Mutually orthogonal cycle systems

Andrea Burgess, University of New Brunswick

Joint work with:

Nicholas Cavenagh (University of Waikato)

David Pike (Memorial University of Newfoundland)

AARMS Atlantic Graph Theory Seminar January 26, 2022

Andrea Burgess

Mutually orthogonal cycle systems Atlantic Graph Theory Seminar

- Let Γ be a graph, and let H_1, H_2, \ldots, H_t be subgraphs of Γ .
- The subgraphs H₁, H₂,..., H_t decompose Γ if their edge sets partition the edges of Γ.
- If $H_1 \simeq \cdots \simeq H_t \simeq H$, then we speak of an *H*-decomposition of Γ .

Example (A K_3 -decomposition of K_7)		
6 •	•1	(0, 1, 3) (1, 2, 4) (2, 3, 5)
5.	•2	(3, 4, 6) (4, 5, 0)
4	° 3	(5, 6, 1) (6, 0, 2)

- Let Γ be a graph, and let H_1, H_2, \ldots, H_t be subgraphs of Γ .
- The subgraphs H₁, H₂,..., H_t decompose Γ if their edge sets partition the edges of Γ.
- If $H_1 \simeq \cdots \simeq H_t \simeq H$, then we speak of an *H*-decomposition of Γ .

- Let Γ be a graph, and let H_1, H_2, \ldots, H_t be subgraphs of Γ .
- The subgraphs H₁, H₂,..., H_t decompose Γ if their edge sets partition the edges of Γ.
- If $H_1 \simeq \cdots \simeq H_t \simeq H$, then we speak of an *H*-decomposition of Γ .

- Let Γ be a graph, and let H_1, H_2, \ldots, H_t be subgraphs of Γ .
- The subgraphs H₁, H₂,..., H_t decompose Γ if their edge sets partition the edges of Γ.
- If $H_1 \simeq \cdots \simeq H_t \simeq H$, then we speak of an *H*-decomposition of Γ .

- Let Γ be a graph, and let H_1, H_2, \ldots, H_t be subgraphs of Γ .
- The subgraphs H₁, H₂,..., H_t decompose Γ if their edge sets partition the edges of Γ.
- If $H_1 \simeq \cdots \simeq H_t \simeq H$, then we speak of an *H*-decomposition of Γ .

- Let Γ be a graph, and let H_1, H_2, \ldots, H_t be subgraphs of Γ .
- The subgraphs H₁, H₂,..., H_t decompose Γ if their edge sets partition the edges of Γ.
- If $H_1 \simeq \cdots \simeq H_t \simeq H$, then we speak of an *H*-decomposition of Γ .

- Let Γ be a graph, and let H_1, H_2, \ldots, H_t be subgraphs of Γ .
- The subgraphs H₁, H₂,..., H_t decompose Γ if their edge sets partition the edges of Γ.
- If $H_1 \simeq \cdots \simeq H_t \simeq H$, then we speak of an *H*-decomposition of Γ .

- Let Γ be a graph, and let H_1, H_2, \ldots, H_t be subgraphs of Γ .
- The subgraphs H₁, H₂,..., H_t decompose Γ if their edge sets partition the edges of Γ.
- If $H_1 \simeq \cdots \simeq H_t \simeq H$, then we speak of an *H*-decomposition of Γ .

Definition

A K_3 -decomposition of K_n is called a Steiner triple system of order n, STS(n).

Theorem (Kirkman, 1847)

Let $n \in \mathbb{Z}^+$. There is an STS(n) if and only if $n \equiv 1$ or 3 (mod 6).

- A K_k -decomposition of K_v is a:
 - Balanced Incomplete Block Design BIBD(v, k, 1)
 - Steiner system S(2, k, v)

Theorem (Alspach, Gavlas, 2001; Šajna, 2002; see also Buratti 2003)

There exists an ℓ -cycle decomposition of K_n if and only if:

- n is odd,
- $3 \le \ell \le n$, and
- $\ell \mid \binom{n}{2}$

Given $\ell \geq 3$, we will refer to a value of *n* satisfying these conditions as ℓ -admissible.

