Counting loops and multi-edges in the superposition of a fixed graph and a random graph

Jordan Barrett

January 27, 2021

Motivation: Tree-Rooted Graphs

Motivation: Tree-Rooted Graphs

A tree-rooted graph is a triple (G, T, γ) where G is a connected graph, T is a spanning tree of G, and $\gamma=u v$ is a distinct, oriented edge with $u v \in e(G) \backslash e(T)$. We view T as a rooted tree with root u.

Motivation: Tree-Rooted Graphs

A tree-rooted graph is a triple (G, T, γ) where G is a connected graph, T is a spanning tree of G, and $\gamma=u v$ is a distinct, oriented edge with $u v \in e(G) \backslash e(T)$. We view T as a rooted tree with root u.

Theorem
For each $n \geq 1$, let $\mathrm{d}^{n}=\left(d^{n}(v) 1 \leq v \leq n\right)$ be a degree sequence, and let $\left(G_{n}, T_{n}, \Gamma_{n}\right)$ be chosen uniformly at random among all simple tree-rooted graphs with vertex set $[n]$ and degree sequence d^{n}. Then (under certain conditions on the limiting distribution of d^{n}) there exists a constant σ (dependent on the limiting distribution) such that

$$
\frac{\sigma}{n^{1 / 2}} T_{n} \xrightarrow{\text { dist }} \mathcal{T}
$$

as $n \rightarrow \infty$ with respect to the Gromov-Hausdorff-Prokhorov topology, where \mathcal{T} is the Brownian continuum random tree.

Motivation: Constructing a Tree-Rooted Graph

9
象

Motivation: Problem/Solution

Problem: The configuration model does not necessarily give a simple graph.

Motivation: Problem/Solution

Problem: The configuration model does not necessarily give a simple graph.
Solution: Prove that, under this construction, the probability that the graph is simple asymptotically approaches a constant greater that zero.

Main Result: Set up

Main Result: Set up

Fix a sequence of simple graphs $\left(H_{n}, n \geq 1\right)$ with $v\left(H_{n}\right)=[n]$ for all $n \geq 1$.

Main Result: Set up

Fix a sequence of simple graphs $\left(H_{n}, n \geq 1\right)$ with $v\left(H_{n}\right)=[n]$ for all $n \geq 1$.

For each $n \geq 1$ let $d^{n}=\left(d^{n}(v), 1 \leq v \leq n\right)$ be a degree sequence. Let $G_{n}=G\left(\mathrm{~d}^{n}\right)$ be a random graph with degree sequence d^{n}, distributed according to the configuration model.

Main Result: Set up

Fix a sequence of simple graphs $\left(H_{n}, n \geq 1\right)$ with $v\left(H_{n}\right)=[n]$ for all $n \geq 1$.
For each $n \geq 1$ let $d^{n}=\left(d^{n}(v), 1 \leq v \leq n\right)$ be a degree sequence. Let $G_{n}=G\left(\mathrm{~d}^{n}\right)$ be a random graph with degree sequence d^{n}, distributed according to the configuration model.

For each $n \geq$, let \mathfrak{G}_{n} be the graph with $v\left(\mathfrak{G}_{n}\right)=[n]$ and $e\left(\mathfrak{G}_{n}\right)=e\left(H_{n}\right) \cup e\left(G_{n}\right)$. We are interested in the asymptotics of $\mathbf{P}\left\{\mathfrak{G}_{n}\right.$ is a simple graph $\}$.

Main Result: Problematic Examples

Main Result: Set up

These problematic examples give rise to some necessary conditions:

Main Result: Set up

These problematic examples give rise to some necessary conditions:
First, for $\left(d^{n}, n \geq 1\right)$, we require at least that $\max _{v \in[n]}\left\{d^{n}(v)\right\}=o\left(n^{1 / 2}\right)$. In "The Probability That a Random Graph is Simple", Svante Janson shows that the correct condition for ensuring $\mathbf{P}\left\{G_{n}\right.$ is a simple graph $\}>0$ is a bounded second moment on the probability distribution of d^{n}.

Main Result: Set up

These problematic examples give rise to some necessary conditions:
First, for $\left(d^{n}, n \geq 1\right)$, we require at least that $\max _{v \in[n]}\left\{d^{n}(v)\right\}=o\left(n^{1 / 2}\right)$. In "The Probability That a Random Graph is Simple", Svante Janson shows that the correct condition for ensuring $\mathbf{P}\left\{G_{n}\right.$ is a simple graph $\}>0$ is a bounded second moment on the probability distribution of d^{n}.

Second, for $\left(H_{n}, n \geq 1\right)$, we require $\max _{v \in[n]}\left\{\operatorname{deg}_{H_{n}}(v)\right\}=o(n)$.

Main Result: Set up

These problematic examples give rise to some necessary conditions:
First, for $\left(d^{n}, n \geq 1\right)$, we require at least that $\max _{v \in[n]}\left\{d^{n}(v)\right\}=o\left(n^{1 / 2}\right)$. In "The Probability That a Random Graph is Simple", Svante Janson shows that the correct condition for ensuring $\mathbf{P}\left\{G_{n}\right.$ is a simple graph $\}>0$ is a bounded second moment on the probability distribution of d^{n}.

