Spanning Trees and Graphs Embedded in Surfaces

Atlantic Graph Theory Seminar, 12th Jan 2022

Iain Moffatt

- This is a gentle introduction to delta-matroids via graph theory and topological graph theory
- Loosely based on the expository article: I. Moffatt, From matrix pivots to graphs in surfaces: touring combinatorics guided by partial duals, in European Congress of Mathematics Portorož, 20-26 June, 2021

1. Graphs and their spanning trees

A classical question about trees

- Graph = connected multigraph
- tree $=$ connected and no cycles

- spanning tree of $\mathrm{G}=$ subgraph + tree + all vertices of G

- Question:

If you know all of the spanning trees in a graph, then do you know the graph itself?

- What do you mean by "know"?
- For a connected graph, If you know:
- the edge set of each spanning tree,
- and any loops in the graph,
do you know the graph?

An unsatisfactory answer

- If you know:
- the edge set of each spanning tree, \& any loops in the graph, do you know the graph?

$$
\text { e.g. }\{a, b\},\{b, c\},\{a, c\} \leadsto
$$

- Answer: Clearly a no

- But this "no" is really a "yes"...

Whitney's 2-Isomorphism Theorem

- Two moves:

- 2-isomorphism = isomorphism + vertex identification / cleaving + Whitney twisting

- Whitney's 2-Isomorphism Theorem: edge set of spanning trees \& any loops = graph up to 2-isomorphism
- Corollary:
 3-connected graph = edge set of its spanning trees

2. The structure of the set of spanning trees

Exchange property of spanning trees

G

- if T and T^{\prime} are spanning trees and e is an edge in T but not T^{\prime}, then there is always some edge f in T^{\prime} but not T such that removing e from T then adding f results in another spanning tree
- But we're not interested in the trees, but the collection of edge sets they give.

- a collection \mathscr{B} of subsets st.

$$
(\forall A, B \in \mathscr{B})(\forall a \in A \backslash B)(\exists b \in B \backslash A) \text { s.t }(A \backslash a) \cup b \in \mathscr{B} .
$$

Cycle matroids

- E be a finite set, \mathscr{B} be a non-empty collection of its subsets $(\forall A, B \in \mathscr{B})(\forall a \in A \backslash B)(\exists b \in B \backslash A)$ s.t $(A \backslash a) \cup b \in \mathscr{B}$.
- The pair $M:=(E, \mathscr{O})$ is called a matroid
- Cycle matroid $C(G):=(E, \mathscr{B})$

E=edge set, $\quad \mathscr{B}=\{$ spanning trees $\}$

$$
\begin{aligned}
& E=\{a, b, c, d, e\} \\
& B=\{a b\},\{a c\},\{a d\},\{b c\},\{b d\}\}
\end{aligned}
$$

- Whitney's 2-Isomorphism Theorem:
G and H connected graphs. Then
$C(G) \cong C(H) \Longleftrightarrow G$ and H are 2-isomorphic.
- You can more-or-less work with matroids in place of graphs.

3. The appearance of topology

Algebraic duals

- $M=(E, \mathscr{B})$ a matroid. Its dual is $M^{\star}:=(E,\{E \backslash B: B \in \mathscr{B}\})$
$M=(\{a b c d e\},\{$ \{ab\}, \{ac\}, \{ad\}, \{bc\}, $\{b d\}\})$
$M^{*}=(\{a b c d e\},\{$ \{cde\}, \{bde\},\{bce\},\{ade\}, \{ace\} \}$)$
- If G is a graph and $C(G)$ its cycle matroid, then the dual matroid $C(G)^{*}$ is always a matroid. However, it is not always the cycle matroid of a graph. (E.g. C(K_5) does not come from a graph.)
- When does $C(G)^{*}$ come from a graph?
- Graphs G and H are algebraic duals if T a spanning tree of $G \Longleftrightarrow E \backslash T$ a spanning tree of H

- $C(G)^{*}$ comes from a graph $\Longleftrightarrow G$ has an algebraic dual
- May or may not exist. May or may not be unique.

Geometric duals

- The existence of algebraic duals is tied to the topological properties of a graph.
- plane graph = a connected graph drawn plane / sphere
- planar = can be drawn in the plane / sphere

- Geometric dual \mathbb{G}^{*} of plane graph \mathbb{G} vertices of $\mathbb{G}^{*}=$ faces of \mathbb{G}, \quad edge of \mathbb{G}^{*} when faces of \mathbb{G} adjacent

- Geometric duals are always algebraic duals
- Algebraic duals are always geometric duals
- Collecting this together....