Theorem (Alspach, Gavlas, 2001; Šajna, 2002)

There exists an ℓ -cycle decomposition of $K_n - I$ if and only if:

- n is even,
- $3 \le \ell \le n$, and
- $\ell \mid \binom{n}{2} n$

Andrea Burgess

Andrea Burgess

Andrea Burgess

Andrea Burgess

Andrea Burgess

Mutually orthogonal cycle systems Atlantic Graph Theory Seminar

Cyclic cycle systems

A cycle system \mathscr{C} is cyclic if it admits an automorphism which cyclically permutes the vertices.

In other words, we can take the vertex set to be \mathbb{Z}_n , and

 $(c_0, c_1, \ldots, c_{\ell-1}) \in \mathscr{C} \Rightarrow (c_0 + 1, c_1 + 1, \ldots, c_{\ell-1} + 1) \in \mathscr{C}.$

Cyclic cycle systems

A cycle system \mathscr{C} is cyclic if it admits an automorphism which cyclically permutes the vertices.

In other words, we can take the vertex set to be \mathbb{Z}_n , and

$$(c_0, c_1, \ldots, c_{\ell-1}) \in \mathscr{C} \Rightarrow (c_0+1, c_1+1, \ldots, c_{\ell-1}+1) \in \mathscr{C}.$$

Necessary and sufficient conditions for existence of a cyclic C_{ℓ} -decomposition of K_n are known when:

- n ≡ 1 or ℓ (mod 2ℓ). (Buratti and Del Fra, 2003; Bryant, Gavlas and Ling, 2003; Buratti and Del Fra, 2004; Vietri, 2004)
- l = n (Buratti and Del Fra, 2004)
- $\ell \leq 32$ (Wu and Fu, 2006)
- $\ell = 2p^{\alpha}$ or 3p, p prime (Wu and Fu, 2006; Wu, 2013)
- ℓ even and $n > 2\ell$ (Wu, 2012)

Consider a cycle $C = (c_0, c_1, \ldots, c_{\ell-1})$ with vertices in \mathbb{Z}_n .

Its list of differences is the multiset $\Delta C = \{\pm (c_{i+1} - c_i) \mid 0 \le i \le \ell\}$ (where subscripts are taken modulo ℓ).

For a family ${\cal F}$ of cycles, $\Delta {\cal F}$ is the multiset union of the difference lists of its cycles.

If $\Delta \mathcal{F} = \mathbb{Z}_n \setminus \{0\}$, then \mathcal{F} is a set of base cycles for a cyclic ℓ -cycle system of order n.

If such a family exists, then $n \equiv 1 \pmod{2\ell}$.

Example: A cyclic 4-cycle system of order 9

(0, 1, 8, 3)

Example: A cyclic 4-cycle system of order 9

(0, 1, 8, 3)(1, 2, 0, 4)

Andrea Burgess

Example: A cyclic 4-cycle system of order 9

(0, 1, 8, 3)(1, 2, 0, 4)(2, 3, 1, 5)

$$\begin{array}{c} (0,1,8,3) \\ (1,2,0,4) \\ (2,3,1,5) \\ (3,4,2,6) \\ (4,5,3,7) \end{array}$$

$$\begin{array}{c} (0,1,8,3) \\ (1,2,0,4) \\ (2,3,1,5) \\ (3,4,2,6) \\ (4,5,3,7) \\ (5,6,4,8) \end{array}$$

$$\begin{array}{c} (0,1,8,3) \\ (1,2,0,4) \\ (2,3,1,5) \\ (3,4,2,6) \\ (4,5,3,7) \\ (5,6,4,8) \\ (6,7,5,0) \end{array}$$

$$\begin{array}{c} (0,1,8,3) \\ (1,2,0,4) \\ (2,3,1,5) \\ (3,4,2,6) \\ (4,5,3,7) \\ (5,6,4,8) \\ (6,7,5,0) \\ (7,8,6,1) \end{array}$$

$$\begin{array}{c} (0,1,8,3)\\ (1,2,0,4)\\ (2,3,1,5)\\ (3,4,2,6)\\ (4,5,3,7)\\ (5,6,4,8)\\ (6,7,5,0)\\ (7,8,6,1)\\ (8,0,7,2) \end{array}$$

