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[1] Birkhoff, von Neumann, The logic of quantum mechanics (1936).

“a calculus of propositions which is formally indistinguishable from
the calculus of linear subspaces with respect to set products, linear
sums, and orthogonal complements”

Unfortunately and unfairly, it is a subject of strong criticism.

“the tale of quantum logic is not the tale of a promising idea gone
bad, it is rather the tale of the unrelenting pursuit of a bad idea”

“a punishment inflicted on nature”
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[2] Woronowicz, Symétries quantiques (1995).

A compact quantum group is a pair (A,∆), where

1. A is a unital C ∗-algebra,

2. ∆: A → A⊗ A is a unital ∗-homomorphism,

such that

1. (∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

2. ∆[A] · (A⊗ 1) and ∆[A] · (1⊗ A) are dense in A⊗ A.
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One might think

“quantum groups seem contrived, or at least misnamed.”

Another might think

“quantum logic seems contrived, or at least misnamed.”
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[3] Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik (1927).

“canonically conjugated variables can be determined simultane-
ously only with a characteristic uncertainty”

[4] Kennard, Zur Quantenmechanik einfacher Bewegungstypen (1927).

σpσq ≥ ℏ/2
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A1, . . . ,An ⊢ B

When we measure A1, . . . ,An, and B,
if A1, . . . ,An are true, then B is true.

Example. |p| < 1, |q| < 1 ⊢ |q| < 1 is sound.

Example. |q| < 1, |p| < 1 ⊢ |q| < 1 is not sound.

Units of displacement: mm.

Units of momentum: me ·mm/s.
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Some valid structural rules are obvious:

Γ,A ⊢ A

Γ ⊢ A Γ,A ⊢ B

Γ ⊢ B
Γ ⊢ A Γ ⊢ B

Γ,A ⊢ B

Some valid structural rules are less obvious:

Γ,A,B ⊢ A Γ,A,B ⊢ C Γ,B,A ⊢ B

Γ,B,A ⊢ C

It appears that the validity of structural rules is decidable...
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Γ ⊢ A Γ ⊢ B
Γ ⊢ A∧B

Γ ⊢ A∧B
Γ ⊢ A

Γ ⊢ A∧B
Γ ⊢ B

Γ,A ⊢ B Γ,¬A ⊢ B

Γ ⊢ B
Γ ⊢ ¬A
Γ,A ⊢ B

Γ,A ⊢ B

Γ ⊢ A → B
Γ ⊢ A → B
Γ,A ⊢ B

If we add these logical rules, then we must have:

I. A∧B = A ∩ B,

II. ¬A = A⊥,

III. A → B = (A ∩ (A ∩ B)⊥)⊥.
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[5] K, A natural deduction system for orthomodular logic (2023).

Let SOM be the sequent calculus with

1. the four displayed structural rules,

2. the seven displayed logical rules.

Theorem. Let A be a logical formula in connectives ∧ and ¬.
The following are equivalent:

1. ⊢ A is derivable in SOM,

2. A ≈ ⊤ is true in orthomodular lattices.

Question. Which formulas are derivable using all valid structural rules?
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A(x1, . . . , xn) ∈ Sub(H⊗ · · · ⊗ H︸ ︷︷ ︸
n

)

is a Boolean observable on the quantum systems labeled x1, . . . , xn.

[6] Barnum, Caves, Fuchs, Jozsa, Schumacher, Noncommuting Mixed
States Cannot Be Broadcast (1995).

No variable can occur more than once in the same atomic formula.

A new structural rule:
Γ,A,B ⊢ C

Γ,B,A ⊢ C

when A and B have no free variables in common.
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Two new logical rules:

Γ ⊢ A(y , z)

Γ ⊢ (∀x)A(x , z)
Γ ⊢ (∀x)A(x , z)

Γ ⊢ A(t, z)

when y is not free in Γ ⊢ (∀x)P.

[7] Weaver, Mathematical Quantization (2001).

If we add these logical rules, then we must have:

IV. (∀x)A(x , z) = sup{B : H⊗ B ≤ A(x , z)}.

(∃x)A(x , z) :⇔ ¬(∀x)¬A(x , z)

A∨B :⇔ ¬A∧¬B A&B :⇔ ¬(¬B → A)
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[8] Murray, von Neumann, On rings of operators (1936).

Each physical system is modelled by a von Neumann algebra M ⊆ B(H),
or equivalently, a von Neumann ortholattice X ⊆ Sub(H):

X = Fix(S) := {A ∈ Sub(H) : U[A] = A for all U ∈ S}

for some group S ⊆ Aut(H).

