Mutually orthogonal cycle systems

Andrea Burgess, University of New Brunswick
Joint work with:

Nicholas Cavenagh
(University of Waikato)
David Pike
(Memorial University of Newfoundland)

AARMS Atlantic Graph Theory Seminar
January 26, 2022

Graph decompositions

- Let Γ be a graph, and let $H_{1}, H_{2}, \ldots, H_{t}$ be subgraphs of Γ.
- The subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ decompose Γ if their edge sets partition the edges of Γ.
- If $H_{1} \simeq \cdots \simeq H_{t} \simeq H$, then we speak of an H-decomposition of Γ.

Example (A K_{3}-decomposition of K_{7})

Graph decompositions

- Let Γ be a graph, and let $H_{1}, H_{2}, \ldots, H_{t}$ be subgraphs of Γ.
- The subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ decompose Γ if their edge sets partition the edges of Γ.
- If $H_{1} \simeq \cdots \simeq H_{t} \simeq H$, then we speak of an H-decomposition of Γ.

Example (A K_{3}-decomposition of K_{7})

Graph decompositions

- Let Γ be a graph, and let $H_{1}, H_{2}, \ldots, H_{t}$ be subgraphs of Γ.
- The subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ decompose Γ if their edge sets partition the edges of Γ.
- If $H_{1} \simeq \cdots \simeq H_{t} \simeq H$, then we speak of an H-decomposition of Γ.

Example (A K_{3}-decomposition of K_{7})

$(0,1,3)$
$(1,2,4)$
$(2,3,5)$
$(3,4,6)$
$(4,5,0)$
$(5,6,1)$
$(6,0,2)$

Graph decompositions

- Let Γ be a graph, and let $H_{1}, H_{2}, \ldots, H_{t}$ be subgraphs of Γ.
- The subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ decompose Γ if their edge sets partition the edges of Γ.
- If $H_{1} \simeq \cdots \simeq H_{t} \simeq H$, then we speak of an H-decomposition of Γ.

Example (A K_{3}-decomposition of K_{7})

$(0,1,3)$
$(1,2,4)$
$(2,3,5)$
$(3,4,6)$
$(4,5,0)$
$(5,6,1)$
$(6,0,2)$

Graph decompositions

- Let Γ be a graph, and let $H_{1}, H_{2}, \ldots, H_{t}$ be subgraphs of Γ.
- The subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ decompose Γ if their edge sets partition the edges of Γ.
- If $H_{1} \simeq \cdots \simeq H_{t} \simeq H$, then we speak of an H-decomposition of Γ.

Example (A K_{3}-decomposition of K_{7})

$(0,1,3)$
$(1,2,4)$
$(2,3,5)$
$(3,4,6)$
$(4,5,0)$
$(5,6,1)$
$(6,0,2)$

Graph decompositions

- Let Γ be a graph, and let $H_{1}, H_{2}, \ldots, H_{t}$ be subgraphs of Γ.
- The subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ decompose Γ if their edge sets partition the edges of Γ.
- If $H_{1} \simeq \cdots \simeq H_{t} \simeq H$, then we speak of an H-decomposition of Γ.

Example (A K_{3}-decomposition of K_{7})

$(0,1,3)$
$(1,2,4)$
$(2,3,5)$
$(3,4,6)$
$(4,5,0)$
$(5,6,1)$
$(6,0,2)$

Graph decompositions

- Let Γ be a graph, and let $H_{1}, H_{2}, \ldots, H_{t}$ be subgraphs of Γ.
- The subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ decompose Γ if their edge sets partition the edges of Γ.
- If $H_{1} \simeq \cdots \simeq H_{t} \simeq H$, then we speak of an H-decomposition of Γ.

Example (A K_{3}-decomposition of K_{7})

$(0,1,3)$
$(1,2,4)$
$(2,3,5)$
$(3,4,6)$
$(4,5,0)$
$(5,6,1)$
$(6,0,2)$

Graph decompositions

- Let Γ be a graph, and let $H_{1}, H_{2}, \ldots, H_{t}$ be subgraphs of Γ.
- The subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ decompose Γ if their edge sets partition the edges of Γ.
- If $H_{1} \simeq \cdots \simeq H_{t} \simeq H$, then we speak of an H-decomposition of Γ.

Example (A K_{3}-decomposition of K_{7})

$(0,1,3)$
$(1,2,4)$
$(2,3,5)$
$(3,4,6)$
$(4,5,0)$
$(5,6,1)$
$(6,0,2)$

Decompositions and Designs

Definition

A K_{3}-decomposition of K_{n} is called a Steiner triple system of order n, STS(n).

Theorem (Kirkman, 1847)

Let $n \in \mathbb{Z}^{+}$. There is an $\operatorname{STS}(n)$ if and only if $n \equiv 1$ or $3(\bmod 6)$.
A K_{k}-decomposition of K_{v} is a:

- Balanced Incomplete Block Design $\operatorname{BIBD}(v, k, 1)$
- Steiner system $\mathrm{S}(2, k, v)$

Cycle systems

A C_{ℓ}-decomposition of K_{n} is called a ℓ-cycle system of order n.