We denote the orbit of the base cycle (0, 1, 8, 3) under the action of \mathbb{Z}_9 by

$$[1, -2, 4, -3]_9.$$

The cycles (0, 1, 5, 3) and (0, 5, 13, 7) are base cycles for a cyclic 4-cycle system of order 17.

Orbits: $[1, 4, -2, -3]_{17}$ and $[5, 8, -6, -7]_{17}$

Let \mathscr{C}_1 and \mathscr{C}_2 be ℓ -cycle systems on the same vertex set.

These systems are orthogonal if any cycles $C \in C_1$ and $C' \in C_2$ share at most one edge.

${\mathscr B}$	C	D		
(0, 1, 8, 3)	(0, 1, 2, 3)	(0, 1, 7, 6)		
(1, 2, 0, 4)	(0, 2, 5, 4)	(0, 2, 3, 5)		
(2, 3, 1, 5)	(0, 5, 1, 6)	(0, 3, 8, 7)		
(3, 4, 2, 6)	(0, 7, 2, 8)	(0, 4, 2, 8)		
(4, 5, 3, 7)	(1, 3, 6, 4)	(1, 2, 7, 4)		
(5, 6, 4, 8)	(2, 4, 7, 6)	(1, 3, 4, 5)		
(6, 7, 5, 0)	(2, 7, 5, 8)	(1, 6, 4, 8)		
(7, 8, 6, 1)	(3, 4, 8, 7)	(2, 5, 8, 6)		
(8,0,7,2)	(3, 5, 6, 8)	(3, 6, 5, 7)		

 ${\mathscr B}$ and ${\mathscr C}$ are not orthogonal

 ${\mathscr B}$ and ${\mathscr C}$ are not orthogonal

 ${\mathscr C}$ and ${\mathscr D}$ are orthogonal

 ${\mathscr B}$ and ${\mathscr C}$ are not orthogonal

 ${\mathscr C}$ and ${\mathscr D}$ are orthogonal

Definition (Archdeacon, 2015)

A Heffter array $H(m, n; k, \ell)$ is an $m \times n$ array with entries from $\mathbb{Z}_{2mk+1} \setminus \{0\}$ such that:

- Each row contains k filled cells, and each column contains ℓ filled cells.
- Each row and column sums to 0 (mod 2mk + 1).
- For each $x \in \mathbb{Z}_{2mk+1} \setminus \{0\}$, exactly one of x and -x appears as an entry.

If m = n and $k = \ell$, we write $H(n; \ell)$.

Theorem (Archdeacon, Dinitz, Donovan, Yazıcı, 2015; Dinitz, Wanless, 2017; Cavenagh, Dinitz, Donovan, Yazıcı, 2019)

There is a square Heffter array $H(n; \ell)$ if and only if $3 \le \ell \le n$.

Example (An H(8;7))

8	16		25	-27	-29	31	-24
-17	-6	23	-28	26	32	-30	
39	-10	-5	15		33	-35	-37
-38		-18	7	11	-36	34	40
-43	-45	47	-22	3	19		41
42	48	-46		-14	2	12	-44
	49	-51	-53	55	-21	1	20
9	-52	50	56	-54		-13	4

(Example taken from Costa, Morini, Pasotti and Pellegrini, 2018.)

• Consider the entries of $H(n; \ell)$ as differences in $\mathbb{Z}_{2n\ell+1}$.

- Consider the entries of $H(n; \ell)$ as differences in $\mathbb{Z}_{2n\ell+1}$.
- Each row generates a closed trail in $K_{2n\ell+1}$.

