
Mutually orthogonal cycle systems

Andrea Burgess, University of New Brunswick

Joint work with:

Nicholas Cavenagh
(University of Waikato)

David Pike
(Memorial University of Newfoundland)

AARMS Atlantic Graph Theory Seminar
January 26, 2022

Andrea Burgess Mutually orthogonal cycle systems Atlantic Graph Theory Seminar



Graph decompositions

Let Γ be a graph, and let H1,H2, . . . ,Ht be subgraphs of Γ.

The subgraphs H1,H2, . . . ,Ht decompose Γ if their edge sets partition
the edges of Γ.

If H1 ' · · · ' Ht ' H, then we speak of an H-decomposition of Γ.

Example (A K3-decomposition of K7)

0
1

2

34

5

6
(0, 1, 3)
(1, 2, 4)
(2, 3, 5)
(3, 4, 6)
(4, 5, 0)
(5, 6, 1)
(6, 0, 2)

.

.
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Decompositions and Designs

Definition

A K3-decomposition of Kn is called a Steiner triple system of order n,
STS(n).

Theorem (Kirkman, 1847)

Let n ∈ Z+. There is an STS(n) if and only if n ≡ 1 or 3 (mod 6).

A Kk -decomposition of Kv is a:

Balanced Incomplete Block Design BIBD(v , k, 1)

Steiner system S(2, k , v)
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Cycle systems

A C`-decomposition of Kn is called a `-cycle system of order n.

Example (A 4-cycle system of order 9)

0
1
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3

45
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(0, 1, 8, 3)
(1, 2, 0, 4)
(2, 3, 1, 5)
(3, 4, 2, 6)
(4, 5, 3, 7)
(5, 6, 4, 8)
(6, 7, 5, 0)
(7, 8, 6, 1)
(8, 0, 7, 2)

.
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Existence of `-cycle systems

Theorem (Alspach, Gavlas, 2001; Šajna, 2002; see also Buratti 2003)

There exists an `-cycle decomposition of Kn if and only if:

n is odd,

3 ≤ ` ≤ n, and

` |
(n
2

)
Given ` ≥ 3, we will refer to a value of n satisfying these conditions as
`-admissible.
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Cycle decompositions of the cocktail party graph

Theorem (Alspach, Gavlas, 2001; Šajna, 2002)

There exists an `-cycle decomposition of Kn − I if and only if:

n is even,

3 ≤ ` ≤ n, and

` |
(n
2

)
− n
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Example (A 4-cycle decomposition of K8 − I )
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Cyclic cycle systems

A cycle system C is cyclic if it admits an automorphism which cyclically
permutes the vertices.

In other words, we can take the vertex set to be Zn, and

(c0, c1, . . . , c`−1) ∈ C ⇒ (c0 + 1, c1 + 1, . . . , c`−1 + 1) ∈ C .

Necessary and sufficient conditions for existence of a cyclic
C`-decomposition of Kn are known when:

n ≡ 1 or ` (mod 2`). (Buratti and Del Fra, 2003; Bryant, Gavlas and
Ling, 2003; Buratti and Del Fra, 2004; Vietri, 2004)
` = n (Buratti and Del Fra, 2004)
` ≤ 32 (Wu and Fu, 2006)
` = 2pα or 3p, p prime (Wu and Fu, 2006; Wu, 2013)
` even and n > 2` (Wu, 2012)
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Difference Families

Consider a cycle C = (c0, c1, . . . , c`−1) with vertices in Zn.

Its list of differences is the multiset ∆C = {±(ci+1 − ci ) | 0 ≤ i ≤ `}
(where subscripts are taken modulo `).

For a family F of cycles, ∆F is the multiset union of the difference lists of
its cycles.

If ∆F = Zn \ {0}, then F is a set of base cycles for a cyclic `-cycle system
of order n.

If such a family exists, then n ≡ 1 (mod 2`).
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Example: A cyclic 4-cycle system of order 9
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(0, 1, 8, 3)

(1, 2, 0, 4)
(2, 3, 1, 5)
(3, 4, 2, 6)
(4, 5, 3, 7)
(5, 6, 4, 8)
(6, 7, 5, 0)
(7, 8, 6, 1)
(8, 0, 7, 2)

.

