

Introduction (1/2)

· Society is critically depending on complex networks

- Robustness: extent to which a complex network can cope with disruptions
 - · failures of its nodes and/or links
- Use graph theory to deal with robustness

Introduction (2/2)

- How to quantify network robustness?
- · What part of the network is most vulnerable?
- How to make the network more robust?

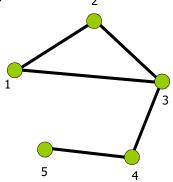
Critical Infrastructures

Outline

- Terminology
- Robustness w.r.t. malware spread
- Robustness of a gas distribution network
- Robustness of network controllability
- Wrap-up
- Bonus

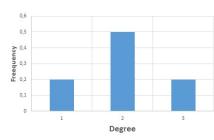
Terminology (1/4)

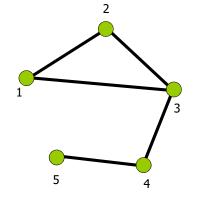
- Networks are represented as graphs
- Graph G(N,L)
 - N = number of nodes
 - L = number of links
- Graphs can be
 - •undirected or directed
 - •unweighted or weighted



Terminology (2/4)

- degree D_i of node i
 - number of neighbours of node i
- degree distribution



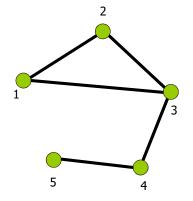


TUDelft

Terminology (3/4)

Adjacency matrix

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$



• ρ = spectral radius = largest eigenvalue of A

Terminology (4/4)

- The objects we study are NOT static

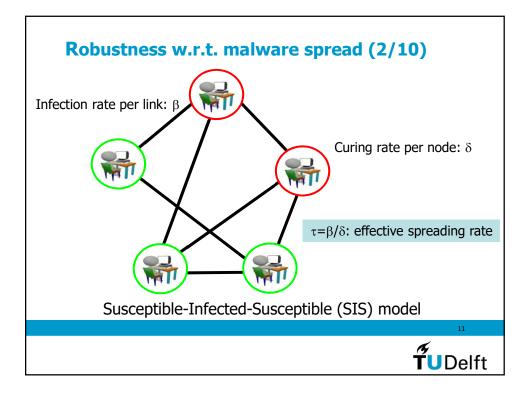
- Network elements subject to stochastic process
- Methods from statistical physics
 - · Mean-field approach
 - · Simulations vs. models

TUDelft

Robustness w.r.t. malware spread (1/10)

• Spread of malware (malicious software)

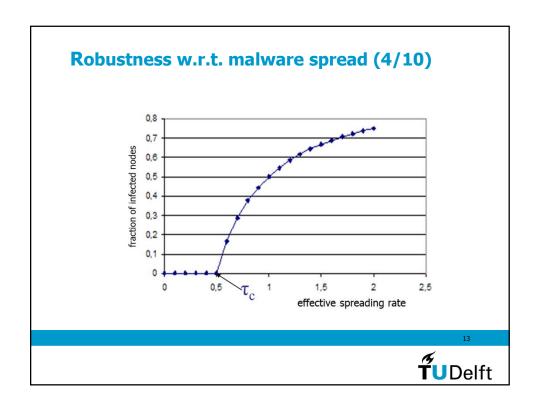
• Relation malware spread and network structure?

