Statistical Learning: Chapter 1 & 2
Chapter 1: Examples of statististical learning problems

1. Wage data
This data is described in ISLR
ol
Wages for 3000 males in "Middle Atlantic" USA t V& v
12 variables recorded: o j ‘,}o(a
At
> summary (Wage)
year age sex maritl race
Min. :2003 Min. :18.00 1. Male :3000 1. Never Married: 648 1. White:2480
1st Qu.:2004 1st Qu.:33.75 2. Female: 0 2. Married :2074 2. Black: 293
Median :2006 Median :42.00 3. Widowed : 19 3. Asian: 190
Mean :2006 Mean :42.41 4. Divorced : 204 4. Other: 37
3rd Qu.:2008 3rd Qu.:51.00 5. Separated : 55
Max. :2009 Max. :80.00
education region jobclass
1. < HS Grad :268 2. Middle Atlantic :3000 1. Industrial :1544
2. HS Grad :971 1. New England : 0 2. Information:1456
3. Some College :650 3. East North Central: 0
4. College Grad :685 4. West North Central: 0
5. Advanced Degree:426 5. South Atlantic 0
6. East South Central: 0
(Other) : 0
health health_ins logwage wage
1. <=Good : 858 1. Yes:2083 Min. :3.000 Min. : 20.09
2. >=Very Good:2142 2. No : 917 1st Qu.:4.447 1st Qu.: 85.38
Median :4.653 Median :104.92
Mean :4.654 Mean :111.70
3rd Qu.:4.857 3rd Qu.:128.68
Max. :5.763 Max. :318.34
How is "wage" related to age, education, calendar year?
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Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with
permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani



2. Drug Discovery

High throughput screening (HTS)

Response variable: Activity
(% inhibition, IC50 concentration, inactive/active)

Explanatory variables: Molecular descriptors (e.g., BCUT's)
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Example datasets - from National Cancer Institute (NCI)

1. AIDS Antiviral Data (Inactive/Active)
e Response: 0/1 inactive/active (active = highly active or mildly ac-
tive)

Training Test
data data Total

Active 304 304 608
Inactive 14,602 14,602 | 29,204
Total 14,906 14,906 | 29,812

e 6 BCUT descriptors

2. A similar dataset with a continuous response exists: -log(EC50).
EC50 = compound concentration that protects infected cells by 50%
(-log(EC50) is a larger-the-better response).

Classification/Regression modelling:

e Given a training set with activity and descriptors, construct a model
to predict activity using the descriptors.

e This allows ‘“virtual screening” of compounds - identify most likely
actives without testing them all.



Both the wage data and the drug discovery problem are examples of supervised learning.
- We want to construct a model to predict a "response variable" or "output" Y, when given values of
"inputs” (a vector X).

For example...
Y X I
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- In supervised learning, we have a "training set" where X and Y are observed for each object in the data.
- Using the training data we estimate or learn a statistical model that can predict Y when given a new X.

- In unsupervised learning, there is no output "Y". Instead we want to describe or summarize the X
values.

3. A manufacturing example (unsupervised learning)

Example - Valve Seat Insertion

e Source: Truck engine assembly plant.
e Steel valve seats force-fitted atop the cylinder head.

e V8 engines with 4 intake and 4 exhaust valve seats inserted
simultaneously.

e Data: force exertion f(t)
observed over time.

e 6,000 cylinders; 41 days
in Jan and Feb of 2000.
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Example - Valve Seat Insertion

e Problem:
— If a part is badly inserted, it will fall out after 10,000
to 20,000 km and cause leakage around the seat.
— We don’t know which insertions are bad.

— Would have to take the engine apart to know.
e Goal:

— Are any of the curves drastically different from the rest?

— How does the process change over time?

In general, unsupervised tasks include:

- Clustering, which is the identification of groups of similar objects (e.g. insertions)

- Dimension reduction, which is the identification of lower-dimensional representations of the data (here
we have 100 measurements per curve, but the shape varies in many fewer important directions).

- We'll see unsupervised methods in week 4
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Another unsupervised example is given in ISLR Ch 1, concerning gene expression data (NCI60 data)



Chapter 2: Overview of supervised learning
Motivating example from ISLR: Advertising expenditures and corresponding sales of a specific product
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Clearly increasing spending on advertising will increase sales _
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We want to learn " f " from available data: un—;\g)
N .
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That is, we have n objects (here, markets) and for each object we observe response Y and predictors X1, X2
X3 (TV spend, Radio spend, Newspaper spend)
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A good value is
f(4) = E(Y | X=4)
E(Y|X=4) means the expected value (average) of Y given X=4 Y

This is also defined for vector X, eg f(x) = f(x1,x2,x3) = E(Y|X1=22,X2=x2, X3=x3)

This minimizes mean squared prediction error E[(Y - g(X))"2|X=x] over all functions g at all points X=x.

