A note about power series asymptotics

Antonio R. Vargas

August 22, 2018

Suppose we have a power series

\[f(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} L(k), \]

where \(L \) is a function satisfying

\[\lim_{x \to \infty} \frac{L(x)}{L(x + 1)} = 1. \]

If we want to determine the behavior of \(f(x) \) as \(x \to \infty \), one way to proceed would be to determine which terms of the series contribute most to its size. If there is a peak term, it would occur approximately when

\[\frac{x^k}{k!} L(k) \approx \frac{x^{k+1}}{(k+1)!} L(k+1), \]

which is the same as

\[\frac{L(k)}{L(k+1)} \approx \frac{x}{k+1}. \]

But if \(k \) is large (this will be true for large \(x \)), then \(L(k)/L(k+1) \approx 1 \), so we have

\[k \approx x - 1 \approx x. \]

We thus expect that we can approximate the sum by approximating the slowly-varying factors of the summand near this peak at \(k \approx x \):

\[f(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} L(k) \approx \sum_{k=0}^{\infty} \frac{x^k}{k!} L(x) = L(x)e^x. \]

In particular, this heuristic holds when \(L(x) = \log x \) and \(L(x) = 1/\sqrt{x} \), as in these two questions:

https://math.stackexchange.com/q/2560334/5531
https://math.stackexchange.com/q/2117742/5531