Whitney's Theorems in terms of matroids:

- G connected

Cycle matroid: C(G) $=(E$, spanning trees $\})$

- Then the dual matroid $C(G)^{*}$ is the cycle matroid of a graph \Longleftrightarrow if G is planar
- if G is planar then

$$
C(\mathrm{G})^{*}=C\left(\mathrm{G}^{*}\right),
$$

where G^{*} is the geometric dual of any plane embedding of G .

- $C(G)$ and algebraic duals unique up to 2-isomorphism.

It's all about the plane

- We have seen:
- Spanning tree structure \leftrightarrow topological structure
- But tied to planarity

- What if you do not want to restrict yourself to plane or planar graphs?

4. Moving away from the plane

Surfaces and embedded graphs

- Orientable surfaces (for simplicity)

- Embedded graph = drawn on surface + edges don't cross + faces are discs
- Geometric dual \mathbb{G}^{*} of \mathbb{G} : as before vertices of $\mathbb{G}^{*}=$ faces of \mathbb{G} \& edge of \mathbb{G}^{*} when faces of \mathbb{G} adjacent

- But trees are pretty useless here!

What is a "tree" for an embedded graph?

- Plane graphs: (geometric = algebraic = matroid)
- Ta tree in $\mathbb{G} \Longleftrightarrow E \backslash T$ a tree in \mathbb{G}^{*}

- Embedded graphs:

T a tree in $\mathbb{G} \Longleftrightarrow \mathrm{E} \backslash T$ has one-face in \mathbb{G}^{*}

What is a "tree" for an embedded graph?

- Spanning quasi-tree = neighbourhood has exactly one boundary component.

- plane $\rightsquigarrow \rightarrow$ surface Trees \leadsto quasi-trees

A new question

- Previously:

If you know all of the spanning trees in a graph, then do you know the graph itself?

- Topogical version:

If you know the edge sets of all of the spanning quasi-trees in an embedded graph, then do you know the embedded graph itself?

4. Duals and partial duals

From embedded graphs to Ribbon graphs

- Ribbon graph = "graphs whose vertices consist of discs, and whose edges consist of ribbons"

- Ribbon graphs = embedded graphs
- Spanning quasi-tree = all vertices \& one boundary component.

Duality revisited

- Slick way to construct dual \mathbb{G}^{*} of \mathbb{G} : glue a disc to each boundary component of \mathbb{G}, then delete old vertices

- New idea: [Chmutov '09] dual only some of the edges by gluing discs to the boundary of a subgraph

Partial duality

- New idea [Chmutov '09]: dual only some of the edges by gluing discs to the boundary of a subgraph

- Partial Dual \mathbb{G}^{A} : dual of $\mathbb{G}=(V, E)$ w.r.t. set of edges A by glue discs each boundary component of (V, A) in \mathbb{G}, then delete old vertices
- Forms geometric dual \mathbb{G}^{*} one edge at a time!

5. The structure of the set of quasi-trees

A cycle matroid for ribbon graphs [Chun-M.-Noble—Rueckriemen '09]

- Recall for graphs: spanning trees $\rightsquigarrow \not$ exchange properties $\rightsquigarrow>$ matroids
- Let's mirror this construction for ribbon graphs:
spanning trees for graphs $\leadsto>$ spanning quasi-trees for ribbon graphs
- Cycle matroid of graph: $\mathrm{C}(\mathrm{G}):=(\mathrm{E}$, , spanning trees \})
\rightarrow
delta-matroid of ribbon graph: $D(\mathbb{G}):=(E,\{s p a n n i n g$ quasi-trees\})

$D(\mathbb{G})=(\{a b c\},\{\{a b c\},\{a\},\{b\},\{c\}\})$

The exchange property

- You can similarly move between quasi-trees, but you have to be able to add

- $(\forall X, Y \in Q)(\forall u \in X \Delta Y)(\exists v \in X \Delta Y)(X \Delta\{u, v\} \in Q)$.

The exchange property

- [Bouchet 80 's] A delta-matroid $D=(E, \mathscr{F})$ where:
E is a finite set,
\mathscr{F} a non-empty collection of its subsets.
\mathscr{F} satisfies the Symmetric Exchange Axiom:

$$
(\forall X, Y \in \mathscr{F})(\forall u \in X \Delta Y)(\exists v \in X \Delta Y)(X \Delta\{u, v\} \in \mathscr{F}) .
$$

- $D(\mathbb{G}):=(E$, spanning quasi-trees $\}$) is a delta-matroid.

