The only k ≥ 2 such that |Disc(fk)| is a member of {F (k)
n }n≥0 are k = 2, 3.
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2. Preliminary Results

We label the roots of fk(X) as α1, . . . , αk. It is known that fk(X) has only one positive real
root, we call it α := α1. This root satisfies

2
(
1− 1/2k

)
< α < 2 for all k ≥ 2. (1)

Furthermore, |αi| < 1 for i = 2, . . . , k. It is also known that

αn−2 ≤ F (k)
n ≤ αn−1 (2)

holds for all n ≥ 1 (see [1]). For sharper estimates of F
(k)
n in terms of α, we need some more

notation. Putting

fk(z) :=
z − 1

2 + (k + 1)(z − 2)
for z ≥ 2,

then

F (k)
n =

k∑
i=1

fk(αi)α
n−1
i holds for all n ∈ Z. (3)

Furthermore,

|F (k)
n − fk(α)α

n−1| < 1

2
holds for all n ≥ 1. (4)

Both (3) and (4) appear in [3]. An even sharper estimate than (4), but in a more restricted
range for n in terms of k, appears in [1]. Namely,

If n < 2k/2 and k > 10, then |fk(α)αn−1 − 2n−2| < 2n

2k/2
(5)

(see also (15) in [4]). Finally, we need the following formula of Cooper and Howard [2]:

F (k)
n = 2n−2 +

⌊n+k
k+1

⌋−1∑
j=1

Cn,j2
n−j(k+1)−2, where Cn,j = (−1)j

((
n− jk

j

)
−
(
n− jk − 2

j − 2

))
.

(6)

In the above formulas, the regular assumptions apply, namely that

(
a

b

)
= 0 if either a < b or

one of a or b is negative.

3. The Proof

We need to solve

F (k)
n =

2k+1kk − (k + 1)k+1

(k − 1)2
(7)

for some k ≥ 4 and some positive integer n. We start with some rough bounds for n in terms
of k. First, by (2), we have

αn−2 < F k
n <

2k+1kk

(k − 1)2
. (8)

Since α > 1.927 for k ≥ 4, the above inequality implies n < 800 when k ≤ 100. We check the
range k ∈ [4, 100] and n ∈ [2, 800] for equation (7) and we do not find solutions. From now
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on, we assume that k ≥ 101. From (8) and (1), we get

n− 2 <
(k + 1) log 2 + k log k − 2 log(k − 1)

logα
<

(k + 1) log 2 + k log k − 2 log(k − 1)

log 2 + log(1− 1/2k)

<
(k + 1) log 2 + k log k − 2 log(k − 1)

log 2

(
1

1− 1/(2k−1 log 2)

)
<

(k + 1) log 2 + k log k − 2 log(k − 1)

log 2

(
1 +

1

2k−2 log 2

)
< k + 1 +

k log k − 2 log(k − 1)

log 2
+

(k + 1) log 2 + k log k

2k−2(log 2)2

< k + 1.01 +
k log k − 2 log(k − 1)

log 2
.

In the above, we used log(1− x) > −2x, valid for x ∈ (0, 1/2) (with x := 1/2k), as well as the
inequality 1/(1 − y) < 1 + 2y, valid for y ∈ (0, 1/2) (with y := 1/(2k−1 log 2)), as well as the
fact that

(k + 1) log 2 + k log k

2k−2 log 2
< 0.01 for k ≥ 101.

Hence,

n < k + 3.01 +
k log k − 2 log(k − 1)

log 2
. (9)

But we can also find a similar lower bound for n. Namely, by (2) and (1), we have

2n−1 > αn−1 > F (k)
n =

2k+1kk

(k − 1)2

(
1− (k + 1)k+1

kk2k+1(k − 1)2

)
>

2k+1kk

(k − 1)2

(
1− e(k + 1)

(k − 1)22k+1

)
>

2k+1kk

(k − 1)2

(
1− 1

2k−1

)
, (10)

where we used (1 + 1/k)k < e < 4, valid for all k ≥ 2 as well as k + 1 ≤ (k − 1)2, valid for
k ≥ 4. Taking logarithms, we get

n− 1 >
(k + 1) log 2 + k log k − 2 log(k − 1)

log 2
+

log(1− 1/2k−1)

log 2

> k + 1 +
k log k − 2 log(k − 1)

log 2
− 1

2k−2 log 2

> k + 0.99 +
k log k − 2 log(k − 1)

log 2
.

