PF1 + PF2 = 2a |
[(x + c)2 + y2]½ + [(x - c)2 + y2]½ = 2a |
Isolate one of the radicals: | [(x + c)2 + y2]½ = 2a - [(x - c)2 + y2]½ |
Square both sides: | (x + c)2 + y2 = 4a2 - 4a[(x - c)2 + y2]½ + (x - c)2 + y2 |
Expand: | x2 + 2cx + c2 + y2 = 4a2 - 4a[(x - c)2 + y2]½ + x2 - 2cx + c2 + y2 |
Isolate the radical: | 4a[(x - c)2 + y2]½ = 4a2 - 4cx |
Divide by 4: | a[(x - c)2 + y2]½ = a2 - cx |
Square both sides: | a2[(x - c)2 + y2] = a4 - 2a2cx + c2x2 |
Expand: | a2(x2 - 2cx + c2 + y2) = a4 - 2a2cx + c2x2
a2x2 + a2c2 + a2y2 = a4 + c2x2 |
Rewrite equation as: | (a2 - c2)x2 + a2y2 = a2(a2 - c2) |
Recall from the Pythagorean Property that a2 - c2 = b2
Make this substitution: | b2x2 + a2y2 = a2b2 |
Divide both sides by a2b2: | x2/a2 + y2/b2 = 1
This is the standard equation of an ellipse centred at the origin.
| |