.

We denote the orbit of the base cycle (0, 1, 8, 3) under the action of Z9 by

[1,−2, 4,−3]9.
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Example

The cycles (0, 1, 5, 3) and (0, 5, 13, 7) are base cycles for a cyclic 4-cycle
system of order 17.

Orbits: [1, 4,−2,−3]17 and [5, 8,−6,−7]17
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Orthogonal cycle systems

Let C1 and C2 be `-cycle systems on the same vertex set.

These systems are orthogonal if any cycles C ∈ C1 and C ′ ∈ C2 share at
most one edge.
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Example

B
(0, 1, 8, 3)
(1, 2, 0, 4)
(2, 3, 1, 5)
(3, 4, 2, 6)
(4, 5, 3, 7)
(5, 6, 4, 8)
(6, 7, 5, 0)
(7, 8, 6, 1)
(8, 0, 7, 2)

C
(0, 1, 2, 3)
(0, 2, 5, 4)
(0, 5, 1, 6)
(0, 7, 2, 8)
(1, 3, 6, 4)
(2, 4, 7, 6)
(2, 7, 5, 8)
(3, 4, 8, 7)
(3, 5, 6, 8)

D
(0, 1, 7, 6)
(0, 2, 3, 5)
(0, 3, 8, 7)
(0, 4, 2, 8)
(1, 2, 7, 4)
(1, 3, 4, 5)
(1, 6, 4, 8)
(2, 5, 8, 6)
(3, 6, 5, 7)

B and C are not orthogonal

C and D are orthogonal
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3

0

18

2

B and C are not orthogonal

C and D are orthogonal
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6

2 4

7

8 0

B and C are not orthogonal

C and D are orthogonal
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15 3

4 6

B and C are not orthogonal

C and D are orthogonal
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Heffter arrays

Definition (Archdeacon, 2015)

A Heffter array H(m, n; k, `) is an m × n array with entries from
Z2mk+1 \ {0} such that:

Each row contains k filled cells, and each column contains ` filled
cells.

Each row and column sums to 0 (mod 2mk + 1).

For each x ∈ Z2mk+1 \ {0}, exactly one of x and −x appears as an
entry.

If m = n and k = `, we write H(n; `).
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Theorem (Archdeacon, Dinitz, Donovan, Yazıcı, 2015; Dinitz,
Wanless, 2017; Cavenagh, Dinitz, Donovan, Yazıcı, 2019)

There is a square Heffter array H(n; `) if and only if 3 ≤ ` ≤ n.

Example (An H(8; 7))

8 16 25 −27 −29 31 −24

−17 −6 23 −28 26 32 −30

39 −10 −5 15 33 −35 −37

−38 −18 7 11 −36 34 40

−43 −45 47 −22 3 19 41

42 48 −46 −14 2 12 −44

49 −51 −53 55 −21 1 20

9 −52 50 56 −54 −13 4

(Example taken from Costa, Morini, Pasotti and Pellegrini, 2018.)

Andrea Burgess Mutually orthogonal cycle systems Atlantic Graph Theory Seminar



Heffter arrays and orthogonal cycle systems

Consider the entries of H(n; `) as differences in Z2n`+1.

Each row generates a closed trail in K2n`+1.

[8, 16, 25,−27,−29, 31,−24]→ (0, 8, 24, 49, 22,−7, 24)

If a row can be ordered so that its partial sums are distinct, then it
generates a cycle.

[8, 16, 25,−27,−29,−24, 31]→ (0, 8, 24, 49, 22,−7,−31)

If every row has such an ordering, we get base cycles for a cyclic
`-cycle system of K2n`+1.

Similarly, if each column can be ordered appropriately, we get another
cyclic `-cycle system.