There's still irreducible error/—_ j
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How to estimate f?

With a sample, there will only be a few points with X=4 exactly (or none).
v @xacH
So an exact estimate of E(Y|X=x) is not possible.  —

Relax the definition and let I‘()&) - Ave (Y ‘ Xe /({()‘))
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Nearest neighbour averaging:

k-nearest neighbours calculates the distance from x (here x=4) to all training points, and chooses the k
nearest ones. The prediction at x=4 is the average of the Y values of these k neighbours.

KNN works well in low dimensions, p=1, 2, 3, 4 and large N. But in high dimensions it suffers the
CURSE OF DIMENSIONALITY.



Curse of dimensionality: for data that is uniform on (-1,1) intervals along axes in p dimensions, what is
the radius needed to contain 10% of the data values?

10% Neighborhood
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Parametric and structured models

This shortcoming of KNN leads us to consider parametric and structured models, which make much
stronger assumptions about the relationship between X and Y.

The linear model is an important case:

Y= B +8X, P X, +.. +?9X£ +5
{(x)

Coefficients estimated with training data (e.g. by least squares, see Ch 3)

Powerful and (sometimes) good approximation to the unknown true f(X).
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Trade-off between simple and complex models:
Many of our models will have an adjustable amount of flexibility.

Adjusting this flexibility will be a key trade-off we must make. It affects:
* Prediction accuracy

* Interpretability of the model

In general, the more flexible a method is, the more accurate and less interpretable it is
- This is true for different families of models (shown below) as well as within a family of models.
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How do we choose how flexible to make our model?
Example (on separate pdf file: "02testexample.pdf"):

* Regression with a single X and a nonlinear function, with 20 "training" observations.
* We use a test set to measure accuracy of various fitted models.

* In this example our model is a polynomial regression with various different maximum powers:

Y=o tBX +BX 4+ B X + £ for p=l2 .10
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Suppose we fit a model f(x) to some training data
Tr = {z;, yt-}"lﬂ"" , and we wish to see how well it performs.
e We could compute the average squared prediction error
over Tr:
MSET, = Aveier[yi — f(:)]”
This may be biased toward more overfit models.
e Instead we should, if possible, compute it using fresh fest
data Te = {Ii,yg}%ﬁrl e new deta , not Same  as {vwm‘g ';e_‘L.
MSEt. = Aveserely; — f(2:)]°

MSE fy
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Ch 3 gives three more train / test examples, with varying
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Fig 2.11:

- - very nonlinear
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- - low noise level
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We can see in the different examples that the the appropriate level of flexibiliy will change for different
problems. kel s
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y.test

test data, degré)
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Linear model has high

difference between linear
prediction and nonlinear
function. It has low
variance because it will
give the same (biased)
answer for different

10th degree polynomial
has low bias, but high
variability ("wiggle").

You can think of

variability as sensitivity

to perturbations in
training data.
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Classification problems
So far, we've only discussed a numeric response ("regression").

Many of the ideas above are similar for classification, in which we want to predict a categorical response.

Examples: Drug discovery - classify compounds as active / inactive.
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We may also want to:
- asssess uncertainty in our classification
- discover the way in which different X's affect C(X).

Example (not in book): Dose-response experiment

X = amount of toxin C. = Z alive (0) N 6\04‘((‘) 3

C(s5)=7 How wovld we esfimate C(s5.5)?
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In the (unrealistic) case where we know P(Y=1 | X=x), the best ("Bayes optimal") classifier is to choose
class 1 ("dead") whenever P(Y=1 | X=x) is > 0.5

More generally, for K classes, let
P ) = Pe(Y=k [X = x) , ke W2y K
C(x) = 3 f FJ'("') = max (p,(z), Pz[’O), ) PK:("))
) Pfcl( fhe class W'A'L )nljl"ésl' P(a‘o- PS(L) !

Instead of MSE, we typically measure performance with the misclassification erorr rate

(ideally on at test set "Te") : - jl 4 TRue
/ 0 otherwise
Errre = Aveictel [yi # C(2;)] obseved g (ie cless) A
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We'll see (in Ch 4) both parametric models (logistic regression) and flexible methods (e.g. k-nearest
neighbours) for clasification.

Here we show an example in two dimensions with a complex decision boundary and noisy data.
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As with regression problems, we see that the flexibility of the estimator can be varied to control the

bias/variance trade-off.

Note the horizontal axis of the above graph. Why is 1/k (k = number of neighbours) plotted instead of

K?



