On the category of quantum graphs

Andre Kornell

New Mexico State University

Quantum Graphs Workshop February 17, 2025 Definition. A graph is a pair $G = (V_G, e_G)$ such that

- 1. V_G is a set,
- 2. e_G is a symmetric relation on V_G .

Definition. A **quantum graph** is a pair $G = (\mathcal{M}_G, \mathcal{R}_G)$ such that 1. $\mathcal{M}_G \subseteq \mathcal{B}(\mathcal{H}_G)$ is a hereditarily atomic von Neumann algebra, 2. $\mathcal{R}_G \subseteq \mathcal{B}(\mathcal{H}_G)$ is an ultraweakly closed subspace such that

$$\mathcal{M}'_{\mathcal{G}} \cdot \mathcal{R}_{\mathcal{G}} \cdot \mathcal{M}'_{\mathcal{G}} \subseteq \mathcal{R}_{\mathcal{G}}, \qquad \qquad \mathcal{R}^*_{\mathcal{G}} = \mathcal{R}_{\mathcal{G}}.$$

Definition. A von Neumann algebra ${\mathcal M}$ is hereditarily atomic if

$$\mathcal{M}\cong \bigoplus_{\alpha\in I} M_{n_{\alpha}}(\mathbb{C}).$$

Such von Neumann algebras are the quantum generalization sets in NCG.

Let G and H be quantum graphs.

Definition. A homomorphism $G \rightarrow H$ is a unital normal *-homomorphism

$$\pi: \mathcal{M}_H \to \mathcal{M}_G$$

such that

$$k_1 \cdot \mathcal{R}_{G} \cdot k_2^{\dagger} \subseteq \mathcal{R}_{H}$$

for all $k_1, k_2 \in \mathcal{B}(\mathcal{H}_G, \mathcal{H}_H)$ such that $ak_i = k_i \pi(a)$ for all $a \in \mathcal{M}_G$.

This definition generalizes the classical definition when $\mathcal{M} \cong \ell^{\infty}(X)$. It "generalizes" the definition of Stahlke when $\mathcal{M} \cong M_n(\mathbb{C})$. It is probably "equivalent" to the definition of Weaver for arbitrary \mathcal{M} . (Stahlke and Weaver worked with completely positive maps.) Definition. The symmetric monoidal category **qGph**:

1. an object is a quantum graph $G = (\mathcal{M}_G, \mathcal{R}_G)$,

- 2. a morphism $G \rightarrow H$ is a homomorphism,
- 3. the monoidal unit is the quantum graph $(\mathbb{C}, 0)$,
- 4. the monoidal product $G \square H$ is defined by $\mathcal{M}_{G \square H} = \mathcal{M}_G \overline{\otimes} \mathcal{M}_H$ and

$$\mathcal{R}_{G\square H} = \overline{\mathcal{R}_G \otimes \mathbb{C} + \mathbb{C} \otimes \mathcal{R}_H}.$$

The monoidal product $G \boxtimes H$ with $\mathcal{R}_{G \boxtimes H} = \mathcal{R}_G \overline{\otimes} \mathcal{R}_H$ is less well behaved.

We can construct **qGph** from **qRel**.

Definition. The dagger symmetric monoidal category **qRel**:

- 1. an object ${\mathcal M}$ of qRel is a hereditarily atomic von Neumann algebra,
- 2. a morphism from $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ to $\mathcal{N} \subseteq \mathcal{B}(\mathcal{K})$ is an ultraweakly closed subspace $\mathcal{R} \subseteq \mathcal{B}(\mathcal{H}, \mathcal{K})$ such that $\mathcal{N}' \cdot \mathcal{R} \cdot \mathcal{M}' \subseteq \mathcal{R}$,
- 3. the monoidal unit is $\mathbb{C},$
- 4. the monoidal product is $\mathcal{M}\,\overline{\otimes}\,\mathcal{N}$,
- 5. the monoidal product on morphisms is $\mathcal{V} \overline{\otimes} \mathcal{W}$,
- 6. the dagger of a morphism \mathcal{V} is \mathcal{V}^* .

The category **qRel** has a more explicit equivalent definition.

