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1. Graphs and their spanning trees



A classical question about trees

Graph = connected multigraph
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spanning tree of G = subgraph + tree + all vertices of G
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tree = connected and no cycles

Question:
If you know all of the spanning trees in a graph, then do you know the graph itself?

What do you mean by “know”?

For a connected graph, If you know:
- the edge set of each spanning tree,
- and any loops in the graph,

do you know the graph?



An unsatisfactory answer

o [f you know:
- the edge set of each spanning tree, & any loops in the graph,

do you know the graph?
e.qg. {a,b}, {b,c}, {a,c} w A
b
 Answer: Clearly a no
e.g. {a,b,c}w L [ — - 1 A = ' 4 ,7

L

o Butthis “no” is really a "yes”...



Whithey’s 2-Isomorphism Theorem
« Two moves:
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twisting
cleaving
o 2- isomorphlsm = isomorphism + vertex identification / cleaving + Whitney

= L= R

 Whitney’s 2-Isomorphism Theorem:;
edge set of spanning trees & any loops = graph up to 2-isomorphism

{ab,c} — QL, _ /L' /
//Z— ;SD y
« Corollary:

3-connected graph = edge set of its spanning trees




2. I he structure of the set of
spanning trees




Exchange property of spanning trees
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o If T"and 7" are spanning trees and e Is an edge in T'but not 77, then there
IS always some edge /in 7" but not 7"such that removing e from 7 then
adding / results in another spanning tree

o But we’re not interested Iin the trees, but the collection of edge sets they
give.

E(T)an ~ @ ’

» a collection & of subsets s.t.
(VA,Be B) Vac A\B)(Abe B\ A) st (A\a)ube A.



Cycle matroids

 E be afinite set, 93 be a non-empty collection of its subsets
(VA,Be B) Vac A\B)(Abe B\ A) st (A\a)ube AB.

e The pair M := (E, ) is called a matroid

« Cycle matroid C(G) := (E, RB)
E=edge set, % = {spanning trees }
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 Whitney’s 2-Isomorphism Theorem:
G and H connected graphs. Then

C(G) = C(H) <= G and H are 2-isomorphic.

e You can more-or-less work with matroids in place of graphs.



3. The appearance of topology



Algebraic duals

e M =(E,9%) amatroid. Its dualis M* := (E, { E\ B: B e %))

M= ({abcde}, { {abj}, {ac}, {ad}, {bc}, {bd}})
M*= ( {abcde} , )

e If G is a graph and C(G) its cycle matroid, then the dual matroid C(G)* is always a matroid.
However, it is not always the cycle matroid of a graph. (E.g. C(K_5) does not come from a graph.)

« When does C(G)* come from a graph?

o Graphs G and H are algebraic duals if T a spanning tree of G < FE \ T a spanning tree of H
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e (C(G)" comes from a graph <= G has an algebraic dual

 May or may not exist. May or may not be unique.



Geometric duals

* The existence of algebraic duals is tied to the topological properties of a graph.

e plane graph = a connected graph drawn plane / sphere
e planar = can be drawn in the plane / sphere @
e Geometric dual &* of plane graph G

vertices of (b = faces of (5, edge of (5* when faces of (s adjacent

 (Geometric duals are always algebraic duals

o Algebraic duals are always geometric duals

« Collecting this together....



Whitney’s Theorems In terms of matroids:

(G connected
Cycle matroid: C(G) = (E, {spanning trees})

o Then the dual matroid C(G)* is the cycle matroid of a graph <= if G is planar

o If G Is planar then
c(G)" = C(G),
where G* is the geometric dual of any plane embedding of G.

o (C(G) and algebraic duals unigue up to 2-isomorphism.



It’s all about the plane

/ <
e \We have seen: jéomu/w

O{I/p,

o

 What if you do not want to restrict yourself to plane or planar graphs??

e Spanning tree structure <> topological structure

o But tied to planarity




4. Moving away from the plane




Surfaces and embedded graphs
* Orientable surfaces (for simplicity) >

« Embedded graph = drawn on surface + edges don’t cross + faces are discs

e Geometric dual (* of (3: as before
vertices of (* = faces of G & edge of (& when faces of ( adjacent

D C&D &

« But trees are pretty useless here!