Second, for $\left(H_{n}, n \geq 1\right)$, we require $\max _{v \in[n]}\left\{\operatorname{deg}_{H_{n}}(v)\right\}=o(n)$.
Lastly, we require some sort of control on $\sum_{u v \in e\left(H^{n}\right)} d^{n}(u) d^{n}(v)$.

Main Result: Set up

Let $p^{n}=\left(p^{n}(k), k \geq 0\right)$ be the probability distribution of d^{n}. Furthermore, for any probability distribution $p=(p(k), k \geq 0)$, let $\mu_{1}(p)=\sum_{k \geq 0} k p(k)$ and $\mu_{2}(p)=\sum_{k \geq 0} k^{2} p(k)$.

Main Result: Set up

Let $p^{n}=\left(p^{n}(k), k \geq 0\right)$ be the probability distribution of d^{n}. Furthermore, for any probability distribution $p=(p(k), k \geq 0)$, let $\mu_{1}(p)=\sum_{k \geq 0} k p(k)$ and $\mu_{2}(p)=\sum_{k \geq 0} k^{2} p(k)$.

Condition $*$: There exists a probability distribution $p=(p(k), k \geq 0)$ with $\mu_{2}(p) \in[0, \infty)$ and $p(0)<1$ such that the following holds:

Main Result: Set up

Let $p^{n}=\left(p^{n}(k), k \geq 0\right)$ be the probability distribution of d^{n}. Furthermore, for any probability distribution $p=(p(k), k \geq 0)$, let $\mu_{1}(p)=\sum_{k \geq 0} k p(k)$ and $\mu_{2}(p)=\sum_{k \geq 0} k^{2} p(k)$.

Condition $*$: There exists a probability distribution $p=(p(k), k \geq 0)$ with $\mu_{2}(p) \in[0, \infty)$ and $p(0)<1$ such that the following holds:
First, $p^{n} \rightarrow p$ pointwise and $\mu_{2}\left(p^{n}\right) \rightarrow \mu_{2}(p)$.

Main Result: Set up

Let $p^{n}=\left(p^{n}(k), k \geq 0\right)$ be the probability distribution of d^{n}. Furthermore, for any probability distribution $p=(p(k), k \geq 0)$, let $\mu_{1}(p)=\sum_{k \geq 0} k p(k)$ and $\mu_{2}(p)=\sum_{k \geq 0} k^{2} p(k)$.

Condition $*$: There exists a probability distribution $p=(p(k), k \geq 0)$ with $\mu_{2}(p) \in[0, \infty)$ and $p(0)<1$ such that the following holds:
First, $p^{n} \rightarrow p$ pointwise and $\mu_{2}\left(p^{n}\right) \rightarrow \mu_{2}(p)$. Second, there are non-negative numbers $(\alpha(a, b), a, b \geq 0)$ such that for any $a, b \geq 0$

$$
\alpha^{n}(a, b):=\frac{1}{n}\left|\left\{u v \in e\left(H_{n}\right): d^{n}(u)=a, d^{n}(v)=b\right\}\right| \rightarrow \alpha(a, b),
$$

and

$$
\begin{equation*}
\sum_{k, \ell \geq 0} k l \alpha^{n}(k, \ell) \rightarrow \sum_{k, \ell \geq 0} k l \alpha(k, \ell)<\infty \tag{1}
\end{equation*}
$$

Main Result: Theorem

Let $\left(H_{n}, d^{n}, p^{n}, n \geq 1\right)$ and p be given, and let G_{n} be a random graph with degree sequence d^{n}, distributed according to the configuration model. Suppose that Condition $*$ holds, and that $\max _{v \in[n]}\left\{\operatorname{deg}_{H_{n}}(v)\right\}=o(n)$. Let L_{n} be the number of vertices G_{n} that contain loops, M_{n} be the number of edges in $e\left(G_{n}\right) \backslash e\left(T_{h}\right)$ with multiplicity greater than 1 , and N_{n} be the number of edges H_{n} that are also edges in G_{n}.

Main Result: Theorem

Let $\left(H_{n}, d^{n}, p^{n}, n \geq 1\right)$ and p be given, and let G_{n} be a random graph with degree sequence d^{n}, distributed according to the configuration model. Suppose that Condition $*$ holds, and that $\max _{v \in[n]}\left\{\operatorname{deg}_{H_{n}}(v)\right\}=o(n)$. Let L_{n} be the number of vertices G_{n} that contain loops, M_{n} be the number of edges in $e\left(G_{n}\right) \backslash e\left(\mathcal{F}_{n}\right)$ with multiplicity greater than 1 , and N_{n} be the number of edges H_{n} that are also edges in G_{n}.

Theorem
Let $\nu=\left(\mu_{2}(p) / \mu_{1}(p)\right)-1$ and $\eta=\frac{1}{\mu_{1}(p)} \sum_{i, j \geq 1} \ddot{j} \alpha(i, j)$.

$$
\left\|\operatorname{Dist}\left(L_{n}, M_{n}, N_{n}\right)-\operatorname{Poi}(\nu / 2) \otimes \operatorname{Poi}\left(\nu^{2} / 4\right) \otimes \operatorname{Poi}(\eta)\right\|_{\mathrm{TV}} \rightarrow 0
$$

as $n \rightarrow \infty$.