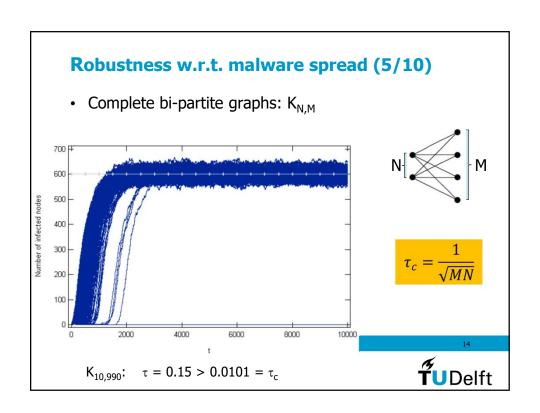


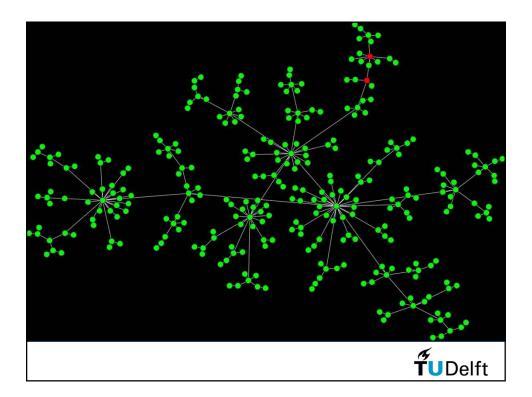
Robustness w.r.t. malware spread (3/10)

- Epidemic threshold au_c
 - Effective spreading rate $\leq \tau_{\it c}$ \rightarrow malware dies
 - Effective spreading rate > τ_c \rightarrow malware survives

$$\tau_c = \frac{1}{spectral\ radius}$$







Robustness w.r.t. malware spread (7/10)

- \bullet smaller $\rho\!\!:$ more robustness against malware spread
- connected graphs: which topology has the smallest $\ \rho$?
 - the path P_N $\rho(P_N) = 2\cos(\frac{\pi}{N+1})$
- what if we pose extra conditions?

Robustness w.r.t. malware spread (8/10)

- Relation between minimal ρ and diameter of a graph?
- Graphs on N nodes with diameter 2:

Minimal
$$\rho = \sqrt{N-1}$$

- Star topology
- 3 additional cases: regular graphs (N = 5, 10, 50)

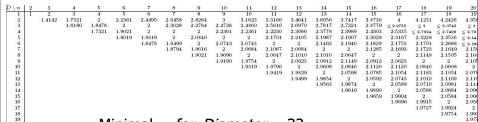
N =10

 ρ = 3

17

Robustness w.r.t. malware spread (9/10)

- Found minimal ρ for *Diameter* $\in \{ \lfloor N/2 \rfloor, N-3, N-2, N-1 \}$
- And for nearly all graphs on at most 20 nodes



Minimal ρ for *Diameter* = 3?

<u>Virus spread in networks</u> P Van Mieghem, J Omic, RE Kooij IEEE/ACM Transactions On Networking 17 (1), 1-14, 2009

The minimal spectral radius of graphs with a given diameter ER van Dam, RE Kooij

Linear Algebra and its Applications 423 (2-3), 408-419, 2008

Robustness of a gas distribution network

- N nodes
- L links
-) undirected graph
- Network availability = Pr {network is connected}
 - Nodes always operational
 - Each link interdependently operational with probability p
 - All-terminal reliability

Reliability polynomial

 $R_G(p) = Pr \{G \text{ is connected}\}$

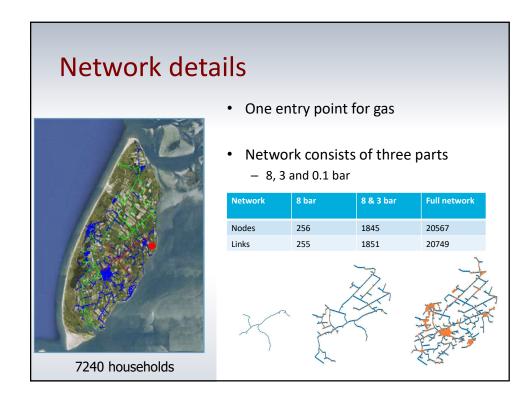
alliander

$$R_G(p) = F_0 p^L + F_1 (1-p) p^{L-1} + F_2 (1-p)^2 p^{L-2} + \dots + F_{L-N+1} (1-p)^{L-N+1} p^{N-1}$$

