EXAMPLE 2: Elimination Method
Use elimination to solve the linear-quadratic system of equations consisting of:
1. x2 + 12x - y + 36 = 0 and
2. 3x + 2y - 5 = 0
Step 1:



Create an addition or subtraction problem with the equations:
x2 + 12x - y + 36 = 0
+        3x + 2y - 5 = 0
Step 2:






Decide which term to eliminate and then multiply the equations by appropriate values.
In this example, the y term will be eliminated. Therefore, you must multiply Equation 1 by 2.
2x2 + 24x - 2y + 72 = 0
+         3x + 2y - 5 = 0
Step 3:



Solve the addition or subtraction problem.
2x2 + 24x - 2y + 72 = 0
+         3x + 2y - 5 = 0
2x2 + 27x +       + 67 = 0
Step 4:


Expand and simplify the resulting equation.
2x2 + 27x + 67 = 0
Step 5:

Solve.
In this case, use the quadratic formula:
 

x =
          _______
- b ± Öb2 - 4ac
          2a
x =            ____________
-27 ± Ö272 - 4(2)(67)
2(2)
x =            _________
-27 ± Ö729 - 536
4   
x =            ____
-27 ± Ö193
          4
x = -27 ± 13.89
         4
x = -40.89 and x = -13.11
     4                    4
x = -10.22  and  x = -3.28
Step 6:


Substitute x = -10.22 and x = -3.28 into one of the original equations to find the corresponding y value.
Let x = -10.22 Let x = -3.28
Then:
3(-10.22) + 2y - 5 = 0
Then:
3(-3.28) + 2y - 5 = 0
-30.66 + 2y - 5 = 0 -9.84 + 2y - 5 = 0
2y - 35.66 = 0 2y - 14.84 = 0
2y = 35.66 2y = 14.84
y = 17.83 y = 7.42
Thus the solutions to the system are (-10.22. 17.83) and (-3.28, 7.42).