Main Result: Theorem

Let $\left(H_{n}, d^{n}, p^{n}, n \geq 1\right)$ and p be given, and let G_{n} be a random graph with degree sequence d^{n}, distributed according to the configuration model. Suppose that Condition $*$ holds, and that $\max _{v \in[n]}\left\{\operatorname{deg}_{H_{n}}(v)\right\}=o(n)$. Let L_{n} be the number of vertices G_{n} that contain loops, M_{n} be the number of edges in $e\left(G_{n}\right) \backslash e\left(T_{n}\right)$ with multiplicity greater than 1 , and N_{n} be the number of edges H_{n} that are also edges in G_{n}.

Theorem
Let $\nu=\left(\mu_{2}(p) / \mu_{1}(p)\right)-1$ and $\eta=\frac{1}{\mu_{1}(p)} \sum_{i, j \geq 1} i j \alpha(i, j)$.

$$
\left\|\operatorname{Dist}\left(L_{n}, M_{n}, N_{n}\right)-\operatorname{Poi}(\nu / 2) \otimes \operatorname{Poi}\left(\nu^{2} / 4\right) \otimes \operatorname{Poi}(\eta)\right\|_{\mathrm{TV}} \rightarrow 0
$$

as $n \rightarrow \infty$.
An immediate corollary to this theorem is:

$$
\mathbf{P}\left\{\mathfrak{G}_{n} \text { is simple }\right\} \rightarrow \exp \left(-\nu / 2-\nu^{2} / 4-\eta\right)
$$

as $n \rightarrow \infty$.

Deterministic Bounds: Set up

Deterministic Bounds: Set up

For this section we fix n and simplify our notation like so:

$$
H_{n}, G_{n}, \mathrm{~d}^{n}, L_{n}, M_{n}, N_{n} \rightarrow H, G, \mathrm{~d}, L, M, N .
$$

Deterministic Bounds: Set up

For this section we fix n and simplify our notation like so:

$$
H_{n}, G_{n}, \mathrm{~d}^{n}, L_{n}, M_{n}, N_{n} \rightarrow H, G, \mathrm{~d}, L, M, N
$$

For any $x \in \mathbb{R}$ and $\ell \in \mathbb{N}$, let $(x)_{\ell}=(x)(x-1) \ldots,(x-\ell+1)$. Remco van der Hofstad proves the following theorem in his book "Random Graphs and Complex Networks, Volume 1":

Deterministic Bounds: Set up

For this section we fix n and simplify our notation like so:

$$
H_{n}, G_{n}, \mathrm{~d}^{n}, L_{n}, M_{n}, N_{n} \rightarrow H, G, \mathrm{~d}, L, M, N .
$$

For any $x \in \mathbb{R}$ and $\ell \in \mathbb{N}$, let $(x)_{\ell}=(x)(x-1) \ldots,(x-\ell+1)$. Remco van der Hofstad proves the following theorem in his book "Random Graphs and Complex Networks, Volume 1":

Theorem (Theorem 2.6 in Hofstad)
A vector of integer-valued random variables $\left(\left(X_{1, n}, \ldots, X_{d, n}\right)\right)_{n \geq 1}$ converges in distribution to a vector of independent Poisson random variables with parameters $\lambda_{1}, \ldots, \lambda_{d}$ when, for all $r_{1}, \ldots, r_{d} \in \mathbb{N}$,

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left(\left(X_{1, n}\right)_{r_{1}} \ldots\left(X_{d, n}\right)_{r_{d}}\right)=\lambda_{1}^{r_{1}} \ldots \lambda_{d}^{r_{d}}
$$

Deterministic Bounds: Set up

For this section we fix n and simplify our notation like so:

$$
H_{n}, G_{n}, \mathrm{~d}^{n}, L_{n}, M_{n}, N_{n} \rightarrow H, G, \mathrm{~d}, L, M, N .
$$

For any $x \in \mathbb{R}$ and $\ell \in \mathbb{N}$, let $(x)_{\ell}=(x)(x-1) \ldots,(x-\ell+1)$. Remco van der Hofstad proves the following theorem in his book "Random Graphs and Complex Networks, Volume 1":

Theorem (Theorem 2.6 in Hofstad)
A vector of integer-valued random variables $\left(\left(X_{1, n}, \ldots, X_{d, n}\right)\right)_{n \geq 1}$ converges in distribution to a vector of independent Poisson random variables with parameters $\lambda_{1}, \ldots, \lambda_{d}$ when, for all $r_{1}, \ldots, r_{d} \in \mathbb{N}$,

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left(\left(X_{1, n}\right)_{r_{1}} \ldots\left(X_{d, n}\right)_{r_{d}}\right)=\lambda_{1}^{r_{1}} \ldots \lambda_{d}^{r_{d}} .
$$

The goal of this section is to find a deterministic bound for $\mathbf{E}\left((L)_{q}(M)_{r}(N)_{s}\right)$.

Deterministic Bounds: Set up

For vertices $u, v \in[n]$ and $i \in[d(u)], j \in[d(v)]$, let $\mathbf{1}_{[u i, v j]}$ be the indicator of the event that half-edge $u i$ is matched with half-edge $v j$ in G.