Example (A 4-cycle system of order 9)

		$(0,1,8,3)$
		$(1,2,0,4)$
	- ${ }^{1}$	(2, 3, 1, 5)
		$(3,4,2,6)$
$7 \bullet$	$\bullet 2$	$(4,5,3,7)$
${ }^{\bullet}$		$(5,6,4,8)$
6 -	- 3	$(6,7,5,0)$
5	4	$(7,8,6,1)$
		$(8,0,7,2)$

Cycle systems

A C_{ℓ}-decomposition of K_{n} is called a ℓ-cycle system of order n.

Example (A 4-cycle system of order 9)

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7) \\
& (5,6,4,8) \\
& (6,7,5,0) \\
& (7,8,6,1) \\
& (8,0,7,2)
\end{aligned}
$$

Cycle systems

A C_{ℓ}-decomposition of K_{n} is called a ℓ-cycle system of order n.

Example (A 4-cycle system of order 9)

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7) \\
& (5,6,4,8) \\
& (6,7,5,0) \\
& (7,8,6,1) \\
& (8,0,7,2)
\end{aligned}
$$

Cycle systems

A C_{ℓ}-decomposition of K_{n} is called a ℓ-cycle system of order n.

Example (A 4-cycle system of order 9)

$(0,1,8,3)$
$(1,2,0,4)$
$(2,3,1,5)$
$(3,4,2,6)$
$(4,5,3,7)$
$(5,6,4,8)$
$(6,7,5,0)$
$(7,8,6,1)$
$(8,0,7,2)$

Cycle systems

A C_{ℓ}-decomposition of K_{n} is called a ℓ-cycle system of order n.

Example (A 4-cycle system of order 9)

$(0,1,8,3)$
$(1,2,0,4)$
$(2,3,1,5)$
$(3,4,2,6)$
$(4,5,3,7)$
$(5,6,4,8)$
$(6,7,5,0)$
$(7,8,6,1)$
$(8,0,7,2)$

Cycle systems

A C_{ℓ}-decomposition of K_{n} is called a ℓ-cycle system of order n.

Example (A 4-cycle system of order 9)

$(0,1,8,3)$
$(1,2,0,4)$
$(2,3,1,5)$
$(3,4,2,6)$
$(4,5,3,7)$
$(5,6,4,8)$
$(6,7,5,0)$
$(7,8,6,1)$
$(8,0,7,2)$

Cycle systems

A C_{ℓ}-decomposition of K_{n} is called a ℓ-cycle system of order n.

Example (A 4-cycle system of order 9)

$(0,1,8,3)$
$(1,2,0,4)$
$(2,3,1,5)$
$(3,4,2,6)$
$(4,5,3,7)$
$(5,6,4,8)$
$(6,7,5,0)$
$(7,8,6,1)$
$(8,0,7,2)$

Cycle systems

A C_{ℓ}-decomposition of K_{n} is called a ℓ-cycle system of order n.

Example (A 4-cycle system of order 9)

$(0,1,8,3)$
$(1,2,0,4)$
$(2,3,1,5)$
$(3,4,2,6)$
$(4,5,3,7)$
$(5,6,4,8)$
$(6,7,5,0)$
$(7,8,6,1)$
$(8,0,7,2)$

Cycle systems

A C_{ℓ}-decomposition of K_{n} is called a ℓ-cycle system of order n.

Example (A 4-cycle system of order 9)

$(0,1,8,3)$
$(1,2,0,4)$
$(2,3,1,5)$
$(3,4,2,6)$
$(4,5,3,7)$
$(5,6,4,8)$
$(6,7,5,0)$
$(7,8,6,1)$
$(8,0,7,2)$

Cycle systems

A C_{ℓ}-decomposition of K_{n} is called a ℓ-cycle system of order n.

Example (A 4-cycle system of order 9)

$(0,1,8,3)$
$(1,2,0,4)$
$(2,3,1,5)$
$(3,4,2,6)$
$(4,5,3,7)$
$(5,6,4,8)$
$(6,7,5,0)$
$(7,8,6,1)$
$(8,0,7,2)$

Existence of ℓ-cycle systems

Theorem (Alspach, Gavlas, 2001; Šajna, 2002; see also Buratti 2003)
There exists an ℓ-cycle decomposition of K_{n} if and only if:

- n is odd,
- $3 \leq \ell \leq n$, and
- $\ell \left\lvert\,\binom{ n}{2}\right.$

Given $\ell \geq 3$, we will refer to a value of n satisfying these conditions as ℓ-admissible.

Cycle decompositions of the cocktail party graph

Theorem (Alspach, Gavlas, 2001; Šajna, 2002)
There exists an ℓ-cycle decomposition of $K_{n}-I$ if and only if:

- n is even,
- $3 \leq \ell \leq n$, and
- $\ell \left\lvert\,\binom{ n}{2}-n\right.$

Example (A 4-cycle decomposition of $K_{8}-I$)

Example (A 4-cycle decomposition of $K_{8}-I$)

-

Example (A 4-cycle decomposition of $K_{8}-I$)

Cyclic cycle systems

A cycle system \mathscr{C} is cyclic if it admits an automorphism which cyclically permutes the vertices.