In the above, we again used log(1−x) > −2x, valid for all x ∈ (0, 1/2) with x := 1/(2k−1 log 2),
as well as the fact that 2x < 0.01 since k ≥ 101. Thus,

n > k + 1.99 +
k log k − 2 log(k − 1)

log 2
. (11)

From (9) and (11), we record the following lemma.

Lemma 1. In equation (7) with k > 100, we have

k + 1.99 +
k log k − 2 log(k − 1)

log 2
< n < k + 3.01 +

k log k − 2 log(k − 1)

log 2
.
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From (9), together with the fact that k > 100, we conclude that

n < k + 3.01 +
k log k − 2 log(k − 1)

log 2
< 2k/2,

so we are in the range of (5). Thus, from (4) and (5), we get∣∣∣∣2k+1kk − (k + 1)k+1

(k − 1)2
− 2n−2

∣∣∣∣ ≤ ∣∣∣F (k)
n − fk(α)α

n−2
∣∣∣+ ∣∣fk(α)αn−2 − 2n−2

∣∣ < 2n

2k/2
+ 1.

By (11), we conclude that n > k/2, so the right side above is at most 2n+1/2k/2. Thus,∣∣∣∣ 2k+1kk

(k − 1)2
− 2n−2

∣∣∣∣ < 2n+1

2k/2
+

(k + 1)k+1

(k − 1)2
.

Let M := 2k+1kk/(k − 1)2 and N := 2n−2. Note that

2n+1

2k/2max{M,N}
≤ 2n+1

2k/2N
=

8

2k/2
,

(k + 1)k+1

(k − 1)2max{M,N}
≤ (k + 1)k+1

2k+1kk
<

e(k + 1)

2k+1
<

1

2k/2
,

since k > 100. We get

|1− (MN−1)δ| < 8

2k/2
+

1

2k/2
=

9

2k/2
, (12)

where δ ∈ {±1} (so δ = 1 if N ≥ M and δ = −1 otherwise). The left side above is

|(2(k+3−n)kk(k − 1)−2)δ − 1|. (13)

This expression is not zero, since k > 100, so there is an odd prime p dividing (k− 1)k, which
therefore appears with nonzero exponent in the factorization of 2k+3−nkk(k − 1)−2. To find a
lower bound on the above expression, we use Matveev’s theorem (see [7], or the formulation
of Theorem 3 in [4]). We take D = 1, t = 3,

γ1 := 2, γ2 := k − 1, γ3 := k;
b1 := δ(k + 3− n), b2 := −2δ, b3 := δk.

We take Ai := log γi for i = 1, 2, 3 and B = n ≥ max{|b1|, |b2|, |b3|}. So, if we put

Λ := γb11 γb22 γb23 − 1,

we get

|Λ| > exp
(
−1.4 · 306 · 34.5(1 + log n) · log 2 · log k · log(k − 1)

)
.

Comparing this with (12), we get

(k/2) log 2− log 9 < 1.4 · 306 · 34.5 log 2
(
1 +

1

log n

)
(log n)(log k)2.

Using Lemma 1 and the fact that k ≥ 101, we get 763 ≤ n ≤ 2k log k. We get

k < 2.8 · 306 · 34.5
(
1 +

1

log 763

)
(log k)2 log(2k log k) +

2 log 9

log 2

< 3.3 · 1011(log k)2 log(2k log k).
This gives k < 2 · 1016, and now Lemma 1 gives n < 1.5 · 1018. We record these conclusions.

Lemma 2. In equation (7) for k > 100, we have k < 2 · 1016 and n < 1.5 · 1018.