Deterministic Bounds: Set up

For vertices $u, v \in[n]$ and $i \in[d(u)], j \in[d(v)]$, let $\mathbf{1}_{[u i, v j]}$ be the indicator of the event that half-edge $u i$ is matched with half-edge $v j$ in G. Now write

$$
\begin{aligned}
\mathcal{L} & =\mathcal{L}(G)=\{(u i, u j): u \in[n], i, j \in[d(u)], i<j\} \\
\mathcal{M} & =\mathcal{M}(G, H)=\left\{\left(\left(u i_{1}, v j_{1}\right),\left(u i_{2}, v j_{2}\right)\right): u, v \in[n], u v \notin e(H)\right. \\
& \left.i_{1}, i_{2} \in[d(u)], j_{1}, j_{2} \in[d(v)], u<v, i_{1}<i_{2}, j_{1} \neq j_{2}\right\} \\
\mathcal{N} & =\mathcal{N}(G, H)=\{(u i, v j): u v \in e(H), i \in[d(u)], j \in[d(v)]\}
\end{aligned}
$$

Deterministic Bounds: Set up

For vertices $u, v \in[n]$ and $i \in[d(u)], j \in[d(v)]$, let $\mathbf{1}_{[u i, v j]}$ be the indicator of the event that half-edge $u i$ is matched with half-edge $v j$ in G. Now write

$$
\begin{aligned}
\mathcal{L} & =\mathcal{L}(G)=\{(u i, u j): u \in[n], i, j \in[d(u)], i<j\} \\
\mathcal{M} & =\mathcal{M}(G, H)=\left\{\left(\left(u i_{1}, v j_{1}\right),\left(u i_{2}, v j_{2}\right)\right): u, v \in[n], u v \notin e(H)\right. \\
& \left.i_{1}, i_{2} \in[d(u)], j_{1}, j_{2} \in[d(v)], u<v, i_{1}<i_{2}, j_{1} \neq j_{2}\right\} \\
\mathcal{N} & =\mathcal{N}(G, H)=\{(u i, v j): u v \in e(H), i \in[d(u)], j \in[d(v)]\}
\end{aligned}
$$

and let us re-define L, M and N as

$$
\begin{aligned}
& L=L(G)=\sum_{(u i, u j) \in \mathcal{L}} \mathbf{1}_{[u i, u j]}, \\
& M=M(G, H)=\sum_{\left(\left(u i_{1}, v j_{1}\right),\left(u i_{2} v j_{2}\right)\right) \in \mathcal{M}} \mathbf{1}_{\left[\left(u i_{1}, v j_{1}\right)\right]} \mathbf{1}_{\left[\left(u i_{2} v j_{2}\right)\right]}, \text { and } \\
& N=N(G, H) \sum_{(u i, v j) \in \mathcal{N}} \mathbf{1}_{[u i, v j]} .
\end{aligned}
$$

Deterministic Bounds: Proposition

Let $d_{\max }=\max _{i \in[n]}\{d(i)\}$.

Deterministic Bounds: Proposition

Let $d_{\max }=\max _{i \in[n]}\{d(i)\}$.
Proposition
For any positive integers $q, r, s \in \mathbb{N}$,

$$
\left|\mathbf{E}\left((L)_{q}(M)_{r}(N)_{s}\right)-\frac{(|\mathcal{L}|)_{q}(|\mathcal{M}|)_{r}(|\mathcal{N}|)_{s}}{\prod_{i=0}^{q+2 r+s-1} 2 m-1-2 i}\right| \leq C\left(S_{1}+S_{2}\right)
$$

where $C=C(q, r, s), S_{1}$ is defined by

$$
S_{1}=(|\mathcal{L}|)_{q}(|\mathcal{N}|)_{s} \sum_{k=1}^{r-1}(|\mathcal{M}|)_{r-k} \sum_{\ell=0}^{k} d_{\max }^{2 \ell} \prod_{i=0}^{q+2 r+s-1-(2 k-\ell)} \frac{1}{2 m-1-2 i},
$$

and S_{2} is defined by the following identity:

$$
\begin{aligned}
S_{2} \prod_{i=0}^{q+2 r+s-1}(2 m-1-2 i)= & (|\mathcal{L}|)_{q-2}(|\mathcal{M}|)_{r}(|\mathcal{N}|)_{s} \sum_{1 \leq u \leq n} d(u)^{3} \\
& +(|\mathcal{L}|)_{q-1}(|\mathcal{M}|)_{r-1}(|\mathcal{N}|)_{s} \sum_{1 \leq u \neq v \leq n} d(u)^{3} d(v)^{2} \\
& +(|\mathcal{L}|)_{q-1}(|\mathcal{M}|)_{r}(|\mathcal{N}|)_{s-1} \sum_{u v \in e(H)} d(u)^{2} d(v) \\
& +(|\mathcal{L}|)_{q}(|\mathcal{M}|)_{r-2}(|\mathcal{N}|)_{s} \sum_{\substack{1 \leq u \leq n \\
u \notin\left\{v_{1}, v_{2}\right\}}} d(u)^{3} d\left(v_{1}\right)^{2} d\left(v_{2}\right)^{2} \\
& +(|\mathcal{L}|)_{q}(|\mathcal{M}|)_{r-1}(|\mathcal{N}|)_{s-1} \sum_{\substack{1 \leq u, v_{1}, v_{2} \leq n \\
u, v_{1}, v_{2} \text { distinct } \\
u v_{2} \in e(H)}}^{\substack{\begin{subarray}{c}{ } }}\end{subarray}} d(u)^{2} d\left(v_{1}\right)^{2} d\left(v_{2}\right) \\
& +(|\mathcal{L}|)_{q}(|\mathcal{M}|)_{r}(|\mathcal{N}|)_{s-2} d(u) d\left(v_{1}\right) d\left(v_{2}\right) .
\end{aligned}
$$

