Entropy in multimatrix algebras

Andre Kornell

New Mexico State University

Colloquium Jan 31, 2025

Andre Kornell (NMSU)

Entropy in multimatrix algebras

Colloquium, Spring 2025 1 / 24

Definition. A **density matrix** is a Hermitian matrix $\rho \in M_n(\mathbb{C})$ such that

- 1. each eigenvalue of ρ is nonnegative,
- 2. $tr(\rho) = 1$.

Theorem (K). Let $u_1, \ldots, u_k, v_1, \ldots, v_k \in M_{m \times n}(\mathbb{C})$. These are equivalent: 1. $a \mapsto \sum_i v_i^{\dagger} \cdot a \cdot u_i$ is a unital *-homomorphism $M_m(\mathbb{C}) \to M_n(\mathbb{C})$,

2. for each $d\geq 1$ and each density matrix $ho\in M_{dn}(\mathbb{C})$,

$$\rho' = \sum_{i} (\mathbf{1}_{d} \otimes u_{i}) \cdot \rho \cdot (\mathbf{1}_{d} \otimes v_{i}^{\dagger})$$

is a density matrix $ho'\in M_{dm}(\mathbb{C})$ such that

$$\log n - \operatorname{tr}(\rho \cdot \log \rho) \ge \log m - \operatorname{tr}(\rho' \cdot \log \rho').$$

The setting for this talk consists of four categories:

Our categories are all distributive symmetric monoidal categories:

- 1. monoidal products $X \otimes Y$,
- 2. binary coproducts $X \oplus Y$,
- 3. distributors $X \otimes (Y \oplus Z) \cong (X \otimes Y) \oplus (X \otimes Z)$.

Our **functors** preserve \otimes and \oplus up to isomorphism.

Example. The category **FinSet** of finite sets and maps.

Example. The category **Ab** of Abelian groups and group homomorphisms.

Example. The category **FinQuanStoch** of multimatrix algebras and trace-preserving completely positive maps.

Definition. A **multimatrix algebra** is a finite-dim. complex algebra A with an operation $(-)^* \colon A \to A$ such that

1. $(za)^* = \overline{z}a^*$, 2. $(a+b)^* = a^* + b^*$, 3. $(a \cdot b)^* = b^* \cdot a^*$, 4. $a^{**} = a$, 5. $a^* \cdot a = 0 \implies a = 0$.

(Our algebras are associative and unital but not necessarily commutative.)

Example. $A = M_n(\mathbb{C})$, with a^* being the conjugate transpose of a.

Proposition. If A is a multimatrix algebra, then

$$A\cong M_{n_1}(\mathbb{C})\oplus\cdots\oplus M_{n_\ell}(\mathbb{C}).$$

Definition. Let A and B be multimatrix algebras.

- 1. An element $a \in A$ is **positive** if $a = r^2$ for some $r \in A$ with $r^* = r$.
- 2. A map $\varphi \colon A \to B$ is **positive** if φ is linear and

a is positive $\implies \varphi(a)$ is positive.

3. A map $\varphi \colon A \to B$ is completely positive if

$$\mathrm{id}\otimes \varphi\colon M_d(A)\to M_d(B)$$

is positive for all $d \ge 1$. (Recall that $M_d(A) = M_d(\mathbb{C}) \otimes A$).

Example. On $M_2(\mathbb{C})$, $a \mapsto a^T$ is positive but not completely positive.

Example. On $M_2(\mathbb{C})$, $a \mapsto vav^*$ is completely positive for each $v \in M_2(\mathbb{C})$.

Definition. For each multimatrix algebra A, let

$$\operatorname{tr}\colon A\to\mathbb{C}$$

be the unique linear map such that

1.
$$\operatorname{tr}(a \cdot b) = \operatorname{tr}(b \cdot a)$$
,
2. $\operatorname{tr}(b) = 1$ whenever $b^2 = b = b^*$ and $b \cdot A \cdot b = \mathbb{C}b$.

Example. If
$$A=M_{n_1}(\mathbb{C})\oplus\cdots\oplus M_{n_\ell}(\mathbb{C})$$
, then

$$\operatorname{tr}: (a_1, \ldots, a_\ell) \mapsto \operatorname{tr}(a_1) + \cdots + \operatorname{tr}(a_\ell).$$

Definition. The category FinQuanStoch:

- 1. an object A is a multimatrix algebra,
- 2. a morphism $\varphi \colon A \to B$ is a completely positive map such that

 $\operatorname{tr}(\varphi(a)) = \operatorname{tr}(a).$

From the perspective of quantum information theory,

- 1. an object of FinQuanStoch is a finite data type,
- 2. a morphism of FinQuanStoch is a data channel.

Example. The measurement of a qubit is a morphism $M_2(\mathbb{C}) \to \mathbb{C}^2$.