These cycle systems are orthogonal.
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Existence results for orthogonal cycle systems

Theorem (Costa, Morini, Pasotti, Pellegrini, 2018)

For 3 ≤ ` ≤ 10, there exists a pair of orthogonal cyclic k-cycle
systems of order 2n`+ 1 whenever n` ≡ 0 or 3 (mod 4).

Comparable result for the cocktail party graph.

Theorem (Burrage, Donovan, Cavenagh, Yazıcı, 2020)

There is a pair of orthogonal cyclic `-cycle systems of order 2n`+ 1
whenever

` ≡ 0 (mod 4)

n ≡ 1 (mod 4) and ` ≡ 3 (mod 4)

n ≡ 0 (mod 4), ` ≡ 3 (mod 4) and n� `
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Mutually orthogonal cycle systems

A collection of cycle systems is mutually orthogonal if any two of them are
orthogonal.

µ(`, n) denotes the maximum number of mutually orthogonal `-cycle
systems of order n

µ′(`, n) denotes the maximum number of mutually orthogonal cyclic
`-cycle systems of order n
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Upper Bounds

Lemma (AB, Cavenagh, Pike, 2022+)

µ(`, n) ≤ n − 2

µ(`, n) ≤ (n − 2)(n − 3)

2(`− 3)

If 2`2 > n(n − 1), then µ(`, n) ≤ 1.

So if ` >
n√
2

, there is no pair of orthogonal cycle systems of order n.

µ′(`, n) ≤ n − 3
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Mutually orthogonal 3-cycle systems

A collection of 3-cycle systems of order n, i.e. STS(n), is mutually
orthogonal iff no two systems share a 3-cycle.

Definition

A large set of Steiner triple systems of order n is a collection of n − 2
pairwise block-disjoint STS(n) whose blocks partition the set of all triples
on n elements.

Theorem (Lu, 1983, 1984; Teirlinck, 1991)

There is a large set of STS(n) if and only if n is 3-admissible and n 6= 7.

Corollary

If n 6= 7 is 3-admissible, then µ(3, n) = n − 2.
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Asymptotic results

Theorem (Caro and Yuster, 2001)

Let H be a graph and k ≥ 1 a fixed integer.

For any sufficiently large n such that Kn is H-decomposable, there exists a
set of k pairwise orthogonal H-decompositions of Kn.

Corollary

For any sufficiently large `-admissible n, there exists a set of k pairwise
orthogonal `-cycle systems of Kn.
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Mutually orthogonal 4-cycle systems

There exists a 4-cycle system of order n iff n ≡ 1 (mod 8).

Lemma (AB, Cavenagh, Pike, 2022+)

µ(4, 9) = 4, µ′(4, 9) = 2

µ′(4, 17) = 10

µ′(4, 25) ≥ 17

Theorem (AB, Cavenagh, Pike, 2022+)

If n ≡ 1 (mod 8) and n ≥ 17, then µ′(4, n) ≥ n−1
2 .
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Example: Order n = 17

Take a 1-factorization of K4 = K(n−1)/4

F1 = {{1, 2}, {3, 4}} F2 = {{1, 3}, {2, 4}} F3 = {{1, 4}, {2, 3}}

From each edge {x , y} of K4 form a cycle Cx ,y with

∆(Cx ,y ) = ±{2x − 1, 2x , 2y − 1, 2y}.
Each 1-factor yields base cycle for a cyclic 4-cycle system Fi .

Base cycles Orbits
F1 {(0, 1, 5, 3), (0, 5, 13, 7)} {[1, 4,−2,−3]17, [5, 8,−6,−7]17}
F2 {(0, 1, 7, 5), (0, 3, 11, 7)} {[1, 6,−2,−5]17, [3, 8,−4,−7]17}
F3 {(0, 1, 9, 7), (0, 3, 9, 5)} {[1, 8,−2,−7]17, [3, 6,−4,−5]17}

F ′
1 {(0, 1,−2,−4), (0, 5,−2,−8)} {[1,−3,−2, 4]17, [5,−7,−6, 8]17}
F ′

2 {(0, 1,−4,−6), (0, 3,−4,−8)} {[1,−5,−2, 6]17, [3,−7,−4, 8]17}
F ′

3 {(0, 1,−6,−8), (0, 3,−2,−6)} {[1,−7,−2, 8]17, [3,−5,−4, 6]17}

Modify each Fi to get another system F ′i .