Deterministic Bounds: A More Manageable Proposition

Deterministic Bounds: A More Manageable Proposition

Proposition

For any positive integer $s \in \mathbb{N}$,

$$
\left|\mathbf{E}\left((N)_{s}\right)-\frac{(|\mathcal{N}|)_{s}}{\prod_{i=0}^{s-1} 2 m-1-2 i}\right| \leq C S
$$

where $C=C(s)$ and S is defined by

$$
S=\frac{(|\mathcal{N}|)_{s-2}}{\prod_{i=0}^{s-1} 2 m-1-2 i} \sum_{u v_{1}, u v_{2} \in e(H)} d(u) d\left(v_{1}\right) d\left(v_{2}\right)
$$

Deterministic Bounds: Proof

We will denote a generic element of \mathcal{N}^{s} by z where $z=\left(z_{1}, \ldots, z_{s}\right)$.

Deterministic Bounds: Proof

We will denote a generic element of \mathcal{N}^{s} by z where $z=\left(z_{1}, \ldots, z_{s}\right)$. We use the following indicator notation:

$$
\mathbf{1}_{[z]}=\prod_{i=1}^{s} \mathbf{1}_{\left[z_{i}\right]} .
$$

Deterministic Bounds: Proof

We will denote a generic element of \mathcal{N}^{s} by z where $z=\left(z_{1}, \ldots, z_{s}\right)$. We use the following indicator notation:

$$
\mathbf{1}_{[z]}=\prod_{i=1}^{s} \mathbf{1}_{\left[z_{i}\right]} .
$$

We also use the following summation notation:

$$
\sum^{\star}:=\sum_{\substack{z \in \mathcal{N}^{s} \\ z_{i} \neq z_{j} \text { for all } i \neq j}}
$$

Deterministic Bounds: Proof

We will denote a generic element of \mathcal{N}^{s} by z where $z=\left(z_{1}, \ldots, z_{s}\right)$. We use the following indicator notation:

$$
\mathbf{1}_{[z]}=\prod_{i=1}^{s} \mathbf{1}_{\left[z_{i}\right]} .
$$

We also use the following summation notation:

$$
\sum^{\star}:=\sum_{\substack{z \in \mathcal{N}^{s} \\ z_{i} \neq z_{j} \text { for all } i \neq j}}
$$

Using this notation, we can say that

$$
\begin{equation*}
\mathbf{E}\left((N)_{s}\right)=\sum^{\star} \mathbf{P}\left\{\mathbf{1}_{[z]}=1\right\} \tag{2}
\end{equation*}
$$

Deterministic Bounds: Proof

We say z is non-conflicting if all half-edges among all elements in z are distinct, and otherwise we say z is conflicting.

Deterministic Bounds: Proof

We say z is non-conflicting if all half-edges among all elements in z are distinct, and otherwise we say z is conflicting. If z is non-conflicting then, letting $m=\frac{1}{2} \sum_{v=1}^{n} d^{n}(v)$,

$$
\begin{equation*}
\mathbf{P}\left\{\mathbf{1}_{[z]}=1\right\}=\prod_{i=0}^{s-1} \frac{1}{2 m-1-2 i} \tag{3}
\end{equation*}
$$

Deterministic Bounds: Proof

We say z is non-conflicting if all half-edges among all elements in z are distinct, and otherwise we say z is conflicting. If z is non-conflicting then, letting $m=\frac{1}{2} \sum_{v=1}^{n} d^{n}(v)$,

$$
\begin{equation*}
\mathbf{P}\left\{\mathbf{1}_{[z]}=1\right\}=\prod_{i=0}^{s-1} \frac{1}{2 m-1-2 i} \tag{3}
\end{equation*}
$$

Let $\operatorname{er}(z)$ be defined as

$$
\operatorname{er}(z):=\mathbf{P}\left\{\mathbf{1}_{[z]}=1\right\}-\prod_{i=0}^{s-1} \frac{1}{2 m-1-2 i}
$$

Deterministic Bounds: Proof

We say z is non-conflicting if all half-edges among all elements in z are distinct, and otherwise we say z is conflicting. If z is non-conflicting then, letting $m=\frac{1}{2} \sum_{v=1}^{n} d^{n}(v)$,

$$
\begin{equation*}
\mathbf{P}\left\{\mathbf{1}_{[z]}=1\right\}=\prod_{i=0}^{s-1} \frac{1}{2 m-1-2 i} \tag{3}
\end{equation*}
$$

Let $\operatorname{er}(z)$ be defined as

$$
\operatorname{er}(z):=\mathbf{P}\left\{\mathbf{1}_{[z]}=1\right\}-\prod_{i=0}^{s-1} \frac{1}{2 m-1-2 i}
$$

Then

$$
\mathbf{E}\left((N)_{s}\right)=\frac{(|\mathcal{N}|)_{s}}{\prod_{i=0}^{s-1} 2 m-1-2 i}+\sum_{z \text { is conflicting }}^{\star} \operatorname{er}(z)
$$

