
Statistical Learning: Chapter 1 & 2
Chapter 1: Examples of statististical learning problems

1. Wage data 

This data is described in ISLR

Wages for 3000 males in "Middle Atlantic" USA
12 variables recorded:

> summary(Wage)

      year           age               sex                    maritl           race    

 Min.   :2003   Min.   :18.00   1. Male  :3000   1. Never Married: 648   1. White:2480 

 1st Qu.:2004   1st Qu.:33.75   2. Female:   0   2. Married      :2074   2. Black: 293 

 Median :2006   Median :42.00                    3. Widowed      :  19   3. Asian: 190 

 Mean   :2006   Mean   :42.41                    4. Divorced     : 204   4. Other:  37 

 3rd Qu.:2008   3rd Qu.:51.00                    5. Separated    :  55                 

 Max.   :2009   Max.   :80.00                                                          

                                                                                       

              education                     region               jobclass   

 1. < HS Grad      :268   2. Middle Atlantic   :3000   1. Industrial :1544  

 2. HS Grad        :971   1. New England       :   0   2. Information:1456  

 3. Some College   :650   3. East North Central:   0                        

 4. College Grad   :685   4. West North Central:   0                        

 5. Advanced Degree:426   5. South Atlantic    :   0                        

                          6. East South Central:   0                        

                          (Other)              :   0                        

            health      health_ins      logwage           wage       

 1. <=Good     : 858   1. Yes:2083   Min.   :3.000   Min.   : 20.09  

 2. >=Very Good:2142   2. No : 917   1st Qu.:4.447   1st Qu.: 85.38  

                                     Median :4.653   Median :104.92  

                                     Mean   :4.654   Mean   :111.70  

                                     3rd Qu.:4.857   3rd Qu.:128.68  

                                     Max.   :5.763   Max.   :318.34  

How is "wage" related to age, education, calendar year?

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R"  (Springer, 2013) with 
permission from the authors: G. James, D. Witten,  T. Hastie and R. Tibshirani 



2. Drug Discovery



Both the wage data and the drug discovery problem are examples of supervised learning.
 - We want to construct a model to predict a "response variable"  or "output" Y, when given values of 
"inputs" (a vector X).
    For example...

- In supervised learning, we have a ``training set'' where X and Y are observed for each object in the data.

- Using the training data we estimate or learn a statistical model that can predict Y when given a new X.

- In unsupervised learning, there is no output "Y".  Instead we want to describe or summarize the X 
values.

3. A manufacturing example (unsupervised learning)



Another unsupervised example is given in ISLR Ch 1, concerning gene expression data (NCI60 data)

In general, unsupervised tasks include:
 - Clustering, which is the identification of groups of similar objects (e.g. insertions)
 - Dimension reduction, which is the identification of lower-dimensional representations of the data (here 
we have 100 measurements per curve, but the shape varies in many fewer important directions).
- We'll see unsupervised methods in week 4



Chapter 2: Overview of supervised learning

Motivating example from ISLR: Advertising expenditures and corresponding sales of a specific product.

Clearly increasing spending on advertising will increase sales.

The blue lines are 3 linear regressions, such as:
Sales = a + b (TV spending)

Can we fit a better model, using all three variables?

Sales = f(TV, Radio, Newspaper)

We want to learn " f " from available data:

That is, we have n objects (here, markets) and for each object we observe response Y and predictors X1, X2, 
X3 (TV spend, Radio spend, Newspaper spend)



What is a good "f(x)"?

For example at x=4, what should f 
be?

A good value is 

f(4) = E(Y | X=4)

E(Y|X=4) means the expected value (average) of Y given X=4

This is also defined for vector X, eg  f(x) = f(x1,x2,x3) = E(Y|X1=x2,X2=x2, X3=x3)

This minimizes mean squared prediction error E[(Y - g(X))^2|X=x] over all functions g at all points X=x.

There's still irreducible error 



How to estimate f?

With a sample, there will only be a few points with X=4 exactly (or none).

So an exact estimate of E(Y|X=x) is not possible.

Relax the definition and let

Nearest neighbour averaging:

k-nearest neighbours calculates the distance from x (here x=4) to all training points, and chooses the k 
nearest ones.  The prediction at x=4 is the average of the Y values of these k neighbours.

KNN works well in low dimensions,  p=1, 2, 3, 4 and large N.  But in high dimensions it suffers the 
CURSE OF DIMENSIONALITY.



Curse of dimensionality: for data that is uniform on (-1,1) intervals along axes in p dimensions, what is 
the radius needed to contain 10% of the data values?

Parametric and structured models

This shortcoming of KNN leads us to consider parametric and structured models, which make much 
stronger assumptions about the relationship between X and Y.

The linear model is an important case:

Coefficients estimated with training data (e.g. by least squares, see Ch 3)

Powerful and (sometimes) good approximation to the unknown true f(X).



Trade-off between simple and complex models:

Many of our models will have an adjustable amount of flexibility.

Adjusting this flexibility will be a key trade-off we must make.  It affects:
    * Prediction accuracy
    * Interpretability of the model

In general, the more flexible a method is, the more accurate and less interpretable it is
- This is true for different families of models (shown below) as well as within a family of models.

How do we choose how flexible to make our model?

Example (on separate pdf file: "02testexample.pdf"):

   * Regression with a single X and a nonlinear function, with 20 "training" observations.
   * We use a test set to measure accuracy of various fitted models.
   * In this example our model is a polynomial regression with various different maximum powers:



Ch 3 gives three more train / test examples, with varying 
 - complexity (i.e. nonlinearity of function)
 - noise level
 

Fig 2.9:
- Nonlinear function
- Medium noise level

Fig 2.10:
- close to linear 
function
- medium noise level



Fig 2.11:
- very nonlinear 
function
- low noise level

We can see in the different examples that the the appropriate level of flexibiliy will change for different 
problems.



Linear model has high 
bias - systematic 
difference between linear 
prediction and nonlinear 
function.  It has low 
variance because it will 
give the same (biased) 
answer for different 
training sets.

10th degree polynomial 
has low bias, but high 
variability ("wiggle").  
You can think of 
variability as sensitivity 
to perturbations in 
training data. 



Classification problems
So far, we've only discussed a numeric response ("regression").

Many of the ideas above are similar for classification, in which we want to predict a categorical response.

Examples: Drug discovery - classify compounds as active / inactive.

We want to learn a function C(X) that maps X=(X1, ..., Xp) to 
class labels.

We may also want to:
- asssess uncertainty in our classification
- discover the way in which different X's affect C(X).

Example (not in book): Dose-response experiment

X = amount of toxin



In the (unrealistic) case where we know P(Y=1 | X=x), the best ("Bayes optimal") classifier is to choose 
class 1 ("dead") whenever P(Y=1 | X=x) is > 0.5

More generally, for K classes, let

Instead of MSE, we typically measure performance with the misclassification erorr rate 
(ideally on at test set "Te") :

We'll see (in Ch 4) both parametric models (logistic regression) and flexible methods (e.g. k-nearest 
neighbours) for clasification.

Here we show an example in two dimensions with a complex decision boundary and noisy data.

Example:

* 2 classes (orange / blue)
* true (and unknown) decision 
boundary is dashed line
* Labels are observed with 
error (or randomness)





As with regression problems, we see that the flexibility of the estimator can be varied to control the 
bias/variance trade-off.

Note the horizontal axis of the above graph.  Why is 1/k (k = number of neighbours) plotted instead of 
k?