In other words, we can take the vertex set to be \mathbb{Z}_{n}, and

$$
\left(c_{0}, c_{1}, \ldots, c_{\ell-1}\right) \in \mathscr{C} \Rightarrow\left(c_{0}+1, c_{1}+1, \ldots, c_{\ell-1}+1\right) \in \mathscr{C} .
$$

Cyclic cycle systems

A cycle system \mathscr{C} is cyclic if it admits an automorphism which cyclically permutes the vertices.

In other words, we can take the vertex set to be \mathbb{Z}_{n}, and

$$
\left(c_{0}, c_{1}, \ldots, c_{\ell-1}\right) \in \mathscr{C} \Rightarrow\left(c_{0}+1, c_{1}+1, \ldots, c_{\ell-1}+1\right) \in \mathscr{C}
$$

Necessary and sufficient conditions for existence of a cyclic C_{ℓ}-decomposition of K_{n} are known when:

- $n \equiv 1$ or $\ell(\bmod 2 \ell)$. (Buratti and Del Fra, 2003; Bryant, Gavlas and Ling, 2003; Buratti and Del Fra, 2004; Vietri, 2004)
- $\ell=n$ (Buratti and Del Fra, 2004)
- $\ell \leq 32$ (Wu and Fu, 2006)
- $\ell=2 p^{\alpha}$ or $3 p, p$ prime (Wu and Fu, 2006; Wu, 2013)
- ℓ even and $n>2 \ell(\mathrm{Wu}, 2012)$

Difference Families

Consider a cycle $C=\left(c_{0}, c_{1}, \ldots, c_{\ell-1}\right)$ with vertices in \mathbb{Z}_{n}.
Its list of differences is the multiset $\Delta C=\left\{ \pm\left(c_{i+1}-c_{i}\right) \mid 0 \leq i \leq \ell\right\}$ (where subscripts are taken modulo ℓ).

For a family \mathcal{F} of cycles, $\Delta \mathcal{F}$ is the multiset union of the difference lists of its cycles.

If $\Delta \mathcal{F}=\mathbb{Z}_{n} \backslash\{0\}$, then \mathcal{F} is a set of base cycles for a cyclic ℓ-cycle system of order n.

If such a family exists, then $n \equiv 1(\bmod 2 \ell)$.

Example: A cyclic 4-cycle system of order 9

$$
(0,1,8,3)
$$

Example: A cyclic 4-cycle system of order 9

Example: A cyclic 4-cycle system of order 9

Example: A cyclic 4-cycle system of order 9

Example: A cyclic 4-cycle system of order 9

Example: A cyclic 4-cycle system of order 9

Example: A cyclic 4-cycle system of order 9

Example: A cyclic 4-cycle system of order 9

Example: A cyclic 4-cycle system of order 9

Example: A cyclic 4-cycle system of order 9

We denote the orbit of the base cycle $(0,1,8,3)$ under the action of \mathbb{Z}_{9} by

$$
[1,-2,4,-3]_{9}
$$

Example

The cycles $(0,1,5,3)$ and $(0,5,13,7)$ are base cycles for a cyclic 4 -cycle system of order 17 .

Orbits: $[1,4,-2,-3]_{17}$ and $[5,8,-6,-7]_{17}$

Orthogonal cycle systems

Let \mathscr{C}_{1} and \mathscr{C}_{2} be ℓ-cycle systems on the same vertex set.
These systems are orthogonal if any cycles $C \in \mathscr{C}_{1}$ and $C^{\prime} \in \mathscr{C}_{2}$ share at most one edge.

Example

\mathscr{B}		\mathscr{C}	
$(0,1,8,3)$		$(0,1,2,3)$	
$(0,1,7,6)$			
$(1,2,0,4)$		$(0,2,5,4)$	
$(2,3,2,3,5)$			
$(3,4,2,5)$		$(0,5,1,6)$	
$(0,3,8,7)$			
$(4,5,3,7)$		$(0,7,2,8)$	
$(0,3,6,4)$		$(1,2,8)$	
$(5,6,4,8)$		$(2,4,7,6)$	
$(6,7,5,3,4,5)$			
$(7,8,6,1)$		$(2,7,5,8)$	
$(3,4,6,4,8)$			
$(8,0,7,2)$		$(3,5,6,8)$	

Example

\mathscr{B}	\mathscr{C}	\mathscr{D}
(0, 1, 8, 3)	(0, 1, 2, 3)	(0, 1, 7, 6)
(1, 2, 0, 4)	(0, 2, 5, 4)	(0, 2, 3, 5)
(2, 3, 1, 5)	(0,5, 1, 6)	(0,3, 8, 7)
(3, 4, 2, 6)	(0,7, 2, 8)	(0, 4, 2, 8)
(4, 5, 3, 7)	(1, 3, 6, 4)	(1, 2, 7, 4)
$(5,6,4,8)$	($2,4,7,6$)	(1, 3, 4, 5)
$(6,7,5,0)$	$(2,7,5,8)$	(1, 6, 4, 8)
$(7,8,6,1)$	$(3,4,8,7)$	(2, 5, 8, 6)
(8, 0, 7, 2)	$(3,5,6,8)$	$(3,6,5,7)$