Deterministic Bounds: Proof

We say z is non-conflicting if all half-edges among all elements in z are distinct, and otherwise we say z is conflicting. If z is non-conflicting then, letting $m=\frac{1}{2} \sum_{v=1}^{n} d^{n}(v)$,

$$
\begin{equation*}
\mathbf{P}\left\{\mathbf{1}_{[z]}=1\right\}=\prod_{i=0}^{s-1} \frac{1}{2 m-1-2 i} \tag{3}
\end{equation*}
$$

Let $\operatorname{er}(z)$ be defined as

$$
\operatorname{er}(z):=\mathbf{P}\left\{\mathbf{1}_{[z]}=1\right\}-\prod_{i=0}^{s-1} \frac{1}{2 m-1-2 i}
$$

Then

$$
\mathbf{E}\left((N)_{s}\right)=\frac{(|\mathcal{N}|)_{s}}{\prod_{i=0}^{s-1} 2 m-1-2 i}+\sum_{z \text { is conflicting }}^{\star} \operatorname{er}(z)
$$

By the triangle inequality this implies

$$
\begin{equation*}
\left|\mathbf{E}\left((N)_{s}\right)-\frac{(|\mathcal{N}|)_{s}}{\prod_{i=0}^{s-1} 2 m-1-2 i}\right| \leq \sum_{z \text { is conflicting }}^{\star}|e r(z)| \tag{4}
\end{equation*}
$$

Deterministic Bounds: Proof

If z is conflicting, then there must be some $z_{a}, z_{b} \in z$ with $z_{a}=(u i, v j)$ and $z_{b}=(u i, v k)$, or with $z_{a}=(u i, v k)$ and $z_{b}=(u j, v k)$. Here is a visual representation of a conflicting z :

$$
Z=\left(2,2, \ldots, z_{5}\right)
$$

Deterministic Bounds: Proof

Let $\mathcal{C}=\mathcal{C}(s) \subset \mathcal{N}^{s}$ be the set of conflicting z.

Deterministic Bounds: Proof

Let $\mathcal{C}=\mathcal{C}(s) \subset \mathcal{N}^{s}$ be the set of conflicting z. We claim that

$$
\begin{aligned}
|\mathcal{C}| & \leq C(|\mathcal{N}|)_{s-2} \sum_{u v_{1}, u v_{2} \in e(H)} d(u) d\left(v_{1}\right) d\left(v_{2}\right), \text { and } \\
|e r(z)| & =\prod_{i=0}^{s-1} \frac{1}{2 m-1-2 i} \text { for all } z \in \mathcal{C} .
\end{aligned}
$$

Deterministic Bounds: Proof

$$
z=\left(z_{1}, \ldots, z_{s}\right)
$$

Let $\mathcal{C}=\mathcal{C}(s) \subset \mathcal{N}^{s}$ be the set of conflicting z. We claim that

$$
\begin{aligned}
|\mathcal{C}| & \leq C(|\mathcal{N}|)_{s-2} \sum_{u v_{1}, u v_{2} \in e(H)} d(u) d\left(v_{1}\right) d\left(v_{2}\right), \text { and } \\
|e r(z)| & =\prod_{i=0}^{s-1} \frac{1}{2 m-1-2 i} \text { for all } z \in \mathcal{C} .
\end{aligned}
$$

The second claim is obvious since $\mathbf{P}\left\{\mathbf{1}_{[z]}=1\right\}=0$ if $z \in \mathcal{C}$. The first claim requires a bit more work.

Deterministic Bounds: Proof

Let us construct an arbitrary element $z=\left(z_{1}, \ldots, z_{s}\right) \in \mathcal{C}$:

Deterministic Bounds: Proof

Let us construct an arbitrary element $z=\left(z_{1}, \ldots, z_{s}\right) \in \mathcal{C}$:
First, choose some a, b with $1 \leq a<b \leq s$. The number of such choices is $\binom{s}{2}$.

Deterministic Bounds: Proof

Let us construct an arbitrary element $z=\left(z_{1}, \ldots, z_{s}\right) \in \mathcal{C}$:
First, choose some a, b with $1 \leq a<b \leq s$. The number of such choices is $\binom{s}{2}$. Second, choose ($z_{1}, \ldots, z_{a-1}, z_{a+1}, \ldots, z_{b-1}, z_{b+1}, \ldots, z_{s}$) arbitrarily. The number of such choices is $(|\mathcal{N}|)_{s-2}$.

Deterministic Bounds: Proof

Let us construct an arbitrary element $z=\left(z_{1}, \ldots, z_{s}\right) \in \mathcal{C}$:
First, choose some a, b with $1 \leq a<b \leq s$. The number of such choices is $\binom{s}{2}$. Second, choose ($z_{1}, \ldots, z_{a-1}, z_{a+1}, \ldots, z_{b-1}, z_{b+1}, \ldots, z_{s}$) arbitrarily. The number of such choices is $(|\mathcal{N}|)_{s-2}$.
Lastly, choose $u v_{1}, u v_{2} \in e(H), i \in[d(u)], j \in\left[d\left(v_{1}\right)\right]$, and $k \in\left[d\left(v_{2}\right)\right]$. Then let $z_{a}=(u i, v j)$ and $z_{b}=(u i, v k)$. The number of choices here is bounded by

$$
\sum_{u v_{1}, u v_{2} \in e(H)} d(u) d\left(v_{1}\right) d\left(v_{2}\right) .
$$