 F_i : # of sets of i links, whose removal leave G connected $F_1 = 6$

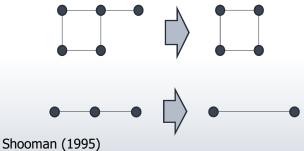
A case study

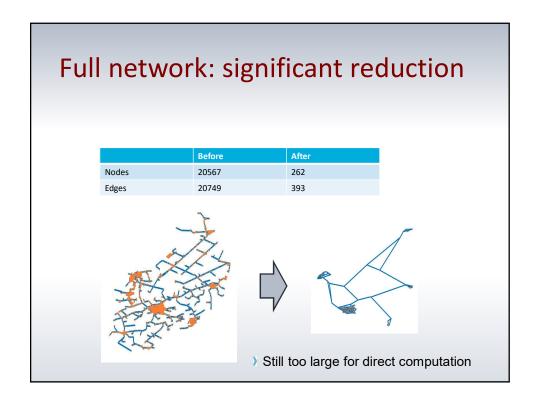
- · Links: gas pipes
- Nodes: points where pipes connect

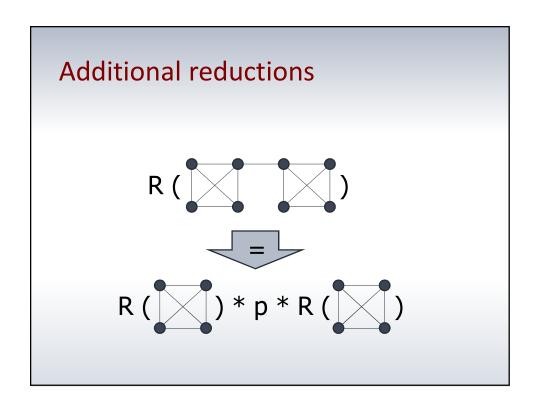


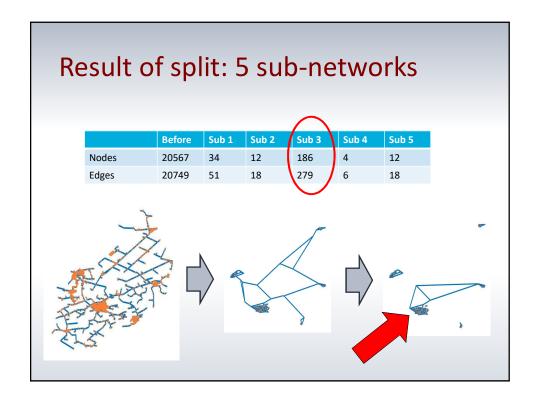
Reductions on the network

- Network is too large to process
- Reduce its size without loss of relevant information



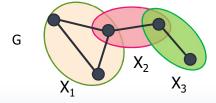






Largest sub-network: decomposition

• Decomposition based upon pathwidth of graph



• Computation time polynomial in pathwidth(G)

Results

Can we compute the exact availability of our gas network?

- Computation takes about 2 minutes
- Individual p values depend on
 - Soil type
 - Length of pipes

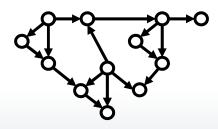
- Availability = 0.9919
 - 70 hours per year at least one node is disconnected
 - Assume every non-availability influences 3 households
 - Mean gas outage per household: 70*3600*3/7240 ≈ 104 seconds

Robustness of a gas distribution network

The reliability of a gas distribution network: A case study W Pino, D Worm, R van der Linden, R Kooij 2016 International Conference on System Reliability and Science (ICSRS), 122-129

Robustness of network controllability

Directed networks



- number of nodes = N
- number of links = L

Introduction to network control

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t)$$

 $\mathbf{x}(t) = (\mathbf{x}_1(t), \dots, \mathbf{x}_N(t))^{\mathsf{T}}$: state of system at time t

 $\mathbf{u}(t) = (\mathbf{u}_1(t),....,\mathbf{u}_M(t))^T$: control input vector

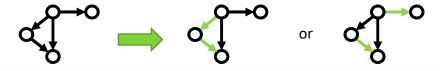
A: NxN matrix, describing systems connections

B: NxM input matrix, identifying nodes under outside control

 What is the minimum number of nodes that need to be controlled, to bring the system to a desired state?