\mathscr{B} and \mathscr{C} are not orthogonal

Example

\mathscr{B}	\mathscr{C}	\mathscr{D}
(0, 1, 8, 3)	(0, 1, 2, 3)	(0, 1, 7, 6)
(1, 2, 0, 4)	(0, 2, 5, 4)	(0, 2, 3, 5)
(2, 3, 1, 5)	(0, 5, 1, 6)	(0,3, 8, 7)
(3, 4, 2, 6)	(0,7,2, 8)	(0,4,2,8)
$(4,5,3,7)$	(1, 3, 6, 4)	(1, 2, 7, 4)
$(5,6,4,8)$	($2,4,7,6$)	(1, 3, 4, 5)
$(6,7,5,0)$	($2,7,5,8$)	(1, 6, 4, 8)
$(7,8,6,1)$	$(3,4,8,7)$	(2, 5, 8, 6)
$(8,0,7,2)$	$(3,5,6,8)$	$(3,6,5,7)$

\mathscr{B} and \mathscr{C} are not orthogonal
\mathscr{C} and \mathscr{D} are orthogonal

Example

\mathscr{B}	\mathscr{C}	D
(0, 1, 8, 3)	(0, 1, 2, 3)	(0, 1, 7, 6)
(1, 2, 0, 4)	(0, 2, 5, 4)	(0, 2, 3, 5)
(2, 3, 1, 5)	(0, 5, 1, 6)	(0,3, 8, 7)
(3, 4, 2, 6)	(0,7,2, 8)	(0,4,2, 8)
$(4,5,3,7)$	(1, 3, 6, 4)	(1, 2, 7, 4)
$(5,6,4,8)$	(2, 4, 7, 6)	(1, 3, 4, 5)
$(6,7,5,0)$	$(2,7,5,8)$	(1, 6, 4, 8)
$(7,8,6,1)$	(3, 4, 8, 7)	($2,5,8,6$)
$(8,0,7,2)$	$(3,5,6,8)$	$(3,6,5,7)$

\mathscr{B} and \mathscr{C} are not orthogonal
\mathscr{C} and \mathscr{D} are orthogonal

Heffter arrays

Definition (Archdeacon, 2015)

A Heffter array $H(m, n ; k, \ell)$ is an $m \times n$ array with entries from $\mathbb{Z}_{2 m k+1} \backslash\{0\}$ such that:

- Each row contains k filled cells, and each column contains ℓ filled cells.
- Each row and column sums to $0(\bmod 2 m k+1)$.
- For each $x \in \mathbb{Z}_{2 m k+1} \backslash\{0\}$, exactly one of x and $-x$ appears as an entry.

If $m=n$ and $k=\ell$, we write $H(n ; \ell)$.

Theorem (Archdeacon, Dinitz, Donovan, Yazıcı, 2015; Dinitz, Wanless, 2017; Cavenagh, Dinitz, Donovan, Yazıcı, 2019)

There is a square Heffter array $H(n ; \ell)$ if and only if $3 \leq \ell \leq n$.

Example (An $H(8 ; 7)$)

8	16		25	-27	-29	31	-24
-17	-6	23	-28	26	32	-30	
39	-10	-5	15		33	-35	-37
-38		-18	7	11	-36	34	40
-43	-45	47	-22	3	19		41
42	48	-46		-14	2	12	-44
	49	-51	-53	55	-21	1	20
9	-52	50	56	-54		-13	4

(Example taken from Costa, Morini, Pasotti and Pellegrini, 2018.)

Heffter arrays and orthogonal cycle systems

- Consider the entries of $H(n ; \ell)$ as differences in $\mathbb{Z}_{2 n \ell+1}$.

Heffter arrays and orthogonal cycle systems

- Consider the entries of $H(n ; \ell)$ as differences in $\mathbb{Z}_{2 n \ell+1}$.
- Each row generates a closed trail in $K_{2 n \ell+1}$.

$$
[8,16,25,-27,-29,31,-24] \rightarrow(0,8,24,49,22,-7,24)
$$

Heffter arrays and orthogonal cycle systems

- Consider the entries of $H(n ; \ell)$ as differences in $\mathbb{Z}_{2 n \ell+1}$.
- Each row generates a closed trail in $K_{2 n \ell+1}$.

$$
[8,16,25,-27,-29,31,-24] \rightarrow(0,8,24,49,22,-7,24)
$$

- If a row can be ordered so that its partial sums are distinct, then it generates a cycle.

$$
[8,16,25,-27,-29,-24,31] \rightarrow(0,8,24,49,22,-7,-31)
$$

Heffter arrays and orthogonal cycle systems

- Consider the entries of $H(n ; \ell)$ as differences in $\mathbb{Z}_{2 n \ell+1}$.
- Each row generates a closed trail in $K_{2 n \ell+1}$.

$$
[8,16,25,-27,-29,31,-24] \rightarrow(0,8,24,49,22,-7,24)
$$

- If a row can be ordered so that its partial sums are distinct, then it generates a cycle.

$$
[8,16,25,-27,-29,-24,31] \rightarrow(0,8,24,49,22,-7,-31)
$$

- If every row has such an ordering, we get base cycles for a cyclic ℓ-cycle system of $K_{2 n \ell+1}$.

