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Motivation: Tree-Rooted Graphs

A tree-rooted graph is a triple (G ,T , �) where G is a connected graph, T is a
spanning tree of G , and � = uv is a distinct, oriented edge with
uv 2 e(G) \ e(T ). We view T as a rooted tree with root u.

Theorem

For each n � 1, let dn = (dn(v)1  v  n) be a degree sequence, and let
(Gn,Tn, �n) be chosen uniformly at random among all simple tree-rooted
graphs with vertex set [n] and degree sequence dn. Then (under certain
conditions on the limiting distribution of dn) there exists a constant �
(dependent on the limiting distribution) such that

�

n1/2
Tn

dist! T

as n ! 1 with respect to the Gromov-Hausdor↵-Prokhorov topology, where T
is the Brownian continuum random tree.
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Motivation: Constructing a Tree-Rooted Graph

Jordan Barrett

Superimposing a Fixed Graph and a Random Graph



Motivation Main Result Deterministic Bounds Asymptotic Results Tying it Together Further Questions

Motivation: Problem/Solution

Problem: The configuration model does not necessarily give a simple graph.

Solution: Prove that, under this construction, the probability that the graph is
simple asymptotically approaches a constant greater that zero.
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Main Result: Set up

Fix a sequence of simple graphs (Hn, n � 1) with v(Hn) = [n] for all n � 1.

For each n � 1 let dn = (dn(v), 1  v  n) be a degree sequence. Let
Gn = G(dn) be a random graph with degree sequence dn, distributed according
to the configuration model.

For each n �, let Gn be the graph with v(Gn) = [n] and
e(Gn) = e(Hn) [ e(Gn). We are interested in the asymptotics of
P {Gn is a simple graph}.
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Main Result: Problematic Examples
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Main Result: Set up

These problematic examples give rise to some necessary conditions:

First, for (dn, n � 1), we require at least that maxv2[n]{dn(v)} = o(n1/2). In
“The Probability That a Random Graph is Simple”, Svante Janson shows that
the correct condition for ensuring P {Gn is a simple graph} > 0 is a bounded
second moment on the probability distribution of dn.

Second, for (Hn, n � 1), we require maxv2[n]{degHn
(v)} = o(n).

Lastly, we require some sort of control on
P

uv2e(Hn) d
n(u)dn(v).
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Main Result: Set up

Let pn = (pn(k), k � 0) be the probability distribution of dn. Furthermore, for
any probability distribution p = (p(k), k � 0), let µ1(p) =

P
k�0 kp(k) and

µ2(p) =
P

k�0 k
2p(k).

Condition ⇤: There exists a probability distribution p = (p(k), k � 0) with
µ2(p) 2 [0,1) and p(0) < 1 such that the following holds:
First, pn ! p pointwise and µ2(pn) ! µ2(p). Second, there are non-negative
numbers (↵(a, b), a, b � 0) such that for any a, b � 0

↵n(a, b) :=
1
n
|{uv 2 e(Hn) : d

n(u) = a, dn(v) = b}| ! ↵(a, b),

and X

k,`�0

kl↵n(k, `) !
X

k,`�0

kl↵(k, `) < 1 (1)
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Main Result: Theorem

Let (Hn, dn, pn, n � 1) and p be given, and let Gn be a random graph with
degree sequence dn, distributed according to the configuration model. Suppose
that Condition ⇤ holds, and that maxv2[n]{degHn

(v)} = o(n). Let Ln be the
number of vertices Gn that contain loops, Mn be the number of edges in
e(Gn) \ e(Tn) with multiplicity greater than 1, and Nn be the number of edges
Hn that are also edges in Gn.

Theorem

Let ⌫ = (µ2(p)/µ1(p))� 1 and ⌘ = 1
µ1(p)

P
i,j�1 ij↵(i , j).

kDist(Ln,Mn,Nn)� Poi(⌫/2)⌦ Poi(⌫2/4)⌦ Poi(⌘)kTV ! 0

as n ! 1.