Introduction to network control

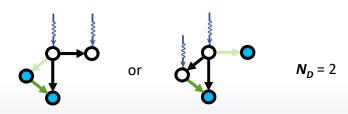
- How to find minimum number of driver nodes N_p ?
- · Through 'maximum matching' of network
 - maximum set of links that do not share start or end nodes



- Number of links in maximum matching is unique
- · Maximum matching itself is NOT unique
- $O(N^{1/2}L)$ algorithm (Hopcraft-Karp) to find maximum matching

Introduction to network control

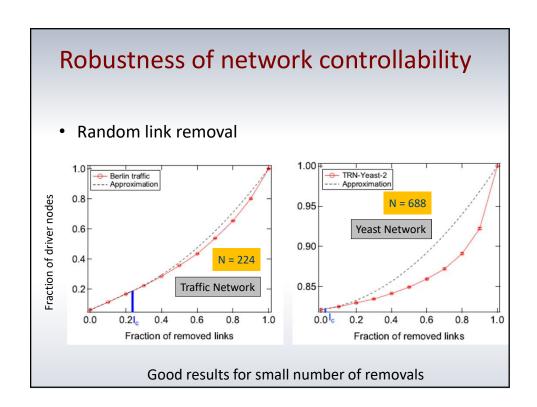
- · Matched links point to matched nodes
- N_D = number of unmatched nodes

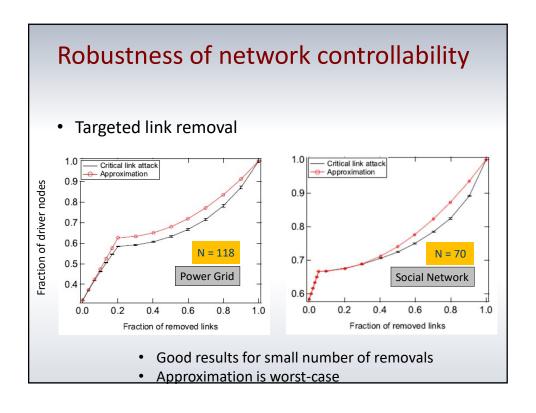


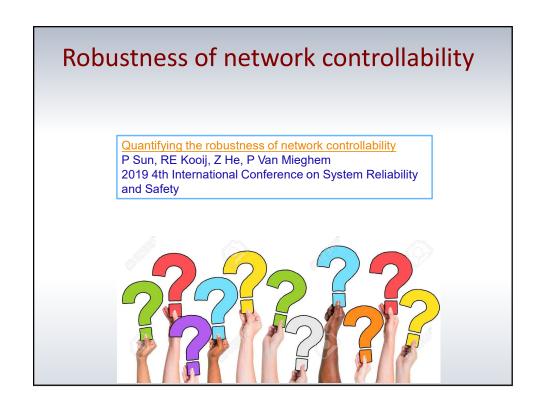
- · Critical link: appears in every maximum matching
- I_c = fraction of critical links

Robustness of network controllability

- Assume links are removed from network
 - Random removal (failures)
 - Targeted removal (attacks)
- Number of driver nodes N_D will increase
- Analytic approximations for the increase in N_D
- Approximation
 - − fraction of removed links $\leq I_c$: N_D linear in fraction of removed links
 - fraction of removed links $> I_c : N_D$ quadratic in fraction of removed links







Wrap-up

- Robustness of complex networks
- Societal relevance
- Quantification of robustness
 - Malware spread
 - Availability in gas distribution network
 - Network controllability
- Methods from statistical physics

r.e.kooij@tudelft.nl

