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• This is a gentle introduction to 
delta-matroids via graph theory and 
topological graph theory


• Loosely based on the expository 
article: I. Moffatt, From matrix 
pivots to graphs in surfaces: touring 
combinatorics guided by partial 
duals, in European Congress of 
Mathematics Portorož, 20–26 June, 
2021



1. Graphs and their spanning trees



• Graph = connected multigraph


• tree = connected and no cycles  

• spanning tree of G = subgraph + tree + all vertices of G 
 
 
 

• Question: 
If you know all of the spanning trees in a graph, then do you know the graph itself? 

• What do you mean by “know”? 

• For a connected graph, If you know: 
        - the edge set of each spanning tree,  
        - and any loops in the graph,  
do you know the graph?  

A classical question about trees 



• If you know: 
       - the edge set of each spanning tree, & any loops in the graph,  
do you know the graph?  
 
e.g. {a,b}, {b,c}, {a,c}   

• Answer: Clearly a no 
 
e.g. {a,b,c}  

• But this “no” is really a “yes”… 
 
 

⇝

⇝

An unsatisfactory answer 



Whitney’s 2-Isomorphism Theorem  
• Two moves: 
 
 

• 2-isomorphism = isomorphism + vertex identification / cleaving + Whitney 
twisting  
 

• Whitney’s 2-Isomorphism Theorem:  
edge set of spanning trees & any loops = graph up to 2-isomorphism 
 
                    {a,b,c}


• Corollary: 
3-connected graph = edge set of its spanning trees



2. The structure of the set of 
spanning trees



Exchange property of spanning trees

• if 𝑇 and 𝑇′ are spanning trees and 𝑒 is an edge in 𝑇 but not 𝑇′, then there 
is always some edge 𝑓 in 𝑇 ′ but not 𝑇 such that removing 𝑒 from 𝑇 then 
adding 𝑓 results in another spanning tree 


• But we’re not interested in the trees, but the collection of edge sets they 
give. 
 

• a collection  of subsets s.t. 
( 𝐴,𝐵 ∈ )  (  𝑎 ∈ 𝐴 \ 𝐵) (  𝑏 ∈ 𝐵 \ 𝐴)  s.t  (𝐴 \ 𝑎) ∪ 𝑏 ∈ .

ℬ
∀ ℬ ∀ ∃ ℬ



Cycle matroids
• 𝐸 be a finite set,  be a non-empty collection of its subsets  

( 𝐴,𝐵 ∈ )  (  𝑎 ∈ 𝐴 \ 𝐵) (  𝑏 ∈ 𝐵 \ 𝐴)  s.t  (𝐴 \ 𝑎) ∪ 𝑏 ∈ . 


• The pair 𝑀 := (𝐸, ) is called a matroid


• Cycle matroid 𝐶(𝐺) := (𝐸, )  
       E=edge set,       = { spanning trees } 
 
 

• Whitney’s 2-Isomorphism Theorem:  
     𝐺 and 𝐻  connected graphs. Then 
     𝐶(𝐺)  𝐶(𝐻)  𝐺 and 𝐻 are 2-isomorphic. 


• You can more-or-less work with matroids in place of graphs.

ℬ
∀ ℬ ∀ ∃ ℬ

ℬ

ℬ
ℬ

≅ ⟺



3. The appearance of topology



Algebraic duals
• 𝑀 = (𝐸, ) a matroid. Its dual is 𝑀* := (𝐸, { 𝐸 \ 𝐵 : 𝐵 ∈ }) 

    
 M= ( {abcde} ,  {   {ab},  {ac}, {ad},  {bc},  {bd} } ) 
 M*= ( {abcde} , { {cde},{bde},{bce},{ade},{ace} } )


• If 𝐺 is a graph and 𝐶(𝐺) its cycle matroid, then the dual matroid 𝐶(𝐺)* is always a matroid.  
However, it is not always the cycle matroid of a graph. (E.g. C(K_5) does not come from a graph.)


• When does 𝐶(𝐺)* come from a graph?