An immediate corollary to this theorem is:

P {Gn is simple} ! exp(�⌫/2� ⌫2/4� ⌘)

as n ! 1.
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Deterministic Bounds: Set up

For this section we fix n and simplify our notation like so:

Hn,Gn, d
n, Ln,Mn,Nn ! H,G , d, L,M,N.

For any x 2 R and ` 2 N, let (x)` = (x)(x � 1) . . . , (x � `+ 1). Remco van der
Hofstad proves the following theorem in his book “Random Graphs and
Complex Networks, Volume 1”:

Theorem (Theorem 2.6 in Hofstad)

A vector of integer-valued random variables
�
(X1,n, . . . ,Xd,n)

�
n�1

converges in

distribution to a vector of independent Poisson random variables with
parameters �1, . . . ,�d when, for all r1, . . . , rd 2 N,

lim
n!1

E ((X1,n)r1 . . . (Xd,n)rd ) = �r1
1 . . .�rd

d
.

The goal of this section is to find a deterministic bound for E ((L)q(M)r (N)s).
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Deterministic Bounds: Set up

For vertices u, v 2 [n] and i 2 [d(u)], j 2 [d(v)], let 1[ui,vj ] be the indicator of
the event that half-edge ui is matched with half-edge vj in G .

Now write

L = L(G) = {(ui , uj) : u 2 [n], i , j 2 [d(u)], i < j},
M = M(G ,H) = {((ui1, vj1), (ui2, vj2)) : u, v 2 [n], uv /2 e(H)

i1, i2 2 [d(u)], j1, j2 2 [d(v)], u < v , i1 < i2, j1 6= j2},
N = N (G ,H) = {(ui , vj) : uv 2 e(H), i 2 [d(u)], j 2 [d(v)]},

and let us re-define L,M and N as

L = L(G) =
X

(ui,uj)2L

1[ui,uj ] ,

M = M(G ,H) =
X

((ui1,vj1),(ui2vj2))2M

1[(ui1,vj1)]1[(ui2vj2)] , and

N = N(G ,H)
X

(ui,vj)2N

1[ui,vj ] .
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Deterministic Bounds: Proposition

Let dmax = maxi2[n]{d(i)}.

Proposition

For any positive integers q, r , s 2 N,
�����E ((L)q(M)r (N)s)�

(|L|)q(|M|)r (|N |)sQ
q+2r+s�1
i=0 2m � 1� 2i

�����  C(S1 + S2)

where C = C(q, r , s), S1 is defined by

S1 = (|L|)q(|N |)s
r�1X

k=1

(|M|)r�k

kX

`=0

d2`
max

q+2r+s�1�(2k�`)Y

i=0

1
2m � 1� 2i

,

and S2 is defined by the following identity:
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S2

q+2r+s�1Y

i=0

(2m � 1� 2i) =(|L|)q�2(|M|)r (|N |)s
X

1un

d(u)3

+ (|L|)q�1(|M|)r�1(|N |)s
X

1u 6=vn

d(u)3d(v)2

+ (|L|)q�1(|M|)r (|N |)s�1

X

uv2e(H)

d(u)2d(v)

+ (|L|)q(|M|)r�2(|N |)s
X

1un

u 62{v1,v2}

d(u)3d(v1)
2d(v2)

2

+ (|L|)q(|M|)r�1(|N |)s�1

X

1u,v1,v2n

u,v1,v2distinct
uv22e(H)

d(u)2d(v1)
2d(v2)

+ (|L|)q(|M|)r (|N |)s�2

X

uv1,uv22e(H)

d(u)d(v1)d(v2).
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Deterministic Bounds: A More Manageable Proposition

Proposition

For any positive integer s 2 N,
�����E ((N)s)�

(|N |)sQ
s�1
i=0 2m � 1� 2i

�����  CS

where C = C(s) and S is defined by

S =
(|N |)s�2Q

s�1
i=0 2m � 1� 2i

X

uv1,uv22e(H)

d(u)d(v1)d(v2)
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Deterministic Bounds: Proof

We will denote a generic element of N s by z where z = (z1, . . . , zs).

We use
the following indicator notation:

1[z] =
sY

i=1

1[zi ].