What is a “tree” for an embedded graph?

 Plane graphs: (geometric = algebraic = matroid)

e TatreeinG<«<= E\Tatreein &*

s

« Embedded graphs:
Tatreein G < E\T has one-face in *

>
/




What is a “tree” for an embedded graph?

e Spanning gquasi-tree = neighbourhood has exactly one boundary component.
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e planew surface
Trees v quasi-trees




A new question

* Previously:
If you know all of the spanning trees in a graph, then do you know the graph
itself?

o [opogical version:
If you know the edge sets of all of the spanning quasi-trees in an embedded
graph, then do you know the embedded graph itself?

(abc, {aj, {b},fc} @) (a} b, {C}/ (A




4. Duals and partial duals



From embedded graphs to Ribbon graphs

« Ribbon graph = “graphs whose vertices consist of discs, and whose edges

consist of ribbons”
3
>
f 5

e Spanning quasi-tree = all vertices & one boundary component.

 Ribbon graphs = embedded graphs




Duality revisited

e Slick way to construct dual * of G:
glue a disc to each boundary component of (3, then delete old vertices

 New idea: [Chmutov '09] dual only some of the edges by gluing discs to the
boundary of a subgraph




Partial duality

« New idea [Chmutov '09]: dual only some of the edges by gluing discs to the
boundary of a subgraph

« Partial Dual G”: dual of G=(VE) w.r.t. set of edges A by
glue discs each boundary component of (V,A) in (3, then delete old vertices

« Forms geometric dual G* one edge at a time!



5. The structure of the set of
quasi-trees




A cycle matroid for ribbon graphs [Chun—M.—Noble—Rueckriemen '09]

« Recall for graphs: spanning trees + exchange properties ~ matroids

o |Let’s mirror this construction for ribbon graphs:
spanning trees for graphs «+» spanning quasi-trees for ribbon graphs

« Cycle matroid of graph: C(G):=( E, {spanning trees} )
W)
delta-matroid of ribbon graph: D(G):=( E, {spanning quasi-trees} )

\

D(G)=({abc} , { {abc}.{a}.{b}.{c} })




The exchange property
e You can similarly move between quasi-trees, but you have to be able to add

and remove edges: 77 P
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e (VX,YE@Q) (VueXAY) (FveXAY) ( XA{u, U}e@
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@ 0. @




The exchange property

@ -D-@-&d
@ - @ - . - @2

 [Bouchet 80’s] A delta-matroid D= ( E , &) where:
FE is a finite set,

F a non-empty collection of its subsets.
F satisfies the Symmetric Exchange Axiom:
(VX,YEF) (Vue XAY) Fve XAY) (XA{u,v}eF).

« D(G):=( E, {spanning quasi-trees} ) is a delta-matroid.



6. Completing Whitney’s
Theorems



Duality

e M = (E,9%) a matroid. Its dual is M* := (E, { E\B : B e 9}

D = (E,&) a delta-matroid. Its dual is D* := (E, { E\F : F € F})

D(G) =({abc}, { {abc}, {a}, {b}, {c}}
D(G")=({abc}, { @, {bc}, {ac}, {ab} })

But Q is a quasi-tree in G <= E \ Q a quasi-tree in G*

B &

But wait, there is more: Q is a quasi-tree in G <= A A Q a quasi-tree in G*

For ribbon g;aph G
D(G*) = D(G)*



Partial duality for delta-matroids

« Recall: D = (E,%) a delta-matroid. Its dual is
D*:=(E,{E\F:Fe S} =(E, {inexactlyoneof EorF:Fe F}) =(E,{E A F:Fe %}
D(G) =({abc}, { {abc}, {a}, {b}, {c}} D(G*)=({abc}, { @, {bc}, {ac}, {ab}})