Example. The initialization of two qubits and three bits is a morphism

$$\mathbb{C} \to M_2(\mathbb{C}) \otimes M_2(\mathbb{C}) \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2.$$

$\textbf{FinStoch} \xrightarrow[full]{} \textbf{FinQuanStoch}$

Definition. The category FinStoch:

- 1. an object X is a finite set,
- 2. a morphism $p: X \to Y$ is a stochastic map,

$$p(y|x) \in [0,1],$$
 $\sum_{y \in Y} p(y|x) = 1.$

Definition. The inclusion functor:

$$p: X \to Y \qquad \varphi_p: \mathbb{C}^X \to \mathbb{C}^Y$$
$$\varphi_p(a)(y) = \sum_{x \in X} p(y|x)a(x)$$

Let μ , φ , and ψ be trace-preserving completely positive maps

$$\mu \colon \mathbb{C} \to A \otimes B \qquad \varphi \colon \mathbb{C}^2 \otimes A \to \mathbb{C}^2 \qquad \psi \colon B \otimes \mathbb{C}^2 \to \mathbb{C}^2.$$

The composition

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \xrightarrow{\mathrm{id} \otimes \mu \otimes \mathrm{id}} \mathbb{C}^2 \otimes A \otimes B \otimes \mathbb{C}^2 \xrightarrow{\varphi \otimes \psi} \mathbb{C}^2 \otimes \mathbb{C}^2$$

is essentially a stochastic map $\{0,1\}\times\{0,1\}\to\{0,1\}\times\{0,1\}.$

Definition.

- 1. If A and B are commutative, this is a classical correlation.
- 2. If A and B are arbitrary, this is a quantum correlation.

Theorem (Bell, 1964).

There are quantum correlations that are not classical correlations.

Andre Kornell (NMSU)

$\textbf{FinSet} \xrightarrow[same obj.]{} \textbf{FinStoch}$

Definition. The inclusion functor:

$$f: X \to Y$$
 $p_f: X \to Y$ $p_f(y|x) = \begin{cases} 1 & y = f(x) \\ 0 & \text{otherwise} \end{cases}$

Theorem. Let $p: X \to Y$ be a stochastic map.

$$p = p_f$$
 for some $f \iff S(m) \ge S(p \circ m)$ for all $m \colon \{\star\} \to X$

Definition. The **entropy** of *m* is $S(m) = -\sum_{x \in X} m(x|\star) \log m(x|\star)$.

Can this theorem be generalized from FinStoch to FinQuanStoch?

Andre Kornell (NMSU)

What is FinQuanSet? The answer depends on perspective.

$$\mathbb{C} \xrightarrow{\text{prepare superposition}} M_2(\mathbb{C}) \xrightarrow{\text{measure}} \mathbb{C}^2$$

This $p: \mathbb{C} \to \mathbb{C}^2$ is not **deterministic**, i.e., not of the form $p = p_f$.

Which step introduces randomness?

Andre Kornell (NMSU)

Entropy in multimatrix algebras

Definition. The category MulMat:

- 1. an object A is a multimatrix algebra,
- 2. a morphism $\pi: A \rightarrow B$ is a unital *-homomorphism.

Definition.

$\textbf{FinQuanSet} \simeq \textbf{MulMat}^{op}$

This definition is the core of noncommutative geometry.

This definition is comparable to the proposition that

 $\label{eq:AffSch} \textbf{AffSch} \simeq \textbf{CommRing}^{op}.$

$$\mathsf{FinSet} \xrightarrow[full]{full} \mathsf{FinQuanSet}$$

Definition. The inclusion functor:

$$f: X \to Y$$
 $\pi_f: \mathbb{C}^Y \to \mathbb{C}^X$ $\pi_f(b) = b \circ f$

$\textbf{FinQuan} \xrightarrow[full]{} \textbf{FinQuanStoch}$

Definition. The inclusion functor:

 $\pi \colon B \to A \qquad \varphi_{\pi} \colon A \to B \qquad \operatorname{tr}(\varphi_{\pi}(a) \cdot b) = \operatorname{tr}(a \cdot \pi(b))$

Theorem. Let $p: X \to Y$ be a stochastic map.

$$p = p_f$$
 for some $f \iff S(m) \ge S(p \circ m)$ for all $m \colon \{\star\} \to X$

Question. Let $\varphi \colon A \to B$ be a trace-preserving completely positive map.

$$\varphi = \varphi_{\pi} \text{ for some } \pi \quad \stackrel{?}{\Longleftrightarrow} \quad S_{\nu N}(\mu) \geq S_{\nu N}(\varphi \circ \mu) \text{ for all } \mu \colon \mathbb{C} \to A$$

Definition. The **von Neumann entropy** of μ is

$$S_{\mathsf{vN}}(\mu) = -\mathrm{tr}(\mu(1) \cdot \log \mu(1)).$$

Answer. No. Measurement $\varphi \colon M_2(\mathbb{C}) \to \mathbb{C}^2$ is of the form $\varphi = \varphi_{\pi}$, but measurement increases von Neumann entropy.

The top equivalence is $X \mapsto \mathbb{C}^X$. Intuitively, so is the bottom equivalence.

No explicit construction of FinQuanSet fully captures this intuition.

Example. There is a finite quantum set Q such that $\mathbb{C}^Q \cong M_2(\mathbb{C})$.