Replace F1 and F ′1 with four specially constructed systems.
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Even cycle systems

Theorem (AB, Cavenagh, Pike, 2022+)

Let ` ≥ 4 be even and n ≡ 1 (mod 2`). Then

µ(`, n) = Ω
( n

`2

)
.

Specifically,

Theorem (AB, Cavenagh, Pike, 2022+)

Let ` ≥ 4 be even and n ≡ 1 (mod 2`). Then

µ′(`, n) ≥ n − 1

2`(a`+ b)
− 1,

where

(a, b) =

{
(4,−2), if ` ≡ 0 (mod 4)
(24,−18), if ` ≡ 2 (mod 4).
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Balanced sets of differences

Definition

A set D = {d1, d2, . . . , d2k} of positive integers with d1 < d2 < . . . < d2k
is balanced if there exists t ∈ [1, k] such that

2t∑
i=1

(−1)idi =
2k∑

i=2t+1

(−1)idi .

Lemma

If D is balanced, then there is a 2k-cycle C with vertices in [−d2k , d2k−1]
such that ∆C = ±D.
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Example (Forming cycles from balanced sets)

D: 1 2 3 4 6 8

±1

±2

±3±6

±8

±4
0

−1

1

−2

4

−4

So if we can partition the set {1, 2, . . . , (n − 1)/2} into balanced 2k-sets,
then there is a cyclic 2k-cycle system of order n.
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4k-cycle systems of order n = 8kN + 1

For a pair (d , e) with d + e = N, we can form a cyclic 4k-cycle
system Cd of order 8kN + 1.

We form d balanced 4k-sets that partition

{1, . . . , 4kd},

and e balanced 4k-sets that partition

{4kd + 1, . . . , 4kN}.
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Example: A cyclic 12-cycle system of order 97 = 24 · 4 + 1

Let d = 1 and e = 3. We get the following balanced sets of differences.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46
14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47
15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48

These yield starter cycles

(0,−1, 1,−2, 2,−3, 4,−4, 5,−5, 6,−6)

(0,−13, 3,−16, 6,−19, 12,−22, 15,−25, 18,−28)
(0,−14, 3,−17, 6,−20, 12,−23, 15,−26, 18,−29)
(0,−16, 3,−18, 6,−21, 12,−24, 15,−27, 18,−30)

Andrea Burgess Mutually orthogonal cycle systems Atlantic Graph Theory Seminar



Getting orthogonal systems

We generate a cycle system for each pair (d , e) with d + e = N.

But in general, they are not mutually orthogonal!

For instance, the system on the previous slide contained the cycle

(0,−1, 1,−2, 2− 3, 4,−4, 5,−5, 6,−6).

The system generated by taking d = 0 and e = 4 contains the cycle

(1,−1, 5,−5, 9,−9, 17,−13, 21,−17, 25,−21).

Lemma

If d and d ′ are distinct integers with N
2 −

N
16k−2 < d , d ′ < N

2 , then for
cycles C ∈ Cd and C ′ ∈ Cd ′ , ∆(C ) ∩∆(C ′) = ∅ or {±t}.
Hence Cd and Cd ′ are orthogonal.
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Computational results

For n = 2`+ 1, we have the following computational results:

` n µ′(`, n)

3 7 2
4 9 2
5 11 4
6 13 5
7 15 8
8 17 8
9 19 ≥ 8

10 21 ≥ 8
11 23 ≥ 8

Question

Are there any `-admissible values n with µ′(`, n) = n − 3?
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Future directions

Find constructions of mutually orthogonal (cyclic) odd cycle systems.

Find improved lower bounds on µ(`, n) when n ≡ 1 (mod 2`).

Find lower bounds on µ(`, n) for other `-admissible values n.

Investigate mutually orthogonal (cyclic) cycle decompositions of
Kn − I .
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Thanks!
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