Heffter arrays and orthogonal cycle systems

- Consider the entries of $H(n ; \ell)$ as differences in $\mathbb{Z}_{2 n \ell+1}$.
- Each row generates a closed trail in $K_{2 n \ell+1}$.

$$
[8,16,25,-27,-29,31,-24] \rightarrow(0,8,24,49,22,-7,24)
$$

- If a row can be ordered so that its partial sums are distinct, then it generates a cycle.

$$
[8,16,25,-27,-29,-24,31] \rightarrow(0,8,24,49,22,-7,-31)
$$

- If every row has such an ordering, we get base cycles for a cyclic ℓ-cycle system of $K_{2 n \ell+1}$.
- Similarly, if each column can be ordered appropriately, we get another cyclic ℓ-cycle system.

Heffter arrays and orthogonal cycle systems

- Consider the entries of $H(n ; \ell)$ as differences in $\mathbb{Z}_{2 n \ell+1}$.
- Each row generates a closed trail in $K_{2 n \ell+1}$.

$$
[8,16,25,-27,-29,31,-24] \rightarrow(0,8,24,49,22,-7,24)
$$

- If a row can be ordered so that its partial sums are distinct, then it generates a cycle.

$$
[8,16,25,-27,-29,-24,31] \rightarrow(0,8,24,49,22,-7,-31)
$$

- If every row has such an ordering, we get base cycles for a cyclic ℓ-cycle system of $K_{2 n \ell+1}$.
- Similarly, if each column can be ordered appropriately, we get another cyclic ℓ-cycle system.
- These cycle systems are orthogonal.

Existence results for orthogonal cycle systems

Theorem (Costa, Morini, Pasotti, Pellegrini, 2018)

- For $3 \leq \ell \leq 10$, there exists a pair of orthogonal cyclic k-cycle systems of order $2 n \ell+1$ whenever $n \ell \equiv 0$ or $3(\bmod 4)$.
- Comparable result for the cocktail party graph.

Theorem (Burrage, Donovan, Cavenagh, Yazıcı, 2020)

There is a pair of orthogonal cyclic ℓ-cycle systems of order $2 n \ell+1$ whenever

- $\ell \equiv 0(\bmod 4)$
- $n \equiv 1(\bmod 4)$ and $\ell \equiv 3(\bmod 4)$
- $n \equiv 0(\bmod 4), \ell \equiv 3(\bmod 4)$ and $n \gg \ell$

Mutually orthogonal cycle systems

A collection of cycle systems is mutually orthogonal if any two of them are orthogonal.

Mutually orthogonal cycle systems

A collection of cycle systems is mutually orthogonal if any two of them are orthogonal.

- $\mu(\ell, n)$ denotes the maximum number of mutually orthogonal ℓ-cycle systems of order n

Mutually orthogonal cycle systems

A collection of cycle systems is mutually orthogonal if any two of them are orthogonal.

- $\mu(\ell, n)$ denotes the maximum number of mutually orthogonal ℓ-cycle systems of order n
- $\mu^{\prime}(\ell, n)$ denotes the maximum number of mutually orthogonal cyclic ℓ-cycle systems of order n

Upper Bounds

Lemma (AB, Cavenagh, Pike, 2022+)

- $\mu(\ell, n) \leq n-2$
- $\mu(\ell, n) \leq \frac{(n-2)(n-3)}{2(\ell-3)}$
- If $2 \ell^{2}>n(n-1)$, then $\mu(\ell, n) \leq 1$.

So if $\ell>\frac{n}{\sqrt{2}}$, there is no pair of orthogonal cycle systems of order n.

- $\mu^{\prime}(\ell, n) \leq n-3$

Mutually orthogonal 3-cycle systems

A collection of 3-cycle systems of order n, i.e. STS(n), is mutually orthogonal iff no two systems share a 3-cycle.

Mutually orthogonal 3-cycle systems

A collection of 3-cycle systems of order n, i.e. STS(n), is mutually orthogonal iff no two systems share a 3-cycle.

Definition

A large set of Steiner triple systems of order n is a collection of $n-2$ pairwise block-disjoint STS (n) whose blocks partition the set of all triples on n elements.

Mutually orthogonal 3-cycle systems

A collection of 3 -cycle systems of order n, i.e. STS(n), is mutually orthogonal iff no two systems share a 3-cycle.

Definition

A large set of Steiner triple systems of order n is a collection of $n-2$ pairwise block-disjoint STS (n) whose blocks partition the set of all triples on n elements.

Theorem (Lu, 1983, 1984; Teirlinck, 1991)

There is a large set of $\operatorname{STS}(n)$ if and only if n is 3-admissible and $n \neq 7$.