For each finite set X, we can prove that dim $\mathbb{C}^X = \operatorname{card} X$.

For each finite **quantum** set *X*, we **define** that $\operatorname{card} X = \dim \mathbb{C}^X$.

Example. We have that card $Q = \dim \mathbb{C}^Q = \dim M_2(\mathbb{C}) = 4$.

For each finite set X and each Hermitian $a \in \mathbb{C}^X$, we can prove that

$$a: X \to \mathbb{R},$$
 $\operatorname{Ran}(a) = \operatorname{Sp}(a).$

For each finite **quantum** set X and each Hermitian $a \in \mathbb{C}^X$, we **imagine** that a is a real-valued function on X that has range Sp(a).

Example. We imagine that $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in M_2(\mathbb{C}) \cong \mathbb{C}^Q$ is a real-valued function on Q that has range $\{0, 2\}$.

We view each Hermitian $a \in \mathbb{C}^Q \cong M_2(\mathbb{C})$ as a real-valued function on Q.

Question. How do we sum its values with multiplicity?

Bad answer. The sum is tr(a).

Example. We imagine $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ to be a real-valued function with range $\{1\}$. This is the constant function 1 on Q. The sum of its values is card Q = 4.

Good answer. The sum is 2tr(a). The map

$$\sigma \colon \mathbb{C}^Q \to \mathbb{C}, \qquad \qquad \sigma(a) = 2\mathrm{tr}(a),$$

is the unique linear map such that

Let X be a finite quantum set. An element $a \in \mathbb{C}^X$ is a **projection** if $a^2 = a = a^*$ or equivalently if a is Hermitian and $\text{Sp}(a) \subseteq \{0, 1\}$.

Definition. We define the linear map $\sigma \colon \mathbb{C}^X \to \mathbb{C}$ by

In summary, we imagine the following:

The Hermitian elements of \mathbb{C}^X are real-valued functions on X.

The projections in \mathbb{C}^X are $\{0,1\}$ -valued functions on X.

The projections in \mathbb{C}^X correspond to the subsets of *X*.

The linear map $\sigma \colon \mathbb{C}^X \to \mathbb{C}$ sums values with multiplicity.

Let X be a finite set, and let $m: \{\star\} \to X$ be a stochastic map.

$$\begin{split} \mathcal{S}(m) &= -\sum_{x \in X} m(x|\star) \log m(x|\star) \\ &= -\sum_{x \in X} \varphi_m(1)(x) \log \varphi_m(1)(x) \\ &= -\sum_{x \in X} (\varphi_m(1) \cdot \log \varphi_m(1))(x) \\ &= -\sigma(\varphi_m(1) \cdot \log \varphi_m(1)) \end{split}$$

Definition. Let $\mu \colon \mathbb{C} \to A$ be a trace-preserving completely positive map. The **noncommutative entropy** of μ is

$$S_{NCG}(\mu) = -\sigma(\mu(1) \cdot \log \mu(1)).$$

Question. Let $\varphi \colon A \to B$ be a trace-preserving completely positive map.

$$\varphi = \varphi_{\pi} \text{ for some } \pi \quad \stackrel{?}{\iff} \quad S_{NCG}(\mu) \geq S_{NCG}(\varphi \circ \mu) \text{ for all } \mu \colon \mathbb{C} \to A$$

Answer. No. Reset $\varphi \colon M_2(\mathbb{C}) \to M_2(\mathbb{C})$ is not of the form $\varphi = \varphi_{\pi}$, but reset never increases noncommutative entropy.

Question. What do we do now?

Answer. We follow the slogan

"Everything that must happen must happen completely."

Let A and B be multimatrix algebras, and let

$$\varphi \colon A \to B$$

be a trace-preserving completely positive map.

Definition. The map φ is **entropy-nonincreasing** if

$$S_{NCG}(\mu) \geq S_{NCG}(\varphi \circ \mu)$$

for all trace-preserving completely positive maps $\mu \colon \mathbb{C} \to A$.

Theorem (K). The following are equivalent:

1. $\varphi^* \colon B \to A$ is a unital *-homomorphism,

2. id $\otimes \varphi \colon M_d(A) \to M_d(B)$ is entropy-nonincreasing for all $d \ge 1$.

Proposition. For each morphism $\mu \colon \mathbb{C} \to A$,

$$S_{NCG}(\mu) = S_{\nu N}(\mu) + E_{\mu}(\log \zeta_A),$$

where $\zeta_A \in A$ is defined by $\sigma(a) = tr(a\zeta_A)$ for all $a \in A$.

Proposition. For each morphism $\mu \colon \mathbb{C} \to A$,

$$S_{NCG}(\mu) = -S_{\nu N}(\mu || \sigma^*) + \log \dim A,$$

where $\sigma^* \colon \mathbb{C} \to A$ is the adjoint of $\sigma \colon A \to \mathbb{C}$.

The morphism σ^* plays the role of the uniform probability distribution.

The noncommutative entropy $S_{NCG}(\mu)$ is maximized when $\mu = \sigma^*$.

$$S_{NCG}(\sigma^*) = \log \dim A$$