 $[8, 16, 25, -27, -29, 31, -24] \rightarrow (0, 8, 24, 49, 22, -7, 24)$

- Consider the entries of $H(n; \ell)$ as differences in $\mathbb{Z}_{2n\ell+1}$.
- Each row generates a closed trail in $K_{2n\ell+1}$.

 $[8, 16, 25, -27, -29, 31, -24] \rightarrow (0, 8, 24, 49, 22, -7, 24)$

• If a row can be ordered so that its partial sums are distinct, then it generates a cycle.

 $[8, 16, 25, -27, -29, -24, 31] \rightarrow (0, 8, 24, 49, 22, -7, -31)$

- Consider the entries of $H(n; \ell)$ as differences in $\mathbb{Z}_{2n\ell+1}$.
- Each row generates a closed trail in $K_{2n\ell+1}$.

 $[8, 16, 25, -27, -29, 31, -24] \rightarrow (0, 8, 24, 49, 22, -7, 24)$

• If a row can be ordered so that its partial sums are distinct, then it generates a cycle.

 $[8, 16, 25, -27, -29, -24, 31] \rightarrow (0, 8, 24, 49, 22, -7, -31)$

• If every row has such an ordering, we get base cycles for a cyclic $\ell\text{-cycle}$ system of $K_{2n\ell+1}.$

- Consider the entries of $H(n; \ell)$ as differences in $\mathbb{Z}_{2n\ell+1}$.
- Each row generates a closed trail in $K_{2n\ell+1}$.

 $[8, 16, 25, -27, -29, 31, -24] \rightarrow (0, 8, 24, 49, 22, -7, 24)$

• If a row can be ordered so that its partial sums are distinct, then it generates a cycle.

 $[8, 16, 25, -27, -29, -24, 31] \rightarrow (0, 8, 24, 49, 22, -7, -31)$

- If every row has such an ordering, we get base cycles for a cyclic $\ell\text{-cycle}$ system of $K_{2n\ell+1}.$
- Similarly, if each column can be ordered appropriately, we get another cyclic *l*-cycle system.

- Consider the entries of $H(n; \ell)$ as differences in $\mathbb{Z}_{2n\ell+1}$.
- Each row generates a closed trail in $K_{2n\ell+1}$.

 $[8, 16, 25, -27, -29, 31, -24] \rightarrow (0, 8, 24, 49, 22, -7, 24)$

• If a row can be ordered so that its partial sums are distinct, then it generates a cycle.

 $[8, 16, 25, -27, -29, -24, 31] \rightarrow (0, 8, 24, 49, 22, -7, -31)$

- If every row has such an ordering, we get base cycles for a cyclic $\ell\text{-cycle}$ system of $K_{2n\ell+1}.$
- Similarly, if each column can be ordered appropriately, we get another cyclic *l*-cycle system.
- These cycle systems are orthogonal.

Theorem (Costa, Morini, Pasotti, Pellegrini, 2018)

- For 3 ≤ ℓ ≤ 10, there exists a pair of orthogonal cyclic k-cycle systems of order 2nℓ + 1 whenever nℓ ≡ 0 or 3 (mod 4).
- Comparable result for the cocktail party graph.

Theorem (Burrage, Donovan, Cavenagh, Yazıcı, 2020)

There is a pair of orthogonal cyclic $\ell\text{-cycle systems of order } 2n\ell+1$ whenever

• $\ell \equiv 0 \pmod{4}$

•
$$n \equiv 1 \pmod{4}$$
 and $\ell \equiv 3 \pmod{4}$

•
$$n \equiv 0 \pmod{4}, \ \ell \equiv 3 \pmod{4}$$
 and $n \gg \ell$

A collection of cycle systems is mutually orthogonal if any two of them are orthogonal.

A collection of cycle systems is mutually orthogonal if any two of them are orthogonal.

• $\mu(\ell, n)$ denotes the maximum number of mutually orthogonal ℓ -cycle systems of order n

A collection of cycle systems is mutually orthogonal if any two of them are orthogonal.