We need to reduce the above bounds. We use a 2-adic argument. Let r ∈ {0, 1, . . . , k} be
the residue of n modulo n− 2 modulo k + 1. We have the following lemma.
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Lemma 3. We have r = k + 1− r1, where

0 ≤ r1 ≤ 3 +
5 log k

log 2
. (14)

Proof. Assume first that k is even. Then Disc(fk) ≡ 1 (mod 2). In particular, F
(k)
n ≡ 1

(mod 2). The sequence (F
(k)
n )n∈Z is periodic modulo 2 with period k + 1. This is easily seen

as fk(x) | xk+1 − 2xk + 1, so that

F
(k)
n+k+1 = 2F

(k)
n+k − F (k)

n holds for all n ∈ Z,

which modulo 2 simplifies to F
(k)
n+k+1 ≡ F

(k)
n (mod 2). Further,

F
(k)
1 = F

(k)
2 = 1 and F (k)

m = 2m−2 for m = 3, 4, . . . , k + 1.

This shows that if F
(k)
n is odd, then n ≡ 1, 2 (mod k+1), so that n−2 ≡ (k+1)−0, (k+1)−1

(mod k + 1). Thus, r1 ∈ {0, 1} in this case. Assume next that k is odd. Then

Disc(fk) = 2k+1

(
kk − ((k + 1)/2)k+1

(k − 1)2

)
,

which implies that

ν2(F
(k)
n ) = ν2(Disc(fk)) = k+ 1+ ν2(k

k − ((k+ 1)/2)k+1)− ν2((k− 1)2) ≥ k+ 1− 2ν2(k− 1).

The right-most inequality above is an equality if and only if 4 | k + 1. We now go to (6) and
deduce that

ν2(F
(k)
n ) = ν2

2n−2 +

⌊n+k
k+1

⌋−1∑
j=1

2(n−2)−j(k+1)Cn,j

 . (15)

Let

J :=

⌊
n+ k

k + 1

⌋
− 1.

Using (11) and the fact that k > 100, we get

n+ k

k + 1
≥ 2k + 1.99

k + 1
+

k log k − 2 log(k − 1)

(k + 1) log 2
> 2− 0.01

k + 1
+

(
1− 3

k + 1

)
log k

log 2
> 8.44,

which shows that J ≥ 7. As an upper bound, we have

J ≤ n− 1

k + 1
≤ k + 2.01

k + 1
+

k log k − 2 log(k − 1)

(k + 1) log 2

< 1 +
1.01− 2 log(k − 1)/ log 2

(k + 1)
+

k log k

(k + 1) log 2
< 1 +

log k

log 2
< 2 log k, (16)

since k > 100. Since

J + 1 =

⌊
n+ k

k + 1

⌋
, we get (J + 1)(k + 1) ≤ n+ k < (J + 2)(k + 1),

which implies

J + 1 ≤ n− Jk ≤ k + J + 1 and J − 1 ≤ n− Jk − 2 ≤ k + J − 1.

So, we see that

Cn,J =

(
n− Jk

J

)
−
(
n− Jk − 2

J − 2

)
=

(
(n− Jk)(n− Jk − 1)

J(J − 1)
− 1

)(
n− JK − 2

J − 2

)
.
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Thus,

ν2(Cn,J) ≤ ν2

(
n− Jk − 2

J − 2

)
+ ν2 ((n− Jk)(n− Jk − 2)− J(J − 1))

≤ log(n− Jk − 1)

log 2
+

log((n− Jk)(n− Jk − 1))

log 2

<
3 log(n− Jk)

log 2
< 3

log(k + 2 log k + 1)

log 2
<

3 log(2k)

log 2
. (17)

In the above, we used Kummer’s theorem [5] to the effect that the exponent of 2 in

(
n

m

)
is at most the number of carries when adding m and n − m in base 2 (which is at most
log(n+ 1)/ log 2), inequality (16), as well as the fact that 2 log k + 1 < k for k > 100. □

In the sum appearing in the right side of (15), all powers of 2 appearing there are congruent
to the same number, namely r modulo k + 1. Furthermore, n− 2− (k + 1)j ≥ k + 1 if j = 0
or j ∈ {1, 2, . . . , J − 1}. Since

k + 1 >
3 log(2k)

log 2
> ν2(2

n−2−J(k+1)Cn,J)

holds for k > 100, we get that

ν2(F
(k)
n ) = ν2(2

n−2−J(k+1)Cn,J) = n− 2− J(k + 1) + ν2(Cn,J).