Deterministic Bounds: Proof

Let us construct an arbitrary element $z=\left(z_{1}, \ldots, z_{s}\right) \in \mathcal{C}$:
First, choose some a, b with $1 \leq a<b \leq s$. The number of such choices is $\binom{s}{2}$. Second, choose ($z_{1}, \ldots, z_{a-1}, z_{a+1}, \ldots, z_{b-1}, z_{b+1}, \ldots, z_{s}$) arbitrarily. The number of such choices is $(|\mathcal{N}|)_{s-2}$.
Lastly, choose $u v_{1}, u v_{2} \in e(H), i \in[d(u)], j \in\left[d\left(v_{1}\right)\right]$, and $k \in\left[d\left(v_{2}\right)\right]$. Then let $z_{a}=(u i, v j)$ and $z_{b}=(u i, v k)$. The number of choices here is bounded by

$$
\sum_{u v_{1}, u v_{2} \in e(H)} d(u) d\left(v_{1}\right) d\left(v_{2}\right) .
$$

Putting this all together gives us

$$
|\mathcal{C}| \leq C(|\mathcal{N}|)_{s-2} \sum_{u v_{1}, u v_{2} \in e(H)} d(u) d\left(v_{1}\right) d\left(v_{2}\right)
$$

Deterministic Bounds: Proof

Finally, we have

$$
\begin{aligned}
\left|\mathbf{E}\left((N)_{s}\right)-\frac{(|\mathcal{N}|)_{s}}{\prod_{i=0}^{s-1} 2 m-1-2 i}\right| & \leq \sum_{z \in \mathcal{C}}^{\star}|\operatorname{er}(z)| \\
& \leq \frac{(|\mathcal{N}|)_{s-2}}{\prod_{i=0}^{s-1} 2 m-1-2 i} \sum_{u v_{1}, u v_{2} \in e(H)} d(u) d\left(v_{1}\right) d\left(v_{2}\right) .
\end{aligned}
$$

Deterministic Bounds: Other Types of Conflicts

Deterministic Bounds: Other Types of Conflicts

$$
\begin{aligned}
S_{2} \prod_{i=0}^{q+2 r+s-1}(2 m-1-2 i)= & (|\mathcal{L}|)_{q-2}(|\mathcal{M}|)_{r}(|\mathcal{N}|)_{s} \sum_{1 \leq u \leq n} d(u)^{3} \\
& +(|\mathcal{L}|)_{q-1}(|\mathcal{M}|)_{r-1}(|\mathcal{N}|)_{s} \sum_{\substack{1 \leq u \neq v \leq n}} d(u)^{3} d(v)^{2} \\
& +(|\mathcal{L}|)_{q-1}(|\mathcal{M}|)_{r}(|\mathcal{N}|)_{s-1} \sum_{u v \in e(H)} d(u)^{2} d(v) \\
& +(|\mathcal{L}|)_{q}(|\mathcal{M}|)_{r-2}(|\mathcal{N}|)_{s} \sum_{\substack{1 \leq u \leq n \\
u \notin\left\{v_{1} \leq, v_{2}\right\}}} d(u)^{3} d\left(v_{1}\right)^{2} d\left(v_{2}\right)^{2} \\
& +(|\mathcal{L}|)_{q}(|\mathcal{M}|)_{r-1}(|\mathcal{N}|)_{s-1} \sum_{\substack{1 \leq u, v_{1}, v_{2} \leq n \\
u, v_{1}, v_{2} \text { distinct } \\
u v_{2} \in e(H)}} d(u)^{2} d\left(v_{1}\right)^{2} d\left(v_{2}\right) \\
& +(|\mathcal{L}|)_{q}(|\mathcal{M}|)_{r}(|\mathcal{N}|)_{s-2} \sum_{\substack{u v_{1}, u v_{2} \in e(H)}} d(u) d\left(v_{1}\right) d\left(v_{2}\right) .
\end{aligned}
$$

Deterministic Bounds: Other Types of Conflicts

Deterministic Bounds: Other Types of Conflicts

$$
S_{1}=(|\mathcal{L}|)_{q}(|\mathcal{N}|)_{s} \sum_{k=1}^{r-1}(|\mathcal{M}|)_{r-k} \sum_{\ell=0}^{k} d_{\max }^{2 \ell} \prod_{i=0}^{q+2 r+s-1-(2 k-\ell)} \frac{1}{2 m-1-2 i},
$$

Asymptotic Results: Lemma

Asymptotic Results: Lemma

Lemma

$$
\begin{aligned}
\sum_{v \in[n]} d(v) & =O(n), \\
\sum_{v \in[n]}(d(v))^{2} & =O(n), \\
\sum_{u v \in e(H)} d(u) d(v) & =O(n), \text { and } \\
\sup _{u \in[n]} \sum_{v: u v \in e(H)} d(v) & =o(n),
\end{aligned}
$$

Asymptotic Results: Proof (time dependent)

Tying it Together: Deterministic to Asymptotic

Tying it Together: Deterministic to Asymptotic

We want

$$
\mathbf{E}\left((N)_{s}\right)=(1+o(1)) \frac{(|\mathcal{N}|)_{s}}{\prod_{i=0}^{s-1} 2 m-1-2 i}
$$

