THE $\gamma\text{-}\mathsf{GRAPH}$ OF A GRAPH

Stephen Finbow (Joint work with R. Begin and C.M. van Bommel) Jan 13, 2020

St Francis Xavier University

1. INTRODUCTION

- 2. THE $\gamma\text{-}\mathsf{GRAPH}$ OF TREES
- 3. SEQUENCES OF $\gamma\text{-}\mathsf{GRAPHS}$
- 4. FUTURE WORK

INTRODUCTION

A dominating set

A dominating set

A dominating set

- A subset of vertices D is a dominating set of G if
 N[D] = V(G), that is, every vertex not in D is adjacent to a vertex in D.
- The *domination number* of a graph G, denoted γ(G), is the minimum cardinality of a dominating set of G.
- A dominating set of minimum cardinality is said to be a γ -set.

- Introduced by Fricke, Hedetniemi, Hedetniemi, Hutson in 2011.
- It is a *reconfiguration* graph denoted $G(\gamma)$ or $\mathcal{S}(G,\gamma)$.
- Vertex sets are the minimum dominating sets of G.
- Two γ-sets are adjacent if we can obtain one from the other by swapping adjacent vertices.

Cartesian Product ($K_3 \Box P_4$)

γ -Graph of $K_3 \Box K_2$

 $K_3 \Box K_2 \xrightarrow{\gamma} K_3 \Box K_3$

- Jump $\gamma\text{-}\mathsf{graphs}$ were introduced by Subramanian and Sridharan
- Fricke, Hedetniemi, Hedetniemi, Hutson posed 7 questions in their original paper.

- 1. Which graphs are γ -graphs? Can you construct a graph H that is not a γ -graph of any graph G?
- 2. Is $\Delta(T(\gamma)) = O(n)$ for every tree T of order n?
- 3. Is $diam(T(\gamma)) = O(n)$ for every tree T of order n?
- 4. Is $|V(T(\gamma))| \leq 2^{\gamma(T)}$ for every tree T?
- 5. For which graphs G is $G(\gamma) \cong G$?
- 6. Under what conditions is $G(\gamma)$ a disconnected graph?
- 7. Which graphs are γ -graphs of trees?

Theorem (Connelly, Hutson, and Hedetneimi) For every graph G there is a graph H so that $H(\gamma) \equiv G$.

• Proof outline: Let *H* be the join of *G* with the disjoint union of a star and an independent set

- 1. Which graphs are γ -graphs? Can you construct a graph H that is not a γ -graph of any graph G?
- 2. Is $\Delta(T(\gamma)) = O(n)$ for every tree T of order n?
- 3. Is $diam(T(\gamma)) = O(n)$ for every tree T of order n?
- 4. Is $|V(T(\gamma))| \leq 2^{\gamma(T)}$ for every tree T?
- 5. For which graphs G is $G(\gamma) \cong G$?
- 6. Under what conditions is $G(\gamma)$ a disconnected graph?
- 7. Which graphs are γ -graphs of trees?

The next three questions were solved by Edwards, MacGillivray, and Nasserasr:

Theorem (Edwards, MacGillivray, and Nasserasr) If *T* is a tree of order *n* having *s* stems, then

1.
$$\Delta(T(\gamma)) \leq n - \gamma(T)$$

2.
$$diam(T(\gamma) \le 2(2\gamma(T) - s))$$

3. $|V(T(\gamma))| \le ((1 + \sqrt{13})/2)^{\gamma(T)}$

The remaining three questions are all open:

- 5. For which graphs G is $G(\gamma) \cong G$?
- 6. Under what conditions is $G(\gamma)$ a disconnected graph?
- 7. Which graphs are γ -graphs of trees?

- Mynhardt and Teshima discussed variations and provided further directions (2018)
- Lemanśka and Zylinśki have determined tight bounds on the diameters for $\mathcal{T}(\gamma)$
- Survey of reconfiguration graphs by Mynhardt and Nasserasr (2021+)
- van Bommel showed $K_{2,3}$ is not the γ -graph of any bipartite graph.

THE γ -GRAPH OF TREES

Root a tree at vertex of high degree Recursively find the $\gamma\text{-}\mathsf{graph}$ in two cases

Which trees are the $\gamma\text{-}\mathsf{graphs}$ of trees?

This is not the gamma-graph of any tree.

Theorem

If G is a tree, then G is a γ -graph of some tree if and only if H is not a subtree of G.

Theorem

If G is a tree, then G is a γ -graph of some tree if and only if H is not a subtree of G.

Lemma

Let T be a tree and let $T(\gamma)$ be the γ -graph of T. Every edge of $T(\gamma)$ is a cut-edge or is contained in a 4-cycle.

Lemma

Let G be a γ -graph of a tree T with a cut-edge e, and let G_1 and G_2 be the components of $G \setminus e$. Then $G_1 + e$ and $G_2 + e$ are each γ -graphs of trees.

Theorem

Let T be a tree and let $T(\gamma)$ be the γ -graph of T. Then $T(\gamma)$ does not contain $K_{2,3}$ as a subgraph.

Theorem (Sabidussi(60), Vizing(63))

All finite connected graphs have a unique prime factorization with respect to Cartesian multiplication.

Theorem

Let G be a Cartesian product graph with $G = G_1 \Box G_2$, $G_i \neq K_1$. Then G is the γ -graph of a tree T if and only if each G_i is the γ -graph of a tree T_i .

SEQUENCES OF $\gamma\text{-}\mathsf{GRAPHS}$

From the orginal paper:

Claim

 $K_3 \Box K_2 \xrightarrow{\gamma} K_3 \Box K_3 \xrightarrow{\gamma} K_3 \Box K_3 \Box K_3 \xrightarrow{\gamma} \dots$

So it was concluded there is an infinite $\gamma\text{-}\mathsf{graphs}$ sequence.

 $K_3^3 \dagger K_3^3$

γ -graph of $K_3^3 \dagger K_3^3$

 $\bullet\,$ We can show

$$K_3 \Box P_2 \xrightarrow{\gamma} K_3 \Box K_3 \xrightarrow{\gamma} K_3^3 \dagger K_3^3 \xrightarrow{\gamma} \mathbf{G} \xrightarrow{\gamma} \overline{K_{512}} \xrightarrow{\gamma} K_1$$

- It is an open question as to whether an infinite $\gamma\text{-graph}$ sequence exists?
- However, there are arbitrarily long γ -graph sequences of paths.

FUTURE WORK

- 5. For which graphs G is $G(\gamma) \cong G$?
- 6. Under what conditions is $G(\gamma)$ a disconnected graph?
- 7. Which graphs are γ -graphs of trees?
- 8. Does there exists a γ -graph sequence of finite graphs that grows without bound, or if every γ -graph sequence of finite graphs eventually repeats.

THANK YOU