6. Completing Whitney's Theorems

Duality

- $M=(E, \mathscr{B})$ a matroid. Its dual is $M^{*}:=(E,\{E \backslash B: B \in \mathscr{B}\})$
- $\mathrm{D}=(E, \mathscr{F})$ a delta-matroid. Its dual is $\mathrm{D}^{*}:=(E,\{\mathrm{E} \backslash \mathrm{F}: \mathrm{F} \in \mathscr{F}\})$

$$
\begin{aligned}
& D(\mathbb{G})=(\{a b c\},\{\{a b c\},\{a\},\{b\},\{c\}\}) \\
& D\left(\mathbb{G}^{*}\right)=(\{a b c\},\{\varnothing,\{b c\},\{a c\},\{a b\}\})
\end{aligned}
$$

- But Q is a quasi-tree in $\mathbb{G} \Longleftrightarrow E \backslash Q$ a quasi-tree in \mathbb{G}^{*}

- For any ribbon graph \mathbb{G}

$$
D\left(\mathbb{G}^{*}\right)=D(\mathbb{G})^{*}
$$

- But wait, there is more: Q is a quasi-tree in $\mathbb{G} \Longleftrightarrow A \Delta Q$ a quasi-tree in \mathbb{G}^{A}

Partial duality for delta-matroids

- Recall: $\mathrm{D}=(E, \mathscr{F})$ a delta-matroid. Its dual is

$$
\begin{aligned}
& D^{*}:=(E,\{E \backslash F: F \in \mathscr{F}\})=(E,\{\text { in exactly one of } E \text { or } F: F \in \mathscr{F}\})=(E,\{E \triangle F: F \in \mathscr{F}\}) \\
& D(\mathbb{G})=\left(\{a b c\},\{\{a b c\},\{a\},\{b\},\{c\}\} \quad D\left(\mathbb{G}^{*}\right)=(\{a b c\},\{\varnothing,\{b c\},\{a c\},\{a b\}\})\right.
\end{aligned}
$$

- $\mathrm{D}=(E, \mathscr{F})$ a delta-matroid. Its partial dual is

$$
\left.D^{A}:=(E \text {, \{in exactly one of } \mathrm{A} \text { or } \mathrm{F}: \mathrm{F} \in \mathscr{F}\}\right)=(E,\{\mathrm{~A} \triangle \mathrm{~F}: \mathrm{F} \in \mathscr{F}\})
$$

$$
\begin{aligned}
& D(\mathbb{G})=(\{a b c\},\{\{a b c\},\{a\}, \quad\{b\}, \quad\{c\}\}) \\
& D\left(\mathbb{G}^{\{a b\}}\right)=(\{a b c\},\{\quad\{c\}, \quad\{b\},\{a\}, \quad\{a b c\}\})
\end{aligned}
$$

- But Q is a quasi-tree in $\mathbb{G} \Longleftrightarrow Q \triangle A$ a quasi-tree in \mathbb{G}^{A}
- [Chun—M.—Noble—Rueckriemen '09] For any ribbon graph \mathbb{G}

$$
D\left(\mathbb{G}^{A}\right)=D(\mathbb{G})^{A}
$$

Completing Whitney's Theorems

- G graph
\mathbb{G} ribbon graph
- Cycle matroid: $\mathrm{C}(\mathrm{G})=(\mathrm{E}$, \{spanning trees $\})$
delta-matroid: $\mathrm{D}(\mathbb{G})=(\mathrm{E}$, \{spanning quasi-trees\}$)$

- $C(G)^{*}$ is the cycle matroid of a graph if and only if G is planar
$D(\mathbb{G})^{*}$ is always the delta-matroid of an ribbon graph
- if G is planar then $C(\mathrm{G})^{*}=C\left(\mathrm{G}^{*}\right)$.

$$
\begin{aligned}
& D(\mathbb{G})^{*}=D\left(\mathbb{G}^{*}\right) \text { for every ribbon graph } \\
& D\left(\mathbb{G}^{A}\right)=D(\mathbb{G})^{A} \text { for every ribbon graph }
\end{aligned}
$$

- $C(G)$ and algebraic duals unique up to 2-isomorphism.