We study n− 2− J(k + 1). Note that since

J =

⌊
n− 1

k + 1

⌋
, it follows that n− 1 = J(k + 1) + λ, where 0 ≤ λ ≤ k + 1.

If λ ≥ 1, then n− 2 = J(k+1)+ (λ− 1) and λ− 1 ≥ 0, so that λ− 1 = r. It could be the case
that λ = 0, in which case n − 2 = (J − 1)(k + 1) + k, so r = k, but in this case we certainly
have r = k = (k + 1)− 1, so that r1 = 1 and the conclusion of the lemma holds. So, we may
assume that λ ≥ 1; therefore,

ν2(F
(k)
n ) = r + ν2(Cn,j).

Comparing the last formula above with (15) and (17), we get

k+1− r1 = r ≥ k+1− 2 log(k − 1)

log 2
− ν2(CnJ) > k+1− 2 log k

log 2
− 3

log(2k)

log 2
= k− 2− 5

log k

log 2
.

This gives

r1 ≤ 3 + 5
log k

log 2
,

as desired. Since k ≤ 2 · 1016, the above upper bound on r1 is at most 273 in our range. At
this point, we find it convenient to increase the range of k to k ≤ 300. Lemma 1 gives us
n ≤ 2755 and a few minutes of computation with Mathematica reveal no additional solutions
in the range k ∈ [101, 300]. From now on, k ≥ 301. We write

n− 2 = (k + 1)(L+ 1)− r1, where L =

⌊
n− 2

k + 1

⌋
, and 0 ≤ r1 ≤ 273.

Since k ∈ [301, 2 ·1016], Lemma 1 implies L ∈ [9, 55]. We go back to inequalities (12) and (13).

Writing Λ := eΓ − 1 and using that |Λ| < 9/2k/2 implies |Γ| < 18/2k/2, we get

|(n− (k + 3)) log 2− k log k + 2 log(k − 1)| < 18

2k/2
.
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The above can be rewritten as

|(k + 1)(L log 2− log k)− r1 log 2 + log k + 2 log(k − 1)| < 18

2k/2
,

or ∣∣∣∣log(2L

k

)∣∣∣∣ < r1 log 2 + log k + 2 log(k − 1) + 18/2k/2

k + 1
.

Since k ∈ [301, 2 · 1016], the numerator of the fraction from the right side above is < 265.
Hence, taking the exponential, we get

2L

k
= exp(ζ), where ζ ∈

(
− 265

k + 1
,
265

k + 1

)
.

Since 265/(k + 1) ≤ 265/302 < 1.51/(e− 1), it follows that

exp(ζ) ∈ (1− |ζ|, 1 + 2.51|ζ|) .
Thus,

2L ∈
(
k − 265k

k + 1
, k +

666k

k + 1

)
.

In particular, k ∈ [2L − 666, 2L + 265]. We now have everything we want to carry out the
calculations. Namely, we fix a number L ∈ [9, 55]. We fix k ∈ [max{301, 2L − 666}, 2L + 265].
Note that the above maximum is always 2L−666 except if L = 9, in which case it is 301. Note
that L is determined in at most 50 ways, then k is determined in at most 1000 ways. Lemma 1
then shows that n is in an interval of length 2.02, so there are at most three possibilities for
n. Hence, there are less than 50 · 1000 · 3 = 1.5 · 105 possibilities. We choose a prime p of size
1020 and we check, using formula (6), whether

2n−2 +

⌊n+k
k+1

⌋−1∑
j=1

2(n−2)−j(k+1)Cn,j ≡
2k+1kk − (k + 1)k+1

(k − 1)2
(mod p).

Since k < 2 · 1016 < p, it follows that k− 1 is invertible modulo p. We used Mathematica and
in particular the command PowerMod to calculate 2n−2−j(k+1), kk, and (k + 1)k+1 modulo p.
We chose p = 1020 + 39. The computations lasted less than one hour and no solution to the
above congruence modulo p was found in our range of the variables L, k, r1, n. The theorem
is therefore proved.
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[4] C. A. Gómez and F. Luca, On the largest prime factor of the ratio of two generalized Fibonacci numbers,
J. Number Theory, 152 (2015), 182–203.

AUGUST 2024 199



THE FIBONACCI QUARTERLY
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