Definition. A quantum set is a family of nonzero fin.-dim. Hilbert spaces,

$$\mathbb{X} = (X_{\alpha} \mid \alpha \in A).$$

Definition. A binary relation $\mathbb{X} \to \mathbb{Y}$ is a family of operator spaces,

$$R = (R_{\alpha\beta} \subseteq \mathcal{B}(X_{\alpha}, Y_{\beta}) \mid \alpha \in A, \beta \in B).$$

Definition. If $R \colon \mathbb{X} \to \mathbb{Y}$ and $S \colon \mathbb{Y} \to \mathbb{Z}$, then

$$(S \circ R)_{lphaeta} = \sum_{eta \in B} S_{eta\gamma} \cdot R_{lphaeta}.$$

Definition. The dagger symmetric monoidal category **qRel**:

- 1. an object $\mathbb X$ is a quantum set,
- 2. a morphism $\mathbb{X} \to \mathbb{Y}$ is a binary relation,
- 3. the monoidal unit is $\mathbb{1} = (\mathbb{C})$,
- 4. the monoidal product is $\mathbb{X} \times \mathbb{Y} = (X_{\alpha} \otimes Y_{\beta} \mid (\alpha, \beta) \in A \times B)$,
- 5. the monoidal product on morphisms is

$$\mathsf{R} imes \mathsf{S} = (\mathsf{R}_{lphaeta} \otimes \mathsf{S}_{\gamma\delta} \mid (lpha, \gamma) \in \mathsf{A} imes \mathsf{C}, (eta, \delta) \in \mathsf{B} imes \mathsf{D})$$

6. the dagger of a morphism $R: \mathbb{X} \to \mathbb{Y}$ is $R^{\dagger}: \mathbb{Y} \to \mathbb{X}$, where

$$R^{\dagger} = (R^*_{\alpha\beta} \mid \beta \in B, \alpha \in A).$$

That $(qRel, \times, 1, \dagger)$ is a dagger symmetric monoidal category means that

- 1. (qRel, \times , \dagger) is a symmetric monoidal category
- 2. \dagger is a contravariant functor on **qRel** with $(R \times S)^{\dagger} = R^{\dagger} \times S^{\dagger}$,
- 3. the associators, braidings, and unitors all satisfy $R^{-1} = R^{\dagger}$.

$$\textbf{Rel} \xleftarrow{\text{full dagger symmetric monoidal functor}} \textbf{qRel}$$

$$\mathsf{A} \mapsto \mathbb{A} = (\mathbb{C} \mid \alpha \in \mathsf{A})$$

Definition. The dagger symmetric monoidal category (**Rel**, \times , {*}, †):

- 1. Rel is the category of sets and binary relations,
- 2. $A \times B$ is the Cartesian product of A and B,
- 3. r^{\dagger} is the converse of r.

The graphical representation of symmetric monoidal structure:

Proposition. Furthermore, **qRel** is a **dagger compact closed category**: For every object X, there is a "dual" object \overline{X} , and morphisms

$$\eta_{\mathbb{X}} \colon \mathbb{1} \to \overline{\mathbb{X}} \times \mathbb{X} \qquad \qquad \eta_{\overline{\mathbb{X}}} \colon \mathbb{1} \to \mathbb{X} \times \overline{\mathbb{X}}$$

such that

1.
$$(\mathrm{id}_{\mathbb{X}} \times \eta_{\mathbb{X}}^{\dagger}) \circ (\eta_{\overline{\mathbb{X}}} \times \mathrm{id}_{\mathbb{X}}) = \mathrm{id}_{\mathbb{X}},$$

2. $(\mathrm{id}_{\overline{\mathbb{X}}} \times \eta_{\overline{\mathbb{X}}}^{\dagger}) \circ (\eta_{\mathbb{X}} \times \mathrm{id}_{\overline{\mathbb{X}}}) = \mathrm{id}_{\overline{\mathbb{X}}},$
3. $\eta_{\mathbb{X}} = \beta_{\mathbb{X},\overline{\mathbb{X}}} \circ \eta_{\overline{\mathbb{X}}}.$

$$\mathbb{X} = (X_{\alpha} \mid \alpha \in A) \qquad \Longrightarrow \qquad \overline{\mathbb{X}} = (\overline{X}_{\alpha} \mid \alpha \in A)$$

The graphical representation of dual objects:

In effect, the domain and codomain of a morphism are subjective.

Proposition. (qRel, \times , 1, †) is enriched over complete semilattices.

$$R \circ \left(\bigvee_{i \in I} S_i\right) = \bigvee_{i \in I} (R \circ S_i)$$
$$R \times \left(\bigvee_{i \in I} S_i\right) = \bigvee_{i \in I} (R \times S_i) \qquad \left(\bigvee_{i \in I} R_i\right)^{\dagger} = \bigvee_{i \in I} R_i^{\dagger}$$

Definition. We define $\top_{\mathbb{X}}^{\mathbb{Y}}$ to be the maximum binary relation $\mathbb{X} \to \mathbb{Y}$.