Then, X is a complete subortholattice of Sub(H).
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A quantum set is a von Neumann ortholattice X ⊆ Sub(H) such that

every complete Boolean subalgebra is atomic.

Quantum sets model discrete physical systems.

[9] K, Quantum sets (2020).

Theorem. For each ortholattice X , the following are equivalent:

1. X is isomorphic to a quantum set,

2. X is isomorphic to ∏
i∈I

Sub(Cni )

for some indexed family (ni ∈ Z+ : i ∈ I ).
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We identify each set S with the quantum set

X (S) :=
∏
s∈S

Sub(C).

These quantum sets model discrete classical systems.

We identify each finite-dimensional Hilbert space H with the quantum set

X (H) := Sub(H).

These quantum sets model discrete quantum systems.
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Tensor product of quantum sets:

X ⊆ Sub(H) Y ⊆ Sub(K)

X = Fix(S) Y = Fix(T )

X ⊗ Y ⊆ Sub(H⊗K)

X ⊗ Y := Fix{U ⊗ V : U ∈ S, V ∈ T }

[10] K, Discrete quantum structures I: Quantum predicate logic (2024).

Quantum sets provide a semantics for the rules that have been displayed.

A(x1, . . . , xn) ∈ X1 ⊗ · · · ⊗ Xn
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X ⊆ Sub(H) X ⊆ Sub(H)

X = Fix(S) X = Fix(S)

A ∈ X A ∈ X

[11] Weaver, Quantum relations (2012).

A relation R : X → Y is an element R ∈ X ⊗ Y.

Quantum sets and relations form a dagger compact closed category qRel.

All this structure is definable in quantum predicate logic.
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The identity relation IX : X → X is the largest element

IX ∈ X ⊗ X

such that, for all A ∈ X ,

IX ⊥ A⊗ ¬A.

Every unit vector in IX is a Bell state:

When Alice measures A
and Bob measures A,

they get the same result.

x1 = x2 :⇔ IX (x1, x2)
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X Y ZR S

(S ◦ R)(x , z) :⇔ (∃y1)(∃y2)((R(x , y1)∧S(y2, z))& y1 = y2)

Example.

X = Sub(H) Y = Sub(K) Z = Sub(L)

R ∈ Sub(B(H,K)) S ∈ Sub(B(K,L))

R = span(v) S = span(w)

S ◦ R = span(wv)
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X YR R ∈ X ⊗ Y

Y XR†
R† ∈ Y ⊗ X

R†(y , x) :⇔ R(x , y)

Theorem. The category qRel is

1. symmetric monoidal with products X ⊗ Y and unit 1 := Sub(C);
2. monoidal closed with dual objects X ;

3. a dagger category;

4. enriched over complete modular ortholattices.

Furthermore, these structures are all compatible in various ways.
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[12] Freyd, Scedrov, Categories, Allegories (1990).

A relation R : X → Y is a map if

1. R† ◦ R ≥ IX ,

2. R ◦ R† ≤ IY .

Theorem. The following are contravariantly equivalent:

1. the category qSet
- quantum sets,
- maps in qRel,

2. the category HAW∗

- hereditarily atomic von Neumann algebras,
- unital normal ∗-homomorphisms.
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Let !X be the maximum relation X → 1. This is the unique map X → 1.

[13] K, Discrete quantum structures II: Examples (2024).

A group object in qRel is a quantum set X with maps

1. M : X ⊗ X → X ,

2. E : 1 → X ,

such that

1. M ◦ (M ⊗ IX ) = M ◦ (IX ⊗M),

2. M ◦ (E ⊗ IX ) = IX ,

3. M ◦ (IX ⊗ E ) = IX ,

4. E † ◦M ◦ (!†X ⊗ IX ) = !X ,

5. E † ◦M ◦ (IX ⊗ !†X ) = !X .
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Vaes proved the following (published in [12]):

Theorem. There is a canonical one-to-one correspondence between

1. group objects in qRel,

2. discrete quantum groups.

[14] Podleś, Woronowicz, Quantum deformation of Lorentz group (1990).

Theorem. There is a canonical one-to-one correspondence between

1. discrete quantum groups,

2. compact quantum groups.

[15] Pontryagin, The theory of topological commutative groups (1934).
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[16] Abramsky, Coecke, A categorical semantics of quantum protocols
(2004).

The graphical representation of symmetric monoidal structure.
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The graphical representation of dual objects.
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The graphical representation of maximum relations.
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Let 0X be the minimum relation X → X . This is the zero relation on X .

Characterizations of zero objects in qRel:
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A group object in qRel is a triple (X ,M,E ) such that
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