Mutually orthogonal 3-cycle systems

A collection of 3 -cycle systems of order n, i.e. STS(n), is mutually orthogonal iff no two systems share a 3-cycle.

Definition

A large set of Steiner triple systems of order n is a collection of $n-2$ pairwise block-disjoint STS (n) whose blocks partition the set of all triples on n elements.

Theorem (Lu, 1983, 1984; Teirlinck, 1991)

There is a large set of $\operatorname{STS}(n)$ if and only if n is 3-admissible and $n \neq 7$.

Corollary

If $n \neq 7$ is 3 -admissible, then $\mu(3, n)=n-2$.

Asymptotic results

Theorem (Caro and Yuster, 2001)

Let H be a graph and $k \geq 1$ a fixed integer.
For any sufficiently large n such that K_{n} is H-decomposable, there exists a set of k pairwise orthogonal H-decompositions of K_{n}.

Corollary

For any sufficiently large ℓ-admissible n, there exists a set of k pairwise orthogonal ℓ-cycle systems of K_{n}.

Mutually orthogonal 4-cycle systems

There exists a 4-cycle system of order n iff $n \equiv 1(\bmod 8)$.

Mutually orthogonal 4-cycle systems

There exists a 4-cycle system of order n iff $n \equiv 1(\bmod 8)$.

Lemma (AB, Cavenagh, Pike, 2022+)

- $\mu(4,9)=4, \mu^{\prime}(4,9)=2$
- $\mu^{\prime}(4,17)=10$
- $\mu^{\prime}(4,25) \geq 17$

Mutually orthogonal 4-cycle systems

There exists a 4-cycle system of order n iff $n \equiv 1(\bmod 8)$.

Lemma (AB, Cavenagh, Pike, 2022+)

- $\mu(4,9)=4, \mu^{\prime}(4,9)=2$
- $\mu^{\prime}(4,17)=10$
- $\mu^{\prime}(4,25) \geq 17$

Theorem (AB, Cavenagh, Pike, 2022+)

If $n \equiv 1(\bmod 8)$ and $n \geq 17$, then $\mu^{\prime}(4, n) \geq \frac{n-1}{2}$.

Example: Order $n=17$

- Take a 1-factorization of $K_{4}=K_{(n-1) / 4}$

$$
F_{1}=\{\{1,2\},\{3,4\}\} \quad F_{2}=\{\{1,3\},\{2,4\}\} \quad F_{3}=\{\{1,4\},\{2,3\}\}
$$

Example: Order $n=17$

- Take a 1-factorization of $K_{4}=K_{(n-1) / 4}$

$$
F_{1}=\{\{1,2\},\{3,4\}\} \quad F_{2}=\{\{1,3\},\{2,4\}\} \quad F_{3}=\{\{1,4\},\{2,3\}\}
$$

- From each edge $\{x, y\}$ of K_{4} form a cycle $C_{x, y}$ with

$$
\Delta\left(C_{x, y}\right)= \pm\{2 x-1,2 x, 2 y-1,2 y\}
$$

Each 1-factor yields base cycle for a cyclic 4-cycle system \mathcal{F}_{i}.

$$
\begin{array}{ll}
& \text { Base cycles } \\
\mathcal{F}_{1} & \{(0,1,5,3),(0,5,13,7)\} \\
\mathcal{F}_{2} & \{(0,1,7,5),(0,3,11,7)\} \\
\mathcal{F}_{3} & \{(0,1,9,7),(0,3,9,5)\}
\end{array}
$$

Orbits

$$
\left\{[1,4,-2,-3]_{17},[5,8,-6,-7]_{17}\right\}
$$

$$
\left\{[1,6,-2,-5]_{17},[3,8,-4,-7]_{17}\right\}
$$

$$
\left\{[1,8,-2,-7]_{17},[3,6,-4,-5]_{17}\right\}
$$

Example: Order $n=17$

- Take a 1-factorization of $K_{4}=K_{(n-1) / 4}$

$$
F_{1}=\{\{1,2\},\{3,4\}\} \quad F_{2}=\{\{1,3\},\{2,4\}\} \quad F_{3}=\{\{1,4\},\{2,3\}\}
$$

- From each edge $\{x, y\}$ of K_{4} form a cycle $C_{x, y}$ with

$$
\Delta\left(C_{x, y}\right)= \pm\{2 x-1,2 x, 2 y-1,2 y\}
$$

Each 1 -factor yields base cycle for a cyclic 4 -cycle system \mathcal{F}_{i}.