• Graphs 𝐺 and 𝐻 are algebraic duals if 𝑇  a spanning tree of 𝐺    𝐸 \ 𝑇  a spanning tree of 𝐻  
 

•  𝐶(𝐺)* comes from a graph  𝐺 has an algebraic dual


• May or may not exist. May or may not be unique.

ℬ ℬ

⟺

⟺



Geometric duals
• The existence of algebraic duals is tied to the topological properties of a graph. 


• plane graph = a connected graph drawn plane / sphere


• planar = can be drawn in the plane / sphere


• Geometric dual * of plane graph  
  vertices of * = faces of ,         edge of * when faces of  adjacent 
 
 
 

• Geometric duals are always algebraic duals


• Algebraic duals are always geometric duals


• Collecting this together….

𝔾 𝔾
𝔾 𝔾 𝔾 𝔾



Whitney’s Theorems in terms of matroids:

• G connected 
Cycle matroid: C(G) = (E, {spanning trees})


• Then the dual matroid 𝐶(𝐺)* is the cycle matroid of a graph  if 𝐺 is planar 


• if 𝐺 is planar then  
       𝐶(G)* = 𝐶(G*), 
where 𝐺* is the geometric dual of any plane embedding of G. 


• 𝐶(𝐺) and algebraic duals unique up to 2-isomorphism.

⟺



It’s all about the plane

• We have seen:


• Spanning tree structure  topological structure


• But tied to planarity


• What if you do not want to restrict yourself to plane or planar graphs? 

↔



4. Moving away from the plane



Surfaces and embedded graphs
• Orientable surfaces (for simplicity) 

 

• Embedded graph = drawn on surface + edges don’t cross + faces are discs


• Geometric dual * of : as before 
  vertices of * = faces of   &  edge of * when faces of  adjacent 
 
 
 

• But trees are pretty useless here!

𝔾 𝔾
𝔾 𝔾 𝔾 𝔾



What is a “tree” for an embedded graph?
• Plane graphs: (geometric = algebraic = matroid)


•  T a tree in   E \ T a tree in  * 
 
 
 

• Embedded graphs: 
    T a tree in   E \ T has one-face in  *

𝔾 ⟺ 𝔾

𝔾 ⟺ 𝔾



What is a “tree” for an embedded graph?
• Spanning quasi-tree = neighbourhood has exactly one boundary component. 
 
 
 
 
 
 
 


• plane  surface     
Trees  quasi-trees

⇝
⇝



A new question

• Previously:  
If you know all of the spanning trees in a graph, then do you know the graph 
itself? 

• Topogical version:  
If you know the edge sets of all of the spanning quasi-trees in an embedded 
graph, then do you know the embedded graph itself? 
 
 
 
{abc},{a},{b},{c}                                                {a},{b},{c}⇝ ⇝



4. Duals and partial duals



From embedded graphs to Ribbon graphs
• Ribbon graph =  “graphs whose vertices consist of discs, and whose edges 

consist of ribbons” 
 
 
 
 
 
 


• Ribbon graphs = embedded graphs


• Spanning quasi-tree = all vertices & one boundary component.



Duality revisited
• Slick way to construct dual * of :  

    glue a disc to each boundary component of , then delete old vertices 
 
 
 
 
 
 
 
 

• New idea: [Chmutov ’09] dual only some of the edges by gluing discs to the 
boundary of a subgraph

𝔾 𝔾
𝔾



Partial duality
• New idea [Chmutov ’09]: dual only some of the edges by gluing discs to the 

boundary of a subgraph 
 
 
 
 
 
 
 

• Partial Dual : dual of  =(V,E) w.r.t. set of edges A by 
glue discs each boundary component of (V,A) in , then delete old vertices


• Forms geometric dual *  one edge at a time!