- $\mu(\ell, n)$ denotes the maximum number of mutually orthogonal ℓ -cycle systems of order n
- $\mu'(\ell, n)$ denotes the maximum number of mutually orthogonal cyclic ℓ -cycle systems of order n

Lemma (AB, Cavenagh, Pike, 2022+)

- $\mu(\ell, n) \leq n-2$
- $\mu(\ell, n) \leq \frac{(n-2)(n-3)}{2(\ell-3)}$
- If $2\ell^2 > n(n-1)$, then $\mu(\ell, n) \le 1$.

So if $\ell > \frac{n}{\sqrt{2}}$, there is no pair of orthogonal cycle systems of order n.

• $\mu'(\ell, n) \leq n-3$

Mutually orthogonal 3-cycle systems

A collection of 3-cycle systems of order n, i.e. STS(n), is mutually orthogonal iff no two systems share a 3-cycle.

A collection of 3-cycle systems of order n, i.e. STS(n), is mutually orthogonal iff no two systems share a 3-cycle.

Definition

A large set of Steiner triple systems of order n is a collection of n-2 pairwise block-disjoint STS(n) whose blocks partition the set of all triples on n elements.

A collection of 3-cycle systems of order n, i.e. STS(n), is mutually orthogonal iff no two systems share a 3-cycle.

Definition

A large set of Steiner triple systems of order n is a collection of n-2 pairwise block-disjoint STS(n) whose blocks partition the set of all triples on n elements.

Theorem (Lu, 1983, 1984; Teirlinck, 1991)

There is a large set of STS(n) if and only if n is 3-admissible and $n \neq 7$.

A collection of 3-cycle systems of order n, i.e. STS(n), is mutually orthogonal iff no two systems share a 3-cycle.

Definition

A large set of Steiner triple systems of order n is a collection of n-2 pairwise block-disjoint STS(n) whose blocks partition the set of all triples on n elements.

Theorem (Lu, 1983, 1984; Teirlinck, 1991)

There is a large set of STS(n) if and only if n is 3-admissible and $n \neq 7$.

Corollary

If $n \neq 7$ is 3-admissible, then $\mu(3, n) = n - 2$.

Theorem (Caro and Yuster, 2001)

Let H be a graph and $k \ge 1$ a fixed integer.

For any sufficiently large n such that K_n is H-decomposable, there exists a set of k pairwise orthogonal H-decompositions of K_n .

Corollary

For any sufficiently large ℓ -admissible n, there exists a set of k pairwise orthogonal ℓ -cycle systems of K_n .

There exists a 4-cycle system of order *n* iff $n \equiv 1 \pmod{8}$.

There exists a 4-cycle system of order n iff $n \equiv 1 \pmod{8}$.

Lemma (AB, Cavenagh, Pike, 2022+) • $\mu(4,9) = 4$, $\mu'(4,9) = 2$ • $\mu'(4,17) = 10$ • $\mu'(4,25) \ge 17$

There exists a 4-cycle system of order n iff $n \equiv 1 \pmod{8}$.

Theorem (AB, Cavenagh, Pike, 2022+)

If $n \equiv 1 \pmod{8}$ and $n \ge 17$, then $\mu'(4, n) \ge \frac{n-1}{2}$.

Example: Order n = 17

• Take a 1-factorization of
$$K_4 = K_{(n-1)/4}$$

 $F_1 = \{\{1,2\},\{3,4\}\} \quad F_2 = \{\{1,3\},\{2,4\}\} \quad F_3 = \{\{1,4\},\{2,3\}\}$

Example: Order n = 17

- Take a 1-factorization of $K_4 = K_{(n-1)/4}$ $F_1 = \{\{1,2\},\{3,4\}\}$ $F_2 = \{\{1,3\},\{2,4\}\}$ $F_3 = \{\{1,4\},\{2,3\}\}$
- From each edge $\{x, y\}$ of K_4 form a cycle $C_{x,y}$ with

$$\Delta(C_{x,y}) = \pm \{2x - 1, 2x, 2y - 1, 2y\}.$$

Each 1-factor yields base cycle for a cyclic 4-cycle system \mathcal{F}_i .
Example: Order n = 17