We also use the following summation notation:
X?

:=
X

z2N s

zi 6=zj for all i 6=j

.

Using this notation, we can say that

E ((N)s) =
X?

P
�
1[z] = 1

 
. (2)

Jordan Barrett

Superimposing a Fixed Graph and a Random Graph



Motivation Main Result Deterministic Bounds Asymptotic Results Tying it Together Further Questions

Deterministic Bounds: Proof

We will denote a generic element of N s by z where z = (z1, . . . , zs). We use
the following indicator notation:

1[z] =
sY

i=1

1[zi ].

We also use the following summation notation:
X?

:=
X

z2N s

zi 6=zj for all i 6=j

.

Using this notation, we can say that

E ((N)s) =
X?

P
�
1[z] = 1

 
. (2)

Jordan Barrett

Superimposing a Fixed Graph and a Random Graph



Motivation Main Result Deterministic Bounds Asymptotic Results Tying it Together Further Questions

Deterministic Bounds: Proof

We will denote a generic element of N s by z where z = (z1, . . . , zs). We use
the following indicator notation:

1[z] =
sY

i=1

1[zi ].

We also use the following summation notation:
X?

:=
X

z2N s

zi 6=zj for all i 6=j

.

Using this notation, we can say that

E ((N)s) =
X?

P
�
1[z] = 1

 
. (2)

Jordan Barrett

Superimposing a Fixed Graph and a Random Graph



Motivation Main Result Deterministic Bounds Asymptotic Results Tying it Together Further Questions

Deterministic Bounds: Proof

We will denote a generic element of N s by z where z = (z1, . . . , zs). We use
the following indicator notation:

1[z] =
sY

i=1

1[zi ].

We also use the following summation notation:
X?

:=
X

z2N s

zi 6=zj for all i 6=j

.

Using this notation, we can say that

E ((N)s) =
X?

P
�
1[z] = 1

 
. (2)

Jordan Barrett

Superimposing a Fixed Graph and a Random Graph



Motivation Main Result Deterministic Bounds Asymptotic Results Tying it Together Further Questions

Deterministic Bounds: Proof
We say z is non-conflicting if all half-edges among all elements in z are
distinct, and otherwise we say z is conflicting.

If z is non-conflicting then,
letting m = 1

2

P
n

v=1 d
n(v),

P
�
1[z] = 1

 
=

s�1Y

i=0

1
2m � 1� 2i

. (3)

Let er(z) be defined as

er(z) := P
�
1[z] = 1

 
�

s�1Y

i=0

1
2m � 1� 2i

.

Then

E ((N)s) =
(|N |)sQ

s�1
i=0 2m � 1� 2i

+
X?

z is conflicting

er(z).

By the triangle inequality this implies
�����E ((N)s)�

(|N |)sQ
s�1
i=0 2m � 1� 2i

����� 
X?

z is conflicting

|er(z)| . (4)
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Deterministic Bounds: Proof

If z is conflicting, then there must be some za, zb 2 z with za = (ui , vj) and
zb = (ui , vk), or with za = (ui , vk) and zb = (uj , vk). Here is a visual
representation of a conflicting z :
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Deterministic Bounds: Proof

Let C = C(s) ⇢ N s be the set of conflicting z .

We claim that

|C|  C(|N |)s�2

X

uv1,uv22e(H)

d(u)d(v1)d(v2) , and

|er(z)| =
s�1Y

i=0

1
2m � 1� 2i

for all z 2 C.

The second claim is obvious since P
�
1[z] = 1

 
= 0 if z 2 C. The first claim

requires a bit more work.
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Deterministic Bounds: Proof

Let us construct an arbitrary element z = (z1, . . . , zs) 2 C:

First, choose some a, b with 1  a < b  s. The number of such choices is
�
s

2

�
.

Second, choose (z1, . . . , za�1, za+1, . . . , zb�1, zb+1, . . . , zs) arbitrarily. The
number of such choices is (|N |)s�2.

Lastly, choose uv1, uv2 2 e(H), i 2 [d(u)], j 2 [d(v1)], and k 2 [d(v2)]. Then
let za = (ui , vj) and zb = (ui , vk). The number of choices here is bounded by

X

uv1,uv22e(H)

d(u)d(v1)d(v2).