« D =(E,&#) a delta-matroid. Its partial dual is
D" .= (E, {in exactlyone of Aor F: Fe ) = (E, {A A F:F e F))

D(G) =({abc}, {{abc}, {a}, {b}, {c}})
D(G'“")=({abc}, { {c}, {b}, {a}, {abc}})

e But Q is a quasi-tree in G <= Q A A a quasi-tree in GA

e [Chun—M.—Noble—Rueckriemen '09] For any ribbon graph G
D(G*) = D(G)*



/

Completing Whitney’s Theorems qeometric
G graph Ave, |

. G grap
G ribbon graph v

e Cycle matroid: C(G) = (E, {spanning trees})
delta-matroid: D(G) = (E, {spanning quasi-trees})

o C(G)” Is the cycle matroid of a graph if and only if G is planar
D((z)* is always the delta-matroid of an ribbon graph

o If G is planar then C(G)" = C(G”).
D(G)* = D((z*) for every ribbon graph
D(G?) = D(G) for every ribbon graph

o (C(G) and algebraic duals unique up to 2-isomorphism.
We had better take a look at this one!



/. Do the quasi-trees determine
the ribbon graph?



Bouquets 1

e Bouget = one-vertex ribbon graph )

3

o Every ribbon graph has a partial dual that is a bouquet
(e.g., partial dual along a spanning tree)

. Then since D(G*) = D(G)* we can work with bouquets rather than ribbon
graphs in general.

 And we can take advantage of a method from algebraic topology for
determining via a matrix if an orientable bouquet is a quasi-tree.



Matrices

 construct an |E | x |E [-matrix 1IVl; by setting (e, f)-entry to be:
1 if edges e and f are interlaced (form a genus 1 ribbon subgraph)

O otherwise. 1 1 2 3 4
) 1 0 1 1 1

Mg= 2|1 0 10

311 1 O O

4 4 |11 0 0 O

3

« over GF(2) we have det(IMg) = 1 <= ( is a quasi-tree

e Thus D(() is completely determined by 1M
( X edge set of quasi-tree <= principal submatrix IIMg[X] is non-singular)



Intersection graphs

1 2 3 4 14
e For 1
or G a bouque 1 1 1 1
« IMg is a 0-1-matrix Mg = g i (1) (1) g
= adjacency matrix of simple graph /¢ 4 1 0 0 O .

« Thus D(() is completely determined by I

» So D(G) = D(H)
< Iz = Iywhen G and H bouquets

o But /g is the intersection graph of a chord diagram
l.e. It Is a circle graph.

e |t is known when two circle graphs arise from the same chord diagram.



Circle graphs

e |t is known when two circle graphs arise from the same chord diagram:
[Bouchet ’87; Gabor—Supowit—Hsu '89; Chmutov—Lando '07; Courcelle

'08] >
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« v when G and H bouquets:
D(G) =DH) < I; = I, G and H are “mutants”

« What if G and H are not bouquets? (so they have more than one vertex)



Applying to ribbon graphs
« (3 and H bouquets: D(G) = D(H) < I; = [;<= G and H are mutants

« What if G and H are not bouquets (so they have more than one vertex)?

. Then pick subset A of edge so that G* and H* are bouquets:

. D(G) = D(H) = D(G*) = D(H) < I.s = s G and H” are
mutants <= G and H are related by “mutation”:




Ribbon graphs with the same delta-matroids

¢« [M—Oh’21] D(G) = D(H)<= G and H are related by

 The quasi-trees determine the ribbon graph up to this move.




Back to where we started

e Do the spanning trees determine the graph?

e Precisely, if you know the edge set of each spanning tree, and any loops in the graph,
do you know the graph?

e Whitney’s answer: yes up to 2-isomorphism.
e Do the spanning quasi-trees determine the embedded graph?

e Precisely, if you know the edge set of each spanning quasi-tree, and any loops in the
graph, do you know the embedded graph?

® Yes, up to mutation.

e [he point is that studying embedded graphs through their delta-matroids (quasi-
trees) opens new door, just as studying graphs through their matroids does.