- Take a 1-factorization of $K_4 = K_{(n-1)/4}$ $F_1 = \{\{1,2\},\{3,4\}\}$ $F_2 = \{\{1,3\},\{2,4\}\}$ $F_3 = \{\{1,4\},\{2,3\}\}$
- From each edge $\{x, y\}$ of K_4 form a cycle $C_{x,y}$ with

$$\Delta(C_{x,y}) = \pm \{2x - 1, 2x, 2y - 1, 2y\}.$$

Each 1-factor yields base cycle for a cyclic 4-cycle system \mathcal{F}_i .

• Modify each \mathcal{F}_i to get another system \mathcal{F}'_i .

Example: Order n = 17

- Take a 1-factorization of $K_4 = K_{(n-1)/4}$ $F_1 = \{\{1,2\},\{3,4\}\}$ $F_2 = \{\{1,3\},\{2,4\}\}$ $F_3 = \{\{1,4\},\{2,3\}\}$
- From each edge $\{x, y\}$ of K_4 form a cycle $C_{x,y}$ with

$$\Delta(C_{x,y}) = \pm \{2x - 1, 2x, 2y - 1, 2y\}.$$

Each 1-factor yields base cycle for a cyclic 4-cycle system \mathcal{F}_i .

- $\mathcal{F}'_3 \quad \{(0,1,-6,-8),(0,3,-2,-6)\} \quad \{[1,-7,-2,8]_{17},[3,-5,-4,6]_{17}\}$
- Modify each \mathcal{F}_i to get another system \mathcal{F}'_i .
- Replace \mathcal{F}_1 and \mathcal{F}'_1 with four specially constructed systems.

Andrea Burgess

Even cycle systems

Theorem (AB, Cavenagh, Pike, 2022+)

Let $\ell \geq 4$ be even and $n \equiv 1 \pmod{2\ell}$. Then

$$\mu(\ell, n) = \Omega\left(\frac{n}{\ell^2}\right).$$

Even cycle systems

Theorem (AB, Cavenagh, Pike, 2022+)

Let $\ell \geq 4$ be even and $n \equiv 1 \mbox{ (mod } 2\ell).$ Then

$$\mu(\ell, n) = \Omega\left(\frac{n}{\ell^2}\right).$$

Specifically,

Theorem (AB, Cavenagh, Pike, 2022+)

Let $\ell \geq 4$ be even and $n \equiv 1 \pmod{2\ell}$. Then

$$\mu'(\ell,n) \geq \frac{n-1}{2\ell(a\ell+b)} - 1,$$

where

$$(a,b) = \left\{ egin{array}{ll} (4,-2), & \mbox{if } \ell \equiv 0 \pmod{4} \ (24,-18), & \mbox{if } \ell \equiv 2 \pmod{4}. \end{array}
ight.$$

Andrea Burgess

Definition

A set $D = \{d_1, d_2, \dots, d_{2k}\}$ of positive integers with $d_1 < d_2 < \dots < d_{2k}$ is balanced if there exists $t \in [1, k]$ such that

$$\sum_{i=1}^{2t} (-1)^i d_i = \sum_{i=2t+1}^{2k} (-1)^i d_i.$$

Lemma

If D is balanced, then there is a 2k-cycle C with vertices in $[-d_{2k}, d_{2k-1}]$ such that $\Delta C = \pm D$.

D: 1 2 3 4 6 8

Andrea Burgess

Andrea Burgess

So if we can partition the set $\{1, 2, ..., (n-1)/2\}$ into balanced 2*k*-sets, then there is a cyclic 2*k*-cycle system of order *n*.

• For a pair (d, e) with d + e = N, we can form a cyclic 4k-cycle system \mathcal{C}_d of order 8kN + 1.