Proposition. Writing $\top_{\mathbb{X}} = \top_{\mathbb{X}}^{\mathbb{I}}$ and $\top^{\mathbb{Y}} = \top_{\mathbb{I}}^{\mathbb{Y}}$, we have the following:

$$\begin{array}{ccc} (\top_{\mathbb{X}}^{\mathbb{Y}})^{\dagger} = \top_{\mathbb{Y}}^{\mathbb{X}} & (\top_{\mathbb{X}})^{\dagger} = \top^{\mathbb{X}} & \top_{\mathbb{X}}^{\mathbb{Y}} = \top^{\mathbb{Y}} \circ \mathbb{T}_{\mathbb{X}} \\ \\ \top_{\mathbb{X}} \circ \top^{\mathbb{X}} = \mathbf{0} & \Longleftrightarrow & \mathbb{X} = \varnothing \end{array}$$

The graphical representation of maximum morphisms as loose ends:

Definition. A map in **qRel** is a morphism $F: X \to Y$ such that

Theorem (K). The subcategory \mathbf{qSet} of quantum sets and maps is dual to the following symmetric monoidal category:

- 1. an object is hereditarily atomic von Neumann algebra,
- 2. a morphism unital normal *-homorphism,
- 3. the monoidal product is the spatial tensor product.

Theorem (Vaes). Up to iso., there is a one-to-one correspondence between

- 1. discrete quantum groups,
- 2. quantum sets X with maps $M \colon X \times X \to X$ and $E \colon 1 \to X$ such that

Conjecture. Up to iso., there is a one-to-one correspondence between

- 1. discrete quantum groups of Kac type,
- 2. quantum sets X with maps $M: X \times X \to X$ and $E: 1 \to X$ and $S: \overline{X} \to X$ such that

Definition. A quantum graph is a pair $G = (\mathbb{V}_G, E_G)$ such that

1. \mathbb{V}_G is a quantum set,

2. $E_G : \mathbb{V}_G \to \mathbb{V}_G$ is a binary relation satisfying

It is simple if

Definition. A homomorphism $G \to H$ is a map $F \colon \mathbb{V}_G \to \mathbb{V}_H$ such that

Definition. The **box product** $G \square H$ is defined to be $\mathbb{V}_G \times \mathbb{V}_H$ such that

Definition. The symmetric monoidal category **qGph**:

- 1. an object is a quantum graph $G = (\mathbb{V}_G, E_G)$,
- 2. a morphism is a homomorphism $G \rightarrow H$,
- 3. the monoidal unit is the quantum graph $1 = (1, 0_1)$,
- 4. the monoidal product is the box product $G \square H$.

Proposition. Moreover, **qGph** is enriched over **Gph**, where

Theorem (K, Lindenhovius). Moreover, **qGph** is closed: there exists

[-,-]: qGph^{op} × qGph \rightarrow qGph

such that, equivalently,

1. there is a natural isomorphism

 $\operatorname{Hom}(G_1 \Box G_2, H) \cong \operatorname{Hom}(G_1, [G_2, H]),$

2. for all $F: G_1 \square G_2 \to H$, there exists a unique $\hat{F}: G_1 \to [G_2, H]$ with

Of course, **qGph** is a quantum generalization of **Gph**.

Definition. The closed symmetric monoidal category **Gph**:

- 1. an object is a graph (with loops allowed but not muliple edges),
- 2. a morphism is a homomorphism,
- 3. the monoidal unit has one vertex and no edges,
- 4. the monoidal product is the box product, where $(x_1, y_1) \sim (x_2, y_2)$ if

$$(x_1 \sim x_2 \text{ and } y_1 = y_2) \text{ or } (x_1 = x_2 \text{ and } y_1 \sim y_2),$$

5. the internal hom from G to H is Hom(G, H) with

$$f_1 \sim f_2 \quad \Longleftrightarrow \quad f_1(x) \sim f_2(x) \text{ for all vertices } x \text{ of } G.$$

$\mathsf{Gph} \longrightarrow \mathsf{qGph}$

This "inclusion" is a symmetric monoidal functor.

It comes from the dagger symmetric monoidal "inclusion" functor

$$\mathsf{Rel} \longrightarrow \mathsf{qRel}$$

We have an adjunction

$$\mathsf{Gph} \xleftarrow[]{\mathbb{L}}{\mathbb{Cls}} \mathsf{qGph}$$

$$\operatorname{Cls}(G) = \operatorname{Hom}(\mathbb{1}, G)$$

Furthermore, $Cls[G, H] \cong Hom(G, H)$.