Putting this all together gives us

|C|  C(|N |)s�2

X

uv1,uv22e(H)

d(u)d(v1)d(v2)
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Deterministic Bounds: Proof

Finally, we have
�����E ((N)s)�

(|N |)sQ
s�1
i=0 2m � 1� 2i

����� 
X?

z2C

|er(z)|

 (|N |)s�2Q
s�1
i=0 2m � 1� 2i

X

uv1,uv22e(H)

d(u)d(v1)d(v2).
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Deterministic Bounds: Other Types of Conflicts

S2

q+2r+s�1Y

i=0

(2m � 1� 2i) =(|L|)q�2(|M|)r (|N |)s
X

1un

d(u)3

+ (|L|)q�1(|M|)r�1(|N |)s
X

1u 6=vn

d(u)3d(v)2

+ (|L|)q�1(|M|)r (|N |)s�1

X

uv2e(H)

d(u)2d(v)

+ (|L|)q(|M|)r�2(|N |)s
X

1un

u 62{v1,v2}

d(u)3d(v1)
2d(v2)

2

+ (|L|)q(|M|)r�1(|N |)s�1

X

1u,v1,v2n

u,v1,v2distinct
uv22e(H)

d(u)2d(v1)
2d(v2)

+ (|L|)q(|M|)r (|N |)s�2

X

uv1,uv22e(H)

d(u)d(v1)d(v2).
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Deterministic Bounds: Other Types of Conflicts

S1 = (|L|)q(|N |)s
r�1X

k=1

(|M|)r�k

kX

`=0

d2`
max

q+2r+s�1�(2k�`)Y

i=0

1
2m � 1� 2i

,
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Asymptotic Results: Lemma

Lemma

X

v2[n]

d(v) = O(n),

X

v2[n]

(d(v))2 = O(n),

X

uv2e(H)

d(u)d(v) = O(n), and

sup
u2[n]

X

v :uv2e(H)

d(v) = o(n).
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Asymptotic Results: Proof (time dependent)
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Tying it Together: Deterministic to Asymptotic

We want

E ((N)s) = (1 + o(1))
(|N |)sQ

s�1
i=0 2m � 1� 2i

We have
�����E ((N)s)�

(|N |)sQ
s�1
i=0 2m � 1� 2i

����� 
(|N |)s�2Q

s�1
i=0 2m � 1� 2i

X

uv1,uv22e(H)

d(u)d(v1)d(v2).

So we need to show
X

uv1,uv22e(H)

d(u)d(v1)d(v2) = o
⇣
(|N |)2

⌘
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uv1,uv22e(H)

d(u)d(v1)d(v2) = o
⇣
(|N |)2
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Tying it Together: Deterministic to Asymptotic

Assume |N | = ⇥(n) (otherwise E (N) ! 0).

X

uv1,uv22e(H)
v1 6=v2

d(u)d(v1)d(v2) =
X

uv2e(H)

d(u)d(v) ·
X

w :uw2e(H)

d(w)


X

uv2e(H)

d(u)d(v) ·

0

@ sup
u2[n]

X

w :uw2e(H)

d(w)

1

A

= |N | · o(n)

= o(|N |2).
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Tying it Together: Last Step

(|N |)sQ
s�1
i=0 2m � 1� 2i

= (1 + o(1))
|N |s

(2m)s

= (1 + o(1))

 P
uv2e(H) d(u)d(v)P

u2[n] d(u)

!

= (1 + o(1))

 P
i,j�1 ij↵

n(i , j)

µ1(pn)

!

= (1 + o(1))⌘s .

Hence,
E ((N)s) ! ⌘s .
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Further Questions

We require quite a few restrictions:

pn ! p both pointwise and in second moment.
1
n

P
uv2e(H) d(u)d(v) converges.

The max degree in H is o(n).

Can we relax any of these constraints?
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Thank you!

Our paper: “Random Tree-Weighted Graphs” (arXiv:2008.12167)
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