- For a pair (d, e) with d + e = N, we can form a cyclic 4k-cycle system 𝒞_d of order 8kN + 1.
- We form d balanced 4k-sets that partition

 $\{1,\ldots,4kd\},$

and e balanced 4k-sets that partition

 $\{4kd+1,\ldots,4kN\}.$

Example: A cyclic 12-cycle system of order $97 = 24 \cdot 4 + 1$

Let d = 1 and e = 3. We get the following balanced sets of differences.

 $1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\\13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46\\14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47\\15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48$

These yield starter cycles

$$egin{aligned} (0,-1,1,-2,2,-3,4,-4,5,-5,6,-6)\ (0,-13,3,-16,6,-19,12,-22,15,-25,18,-28)\ (0,-14,3,-17,6,-20,12,-23,15,-26,18,-29)\ (0,-16,3,-18,6,-21,12,-24,15,-27,18,-30) \end{aligned}$$

We generate a cycle system for each pair (d, e) with d + e = N.

We generate a cycle system for each pair (d, e) with d + e = N. But in general, they are not mutually orthogonal!

We generate a cycle system for each pair (d, e) with d + e = N. But in general, they are not mutually orthogonal!

For instance, the system on the previous slide contained the cycle

$$(0, -1, 1, -2, 2 - 3, 4, -4, 5, -5, 6, -6).$$

We generate a cycle system for each pair (d, e) with d + e = N. But in general, they are not mutually orthogonal!

For instance, the system on the previous slide contained the cycle

$$(0, -1, 1, -2, 2 - 3, 4, -4, 5, -5, 6, -6).$$

The system generated by taking d = 0 and e = 4 contains the cycle

$$(1, -1, 5, -5, 9, -9, 17, -13, 21, -17, 25, -21).$$

We generate a cycle system for each pair (d, e) with d + e = N. But in general, they are not mutually orthogonal!

For instance, the system on the previous slide contained the cycle

$$(0, -1, 1, -2, 2-3, 4, -4, 5, -5, 6, -6).$$

The system generated by taking d = 0 and e = 4 contains the cycle

$$(1, -1, 5, -5, 9, -9, 17, -13, 21, -17, 25, -21).$$

We generate a cycle system for each pair (d, e) with d + e = N. But in general, they are not mutually orthogonal!

For instance, the system on the previous slide contained the cycle

$$(0, -1, 1, -2, 2-3, 4, -4, 5, -5, 6, -6).$$

The system generated by taking d = 0 and e = 4 contains the cycle

$$(1, -1, 5, -5, 9, -9, 17, -13, 21, -17, 25, -21).$$

Lemma

If d and d' are distinct integers with $\frac{N}{2} - \frac{N}{16k-2} < d, d' < \frac{N}{2}$, then for cycles $C \in \mathscr{C}_d$ and $C' \in \mathscr{C}_{d'}$, $\Delta(C) \cap \Delta(C') = \emptyset$ or $\{\pm t\}$. Hence \mathscr{C}_d and $\mathscr{C}_{d'}$ are orthogonal.

Computational results

For $n = 2\ell + 1$, we have the following computational results:

l	n	$\mu'(\ell, n)$
3	7	2
4	9	2
5	11	4
6	13	5
7	15	8
8	17	8
9	19	\geq 8
10	21	\geq 8
11	23	\geq 8

Computational results

For $n = 2\ell + 1$, we have the following computational results:

l	п	$\mu'(\ell, n)$
3	7	2
4	9	2
5	11	4
6	13	5
7	15	8
8	17	8
9	19	\geq 8
10	21	\geq 8
11	23	\geq 8

Question

Are there any ℓ -admissible values *n* with $\mu'(\ell, n) = n - 3$?

Andrea Burgess

Mutually orthogonal cycle systems

- Find constructions of mutually orthogonal (cyclic) odd cycle systems.
- Find improved lower bounds on $\mu(\ell, n)$ when $n \equiv 1 \pmod{2\ell}$.
- Find lower bounds on $\mu(\ell, n)$ for other ℓ -admissible values n.
- Investigate mutually orthogonal (cyclic) cycle decompositions of $K_n I$.

Andrea Burgess

Mutually orthogonal cycle systems Atlantic Graph Theory Seminar