$$
\begin{array}{lll}
& \text { Base cycles } & \text { Orbits } \\
\mathcal{F}_{1} & \{(0,1,5,3),(0,5,13,7)\} & \left\{[1,4,-2,-3]_{17},[5,8,-6,-7]_{17}\right\} \\
\mathcal{F}_{2} & \{(0,1,7,5),(0,3,11,7)\} & \left\{[1,6,-2,-5]_{17},[3,8,-4,-7]_{17}\right\} \\
\mathcal{F}_{3} & \{(0,1,9,7),(0,3,9,5)\} & \left\{[1,8,-2,-7]_{17},[3,6,-4,-5]_{17}\right\} \\
& & \\
\mathcal{F}_{1}^{\prime} & \{(0,1,-2,-4),(0,5,-2,-8)\} & \left\{[1,-3,-2,4]_{17},[5,-7,-6,8]_{17}\right\} \\
\mathcal{F}_{2}^{\prime} & \{(0,1,-4,-6),(0,3,-4,-8)\} & \left\{[1,-5,-2,6]_{17},[3,-7,-4,8]_{17}\right\} \\
\mathcal{F}_{3}^{\prime} & \{(0,1,-6,-8),(0,3,-2,-6)\} & \left\{[1,-7,-2,8]_{17},[3,-5,-4,6]_{17}\right\}
\end{array}
$$

- Modify each \mathcal{F}_{i} to get another system \mathcal{F}_{i}^{\prime}.

Example: Order $n=17$

- Take a 1-factorization of $K_{4}=K_{(n-1) / 4}$

$$
F_{1}=\{\{1,2\},\{3,4\}\} \quad F_{2}=\{\{1,3\},\{2,4\}\} \quad F_{3}=\{\{1,4\},\{2,3\}\}
$$

- From each edge $\{x, y\}$ of K_{4} form a cycle $C_{x, y}$ with

$$
\Delta\left(C_{x, y}\right)= \pm\{2 x-1,2 x, 2 y-1,2 y\}
$$

Each 1 -factor yields base cycle for a cyclic 4 -cycle system \mathcal{F}_{i}.

$$
\begin{array}{lll}
& \text { Base cycles } & \text { Orbits } \\
\mathcal{F}_{1} & \{(0,1,5,3),(0,5,13,7)\} & \left\{[1,4,-2,-3]_{17},[5,8,-6,-7]_{17}\right\} \\
\mathcal{F}_{2} & \{(0,1,7,5),(0,3,11,7)\} & \left\{[1,6,-2,-5]_{17},[3,8,-4,-7]_{17}\right\} \\
\mathcal{F}_{3} & \{(0,1,9,7),(0,3,9,5)\} & \left\{[1,8,-2,-7]_{17},[3,6,-4,-5]_{17}\right\} \\
& & \\
\mathcal{F}_{1}^{\prime} & \{(0,1,-2,-4),(0,5,-2,-8)\} & \left\{[1,-3,-2,4]_{17},[5,-7,-6,8]_{17}\right\} \\
\mathcal{F}_{2}^{\prime} & \{(0,1,-4,-6),(0,3,-4,-8)\} & \left\{[1,-5,-2,6]_{17},[3,-7,-4,8]_{17}\right\} \\
\mathcal{F}_{3}^{\prime} & \{(0,1,-6,-8),(0,3,-2,-6)\} & \left\{[1,-7,-2,8]_{17},[3,-5,-4,6]_{17}\right\}
\end{array}
$$

- Modify each \mathcal{F}_{i} to get another system \mathcal{F}_{i}^{\prime}.
- Replace \mathcal{F}_{1} and \mathcal{F}_{1}^{\prime} with four specially constructed systems.

Even cycle systems

Theorem (AB, Cavenagh, Pike, 2022+)

Let $\ell \geq 4$ be even and $n \equiv 1(\bmod 2 \ell)$. Then

$$
\mu(\ell, n)=\Omega\left(\frac{n}{\ell^{2}}\right) .
$$

Even cycle systems

Theorem (AB, Cavenagh, Pike, 2022+)

Let $\ell \geq 4$ be even and $n \equiv 1(\bmod 2 \ell)$. Then

$$
\mu(\ell, n)=\Omega\left(\frac{n}{\ell^{2}}\right) .
$$

Specifically,

Theorem (AB, Cavenagh, Pike, 2022+)

Let $\ell \geq 4$ be even and $n \equiv 1(\bmod 2 \ell)$. Then

$$
\mu^{\prime}(\ell, n) \geq \frac{n-1}{2 \ell(a \ell+b)}-1
$$

where

$$
(a, b)= \begin{cases}(4,-2), & \text { if } \ell \equiv 0(\bmod 4) \\ (24,-18), & \text { if } \ell \equiv 2(\bmod 4) .\end{cases}
$$

Balanced sets of differences

Definition

A set $D=\left\{d_{1}, d_{2}, \ldots, d_{2 k}\right\}$ of positive integers with $d_{1}<d_{2}<\ldots<d_{2 k}$ is balanced if there exists $t \in[1, k]$ such that

$$
\sum_{i=1}^{2 t}(-1)^{i} d_{i}=\sum_{i=2 t+1}^{2 k}(-1)^{i} d_{i}
$$

Lemma

If D is balanced, then there is a $2 k$-cycle C with vertices in $\left[-d_{2 k}, d_{2 k-1}\right]$ such that $\Delta C= \pm D$.

Example (Forming cycles from balanced sets)

D: $1 \begin{array}{llllll}2 & 2 & 3 & 4 & 6 & 8\end{array}$

Example (Forming cycles from balanced sets)

So if we can partition the set $\{1,2, \ldots,(n-1) / 2\}$ into balanced $2 k$-sets, then there is a cyclic $2 k$-cycle system of order n.