Definition. A **coloring** of a finite graph G by n colors is a homomorphism

$$G \rightarrow K_n$$
.

Let $S \subseteq M_d(\mathbb{C})$ be an operator system. Let $S_0 = \{a \in V \mid \operatorname{tr}(a) = 0\}$.

Definition (Paulsen?). A coloring of S by n colors is a decomposition

$$\mathbb{C}^d = A_1 \oplus \cdots \oplus A_n$$

such that the compression of S to each subspace A_i consists of the scalars.

Proposition. The colorings of S are in bijection with homomorphisms

$$(\mathbb{C}^d, S_0) \to K_n.$$

Let G be a finite graph, and let K_n be a complete graph of "colors."

Definition. The (G, K_n) -graph-coloring game is played by two players

"Alice" and "Bob"

who cooperate using a strategy but cannot communicate with each other.

- 1. The players are asked about randomly selected vertices x and y of G.
- 2. The players respond with colors a and b in K_n .
- 3. Alice sees only x and a, and Bob sees only y and b.
- 4. The players win if the following conditions both hold:

$$\begin{cases} x = y \quad \Longrightarrow \quad a = b, \\ x \sim y \quad \Longrightarrow \quad a \neq b. \end{cases}$$

The players have a winning strategy iff there is a homomorphism $G \to K_n$.

Proposition. The chromatic number $\chi(G)$ is the least integer *n* such that there exists a winning strategy for the (G, K_n) -graph-coloring game.

Definition (Avis, Hasegawa, Kikuchi, Sasaki). The **quantum chromatic number** $\chi_q(G)$ is the least integer *n* such that there exists a winning strategy for the (G, K_n) -coloring-game using entangled quantum systems.

Theorem (Galliard, Wolf). There is a graph G such that $\chi_q(G) < \chi(G)$.

Proposition.

$$\chi(G) \leq n \quad \iff \quad \operatorname{Hom}(G, K_n) \neq \emptyset.$$

Theorem (K, Lindenhovius).

$$\chi_q(G) \leq n \quad \iff \quad [G, K_n] \neq \emptyset.$$

Proof. For all $d \in \mathbb{N}$, write $\mathbb{C}^d = (\mathbb{C}^d, 0_{\mathbb{C}^d})$ and compute that $\operatorname{Hom}(\mathbb{C}^d, [G, K_n]) \cong \operatorname{Hom}(\mathbb{C}^d \Box G, K_n)$ $\cong \operatorname{Hom}(G \Box \mathbb{C}^d, K_n)$ $\cong \operatorname{Hom}(G, [\mathbb{C}^d, K_n])$ $\cong \operatorname{Hom}(G, \operatorname{Hom}(\mathbb{1}, [\mathbb{C}^d, K_n]))$ $\cong \operatorname{Hom}(G, \operatorname{Hom}(\mathbb{1} \Box \mathbb{C}^d, K_n))$ $\cong \operatorname{Hom}(G, \operatorname{Hom}(\mathbb{C}^d, K_n))$

Thus, $[G, K_n] \neq \emptyset$ iff there exists a hom. $G \to \operatorname{Hom}(\mathbb{C}^d, K_n)$ for some d.

By a theorem of Mančinska and Roberson, this is equivalent to the existence of a winning strategy that uses entangled quantum systems.

We can explicitly compute $\operatorname{Hom}(\mathbb{C}^d, K_n)$. Let $V_{K_n} = \{1, \ldots, n\}$.

Homomorphisms $\mathbb{C}^d \to K_n$ are decompositions $\mathbb{C}^d = A_1 \oplus \cdots \oplus A_n$.

Decompositions $\mathbb{C}^d = A_1 \oplus \cdots \oplus A_n$ and $\mathbb{C}^d = B_1 \oplus \cdots \oplus B_n$ are

adjacent
$$\iff A_i \perp B_i$$
 for all *i*.

Theorem (Mančinska, Roberson). Let $n \in \mathbb{N}$. The following are equivalent:

- 1. there exists a quantum winning strategy for the (G, K_n) -g.-c. game,
- 2. there exists a homomorphism $G \to \operatorname{Hom}(\mathbb{C}^d, K_n)$ for some $d \in \mathbb{N}$.

They proved this theorem for graph-homomorphism games, where K_n is replaced by an arbitrary finite graph H. Everything works the same way!