𝔾A 𝔾
𝔾

𝔾



5. The structure of the set of  
quasi-trees



A cycle matroid for ribbon graphs [Chun—M.—Noble—Rueckriemen ’09]

• Recall for graphs: spanning trees  exchange properties  matroids


• Let’s mirror this construction for ribbon graphs: 
spanning trees for graphs  spanning quasi-trees for ribbon graphs


• Cycle matroid of graph: C(G):=( E, {spanning trees} ) 
 

delta-matroid of ribbon graph:  D( ):=( E, {spanning quasi-trees} ) 
 
 
 
 
 
D( )=( {abc} , { {abc},{a},{b},{c} }) 
         

⇝ ⇝

⇝

⇝
𝔾

𝔾



The exchange property
• You can similarly move between quasi-trees, but you have to be able to add 

and remove edges: 
 
 
 

• ( ∀𝑋,𝑌∈  )  ( ∀𝑢∈𝑋 𝑌 )  ( ∃𝑣∈𝑋 𝑌 )  ( 𝑋 {𝑢,𝑣}∈  ). 𝒬 ▵ ▵ ▵ 𝒬



The exchange property

• [Bouchet 80’s] A delta-matroid 𝐷= ( 𝐸 , ) where:  
    𝐸 is a finite set,  
    a non-empty collection of its subsets.  
    satisfies the Symmetric Exchange Axiom:  
         (∀𝑋,𝑌∈ ) (∀𝑢∈𝑋 𝑌) (∃𝑣∈𝑋 𝑌) (𝑋 {𝑢,𝑣}∈ ). 


• D( ):=( E, {spanning quasi-trees} ) is a delta-matroid.

ℱ

ℱ
ℱ

ℱ ▵ ▵ ▵ ℱ

𝔾



6. Completing Whitney’s 
Theorems



Duality
• 𝑀 = (𝐸, ) a matroid. Its dual is 𝑀* := (𝐸, { E \ B : 𝐵 ∈ })


• D = (𝐸, ) a delta-matroid. Its dual is D* := (𝐸, { E \ F : F ∈ }) 
 
      D( ) =( {abc} , { {abc}, {a},  {b},  {c} }) 
      D( *)=( {abc} , {  ,  {bc}, {ac}, {ab} })


• But Q is a quasi-tree in   E \ Q a quasi-tree in * 
 
 
 

• For any ribbon graph  
      D( *) = D( )* 


• But wait, there is more: Q is a quasi-tree in     a quasi-tree in    

ℬ ℬ

ℱ ℱ

𝔾
𝔾 ∅

𝔾 ⟺ 𝔾

𝔾
𝔾 𝔾

𝔾 ⟺ A ▵ Q 𝔾A



Partial duality for delta-matroids
• Recall: D = (𝐸, ) a delta-matroid. Its dual is  

      D* := (𝐸, { E \ F : F ∈ }) =(𝐸, {in exactly one of E or F : F ∈ }) = (𝐸, {E △ F : F ∈ }) 
     D( ) =( {abc} , { {abc}, {a},  {b},  {c} }                D( *)=( {abc} , {  ,  {bc}, {ac}, {ab} })


• D = (𝐸, ) a delta-matroid. Its partial dual is  
        := (𝐸, {in exactly one of A or F : F ∈ }) = (𝐸, {A △ F : F ∈ }) 
  
      D( )      =( {abc} , { {abc}, {a},  {b},  {c} }) 
      D( )=( {abc} , {   {c},   {b},  {a},   {abc} })


• But Q is a quasi-tree in   Q △ A a quasi-tree in 


• [Chun—M.—Noble—Rueckriemen ’09]  For any ribbon graph  
           

ℱ
ℱ ℱ ℱ

𝔾 𝔾 ∅

ℱ
DA ℱ ℱ

𝔾
𝔾{ab}

𝔾 ⟺ 𝔾A

𝔾
D(𝔾A) = D(𝔾)A



Completing Whitney’s Theorems

• G graph 
 ribbon graph


• Cycle matroid: C(G) = (E, {spanning trees}) 
delta-matroid: D( ) = (E, {spanning quasi-trees})


• 𝐶(𝐺)* is the cycle matroid of a graph if and only if 𝐺 is planar 
D( )* is always the delta-matroid of an ribbon graph


• if 𝐺 is planar then 𝐶(G)* = 𝐶(G*). 
 D( )* = D( *) for every ribbon graph 

 for every ribbon graph 

• 𝐶(𝐺) and algebraic duals unique up to 2-isomorphism. 
We had better take a look at this one!