$4 k$-cycle systems of order $n=8 k N+1$

- For a pair (d, e) with $d+e=N$, we can form a cyclic $4 k$-cycle system \mathscr{C}_{d} of order $8 k N+1$.

$4 k$-cycle systems of order $n=8 \mathrm{kN}+1$

- For a pair (d, e) with $d+e=N$, we can form a cyclic $4 k$-cycle system \mathscr{C}_{d} of order $8 k N+1$.
- We form d balanced $4 k$-sets that partition

$$
\{1, \ldots, 4 k d\}
$$

and e balanced $4 k$-sets that partition

$$
\{4 k d+1, \ldots, 4 k N\} .
$$

Example: A cyclic 12 -cycle system of order $97=24 \cdot 4+1$

Let $d=1$ and $e=3$. We get the following balanced sets of differences.

$$
\begin{aligned}
& 1,2,3,4,5,6,7,8,9,10,11,12 \\
& 13,16,19,22,25,28,31,34,37,40,43,46 \\
& 14,17,20,23,26,29,32,35,38,41,44,47 \\
& 15,18,21,24,27,30,33,36,39,42,45,48
\end{aligned}
$$

These yield starter cycles

$$
\begin{aligned}
& (0,-1,1,-2,2,-3,4,-4,5,-5,6,-6) \\
& (0,-13,3,-16,6,-19,12,-22,15,-25,18,-28) \\
& (0,-14,3,-17,6,-20,12,-23,15,-26,18,-29) \\
& (0,-16,3,-18,6,-21,12,-24,15,-27,18,-30)
\end{aligned}
$$

Getting orthogonal systems

We generate a cycle system for each pair (d, e) with $d+e=N$.

Getting orthogonal systems

We generate a cycle system for each pair (d, e) with $d+e=N$. But in general, they are not mutually orthogonal!

Getting orthogonal systems

We generate a cycle system for each pair (d, e) with $d+e=N$. But in general, they are not mutually orthogonal!

For instance, the system on the previous slide contained the cycle

$$
(0,-1,1,-2,2-3,4,-4,5,-5,6,-6)
$$

Getting orthogonal systems

We generate a cycle system for each pair (d, e) with $d+e=N$. But in general, they are not mutually orthogonal!

For instance, the system on the previous slide contained the cycle

$$
(0,-1,1,-2,2-3,4,-4,5,-5,6,-6)
$$

The system generated by taking $d=0$ and $e=4$ contains the cycle

$$
(1,-1,5,-5,9,-9,17,-13,21,-17,25,-21)
$$

Getting orthogonal systems

We generate a cycle system for each pair (d, e) with $d+e=N$. But in general, they are not mutually orthogonal!

For instance, the system on the previous slide contained the cycle

$$
(0,-1,1,-2,2-3,4,-4,5,-5,6,-6)
$$

The system generated by taking $d=0$ and $e=4$ contains the cycle

$$
(1,-1,5,-5,9,-9,17,-13,21,-17,25,-21)
$$

Getting orthogonal systems

We generate a cycle system for each pair (d, e) with $d+e=N$. But in general, they are not mutually orthogonal!

For instance, the system on the previous slide contained the cycle

$$
(0,-1,1,-2,2-3,4,-4,5,-5,6,-6)
$$

The system generated by taking $d=0$ and $e=4$ contains the cycle

$$
(1,-1,5,-5,9,-9,17,-13,21,-17,25,-21)
$$

Lemma

If d and d^{\prime} are distinct integers with $\frac{N}{2}-\frac{N}{16 k-2}<d, d^{\prime}<\frac{N}{2}$, then for cycles $C \in \mathscr{C}_{d}$ and $C^{\prime} \in \mathscr{C}_{d^{\prime}}, \Delta(C) \cap \Delta\left(C^{\prime}\right)=\emptyset$ or $\{ \pm t\}$. Hence \mathscr{C}_{d} and $\mathscr{C}_{d^{\prime}}$ are orthogonal.

Computational results

For $n=2 \ell+1$, we have the following computational results:

ℓ	n	$\mu^{\prime}(\ell, n)$
3	7	2
4	9	2
5	11	4
6	13	5
7	15	8
8	17	8
9	19	≥ 8
10	21	≥ 8
11	23	≥ 8

Computational results

For $n=2 \ell+1$, we have the following computational results:

ℓ	n	$\mu^{\prime}(\ell, n)$
3	7	2
4	9	2
5	11	4
6	13	5
7	15	8
8	17	8
9	19	≥ 8
10	21	≥ 8
11	23	≥ 8

Question

Are there any ℓ-admissible values n with $\mu^{\prime}(\ell, n)=n-3$?

Future directions

- Find constructions of mutually orthogonal (cyclic) odd cycle systems.
- Find improved lower bounds on $\mu(\ell, n)$ when $n \equiv 1(\bmod 2 \ell)$.
- Find lower bounds on $\mu(\ell, n)$ for other ℓ-admissible values n.
- Investigate mutually orthogonal (cyclic) cycle decompositions of $K_{n}-I$.

Thanks!