We had better take a look at this one!

7. Do the quasi-trees determine the ribbon graph?

Bouquets

- Bouqet = one-vertex ribbon graph

- Every ribbon graph has a partial dual that is a bouquet (e.g., partial dual along a spanning tree)
- Then since $D\left(\mathbb{G}^{A}\right)=D(\mathbb{G})^{A}$ we can work with bouquets rather than ribbon graphs in general.
- And we can take advantage of a method from algebraic topology for determining via a matrix if an orientable bouquet is a quasi-tree.

Matrices

- construct an $|E| \times|E|$-matrix $\mathbf{I M}_{\mathbb{G}}$ by setting (e, f)-entry to be:

1 if edges e and f are interlaced (form a genus 1 ribbon subgraph)
0 otherwise.

$$
\mathbf{M}_{\mathbf{G}}=\begin{gathered}
1 \\
1 \\
2 \\
4
\end{gathered}\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

- over GF(2) we have $\operatorname{det}\left(\mathbf{I} \mathbf{M}_{\mathbb{G}}\right)=1 \Longleftrightarrow \mathbb{G}$ is a quasi-tree
- Thus $D(\mathbb{G})$ is completely determined by $\mathbf{I M}_{\mathbb{G}}$ (X edge set of quasi-tree \Longleftrightarrow principal submatrix $\mathbf{I M}_{\mathbb{G}}[X]$ is non-singular)

Intersection graphs

- Thus $D(\mathbb{G})$ is completely determined by $I_{\mathbb{G}}$
- So $D(\mathbb{G})=D(\mathbb{H})$
$\Longleftrightarrow I_{\mathbb{G}}=I_{\mathbb{H}}$ when \mathbb{G} and \mathbb{H} bouquets
- But $I_{\mathbb{G}}$ is the intersection graph of a chord diagram
 i.e. it is a circle graph.
- It is known when two circle graphs arise from the same chord diagram.

Circle graphs

- It is known when two circle graphs arise from the same chord diagram: [Bouchet '87; Gabor-Supowit—Hsu '89; Chmutov—Lando '07; Courcelle '08]

- $n>$ when \mathbb{G} and \mathbb{H} bouquets:

$$
D(\mathbb{G})=D(\mathbb{H}) \Longleftrightarrow I_{\mathbb{G}}=I_{\mathbb{H}} \Longleftrightarrow \mathbb{G} \text { and } \mathbb{H} \text { are "mutants" }
$$

- What if \mathbb{G} and \mathbb{H} are not bouquets? (so they have more than one vertex)

Applying to ribbon graphs

- \mathbb{G} and \mathbb{H} bouquets: $D(\mathbb{G})=D(\mathbb{H}) \Longleftrightarrow I_{\mathbb{G}}=I_{\mathbb{H}} \Longleftrightarrow \mathbb{G}$ and \mathbb{H} are mutants
- What if \mathbb{G} and \mathbb{H} are not bouquets (so they have more than one vertex)?
- Then pick subset A of edge so that \mathbb{G}^{A} and \mathbb{H}^{A} are bouquets:
- $D(\mathbb{G})=D(\mathbb{H}) \Longleftrightarrow D\left(\mathbb{G}^{A}\right)=D\left(\mathbb{M}^{A}\right) \Longleftrightarrow I_{\mathbb{G}^{A}}=I_{\mathbb{H}^{A}} \Longleftrightarrow \mathbb{G}^{A}$ and \mathbb{H}^{A} are mutants $\Longleftrightarrow \mathbb{G}$ and \mathbb{H} are related by "mutation":

Ribbon graphs with the same delta-matroids

- [M-Oh '21] $D(\mathbb{G})=D(\mathbb{H}) \Longleftrightarrow \mathbb{G}$ and \mathbb{H} are related by

- The quasi-trees determine the ribbon graph up to this move.

Back to where we started

- Do the spanning trees determine the graph?
- Precisely, if you know the edge set of each spanning tree, and any loops in the graph, do you know the graph?
- Whitney's answer: yes up to 2-isomorphism.
- Do the spanning quasi-trees determine the embedded graph?
- Precisely, if you know the edge set of each spanning quasi-tree, and any loops in the graph, do you know the embedded graph?
- Yes, up to mutation.
- The point is that studying embedded graphs through their delta-matroids (quasitrees) opens new door, just as studying graphs through their matroids does.

Thanks!