𝔾

𝔾

𝔾

𝔾 𝔾
D(𝔾A) = D(𝔾)A



7. Do the quasi-trees determine 
the ribbon graph?



Bouquets
• Bouqet = one-vertex ribbon graph 
 
 

• Every ribbon graph has a partial dual that is a bouquet 
(e.g., partial dual along a spanning tree)


• Then since  we can work with bouquets rather than ribbon 
graphs in general.


• And we can take advantage of a method from algebraic topology for 
determining via a matrix if an orientable bouquet is a quasi-tree. 

D(𝔾A) = D(𝔾)A



Matrices
• construct an |𝐸 | × |𝐸 |-matrix  by setting (𝑒,𝑓)-entry to be:  

     1 if edges 𝑒 and 𝑓 are interlaced (form a genus 1 ribbon subgraph)  
     0 otherwise.  
 
 
 

•  over GF(2)  we have det( ) = 1   is a quasi-tree


• Thus  is completely determined by  
( X edge set of quasi-tree  principal submatrix [X]  is non-singular)

IM𝔾

IM𝔾 ⟺ 𝔾

D(𝔾) IM𝔾
⟺ IM𝔾



Intersection graphs
• For  a bouquet


•  is a 0-1-matrix  
= adjacency matrix of simple graph  

• Thus  is completely determined by 


• So   
   when  and  bouquets


• But  is the intersection graph of a chord diagram 
i.e. it is a circle graph.


• It is known when two circle graphs arise from the same chord diagram. 

𝔾

IM𝔾
I𝔾

D(𝔾) I𝔾

D(𝔾) = D(ℍ)
⟺ I𝔾 = Iℍ 𝔾 ℍ

I𝔾



Circle graphs
• It is known when two circle graphs arise from the same chord diagram: 

[Bouchet ’87; Gabor—Supowit—Hsu ’89; Chmutov—Lando ’07; Courcelle 
’08] 
 
 
 
 

•  when  and  bouquets: 
             and  are “mutants”


• What if  and  are not bouquets? (so they have more than one vertex) 

⇝ 𝔾 ℍ
D(𝔾) = D(ℍ) ⟺ I𝔾 = Iℍ⟺ 𝔾 ℍ

𝔾 ℍ



Applying to ribbon graphs
•  and  bouquets:   and  are mutants


• What if  and  are not bouquets (so they have more than one vertex)?


• Then pick subset A of edge so that  and  are bouquets:


•   and  are 
mutants    and  are related by “mutation”: 

𝔾 ℍ D(𝔾) = D(ℍ) ⟺ I𝔾 = Iℍ⟺ 𝔾 ℍ

𝔾 ℍ

𝔾A ℍA

D(𝔾) = D(ℍ) ⟺ D(𝔾A) = D(ℍA) ⟺ I𝔾A = IℍA⟺ 𝔾A ℍA

⟺ 𝔾 ℍ



Ribbon graphs with the same delta-matroids
• [M—Oh ’21]    and  are related by D(𝔾) = D(ℍ)⟺ 𝔾 ℍ

• The quasi-trees determine the ribbon graph up to this move.



Back to where we started

• Do the spanning trees determine the graph? 

• Precisely, if you know the edge set of each spanning tree, and any loops in the graph,  
do you know the graph?  

• Whitney’s answer: yes up to 2-isomorphism. 

• Do the spanning quasi-trees determine the embedded graph? 

• Precisely, if you know the edge set of each spanning quasi-tree, and any loops in the 
graph, do you know the embedded graph?  

• Yes, up to mutation. 

• The point is that studying embedded graphs through their delta-matroids (quasi-
trees) opens new door, just as studying graphs through their matroids does.



Thanks!