Tying it Together: Deterministic to Asymptotic

We want

$$
\mathbf{E}\left((N)_{s}\right)=(1+o(1)) \frac{(|\mathcal{N}|)_{s}}{\prod_{i=0}^{s-1} 2 m-1-2 i}
$$

We have

$$
\left|\mathbf{E}\left((N)_{s}\right)-\frac{(|\mathcal{N}|)_{s}}{\prod_{i=0}^{s-1} 2 m-1-2 i}\right| \leq \frac{(|\mathcal{N}|)_{s-2}}{\prod_{i=0}^{s-1} 2 m-1-2 i} \sum_{u v_{1}, u v_{2} \in e(H)} d(u) d\left(v_{1}\right) d\left(v_{2}\right) .
$$

Tying it Together: Deterministic to Asymptotic

We want

$$
\mathbf{E}\left((N)_{s}\right)=(1+o(1)) \frac{(|\mathcal{N}|)_{s}}{\prod_{i=0}^{s-1} 2 m-1-2 i}
$$

We have

$$
\left|\mathbf{E}\left((N)_{s}\right)-\frac{(|\mathcal{N}|)_{s}}{\prod_{i=0}^{s-1} 2 m-1-2 i}\right| \leq \frac{(|\mathcal{N}|)_{s-2}}{\prod_{i=0}^{s-1} 2 m-1-2 i} \sum_{u v_{1}, u v_{2} \in e(H)} d(u) d\left(v_{1}\right) d\left(v_{2}\right) .
$$

So we need to show

$$
\sum_{u v_{1}, u v_{2} \in e(H)} d(u) d\left(v_{1}\right) d\left(v_{2}\right)=o\left((|\mathcal{N}|)^{2}\right)
$$

Tying it Together: Deterministic to Asymptotic

Assume $|\mathcal{N}|=\Theta(n)$ (otherwise $\mathbf{E}(N) \rightarrow 0)$.

Tying it Together: Deterministic to Asymptotic

Assume $|\mathcal{N}|=\Theta(n)$ (otherwise $\mathbf{E}(N) \rightarrow 0$).

$$
\begin{aligned}
\sum_{\substack{u v_{1}, u v_{2} \in e(H) \\
v_{1} \neq v_{2}}} d(u) d\left(v_{1}\right) d\left(v_{2}\right) & =\sum_{u v \in e(H)} d(u) d(v) \cdot \sum_{w: u w \in e(H)} d(w) \\
& \leq \sum_{u v \in e(H)} d(u) d(v) \cdot\left(\sup _{u \in[n]} \sum_{w: u w \in e(H)} d(w)\right) \\
& =|\mathcal{N}| \cdot o(n) \\
& =o\left(|\mathcal{N}|^{2}\right)
\end{aligned}
$$

Tying it Together: Last Step

$$
\begin{aligned}
\frac{(|\mathcal{N}|)_{s}}{\prod_{i=0}^{s-1} 2 m-1-2 i} & =(1+o(1)) \frac{|\mathcal{N}|^{s}}{(2 m)^{s}} \\
& =(1+o(1))\left(\frac{\sum_{u v \in e(H)} d(u) d(v)}{\sum_{u \in[n]} d(u)}\right) \\
& =(1+o(1))\left(\frac{\sum_{i, j \geq 1} i j \alpha^{n}(i, j)}{\mu_{1}\left(p^{n}\right)}\right) \\
& =(1+o(1)) \eta^{s} .
\end{aligned}
$$

Tying it Together: Last Step

$$
\begin{aligned}
\frac{(|\mathcal{N}|)_{s}}{\prod_{i=0}^{s-1} 2 m-1-2 i} & =(1+o(1)) \frac{|\mathcal{N}|^{s}}{(2 m)^{s}} \\
& =(1+o(1))\left(\frac{\sum_{u v \in e(H)} d(u) d(v)}{\sum_{u \in[n]} d(u)}\right) \\
& =(1+o(1))\left(\frac{\sum_{i, j \geq 1} i j \alpha^{n}(i, j)}{\mu_{1}\left(p^{n}\right)}\right) \\
& =(1+o(1)) \eta^{s} .
\end{aligned}
$$

Hence,

$$
\mathbf{E}\left((N)_{s}\right) \rightarrow \eta^{s} .
$$

Further Questions

We require quite a few restrictions:

Further Questions

We require quite a few restrictions:
$p^{n} \rightarrow p$ both pointwise and in second moment.

Further Questions

We require quite a few restrictions:
$p^{n} \rightarrow p$ both pointwise and in second moment.
$\frac{1}{n} \sum_{u v \in e(H)} d(u) d(v)$ converges.

Further Questions

We require quite a few restrictions:
$p^{n} \rightarrow p$ both pointwise and in second moment.
$\frac{1}{n} \sum_{u v \in e(H)} d(u) d(v)$ converges.
The max degree in H is $o(n)$.

Further Questions

We require quite a few restrictions:
$p^{n} \rightarrow p$ both pointwise and in second moment.
$\frac{1}{n} \sum_{u v \in e(H)} d(u) d(v)$ converges.
The max degree in H is $o(n)$.
Can we relax any of these constraints?

Thank you!

Our paper: "Random Tree-Weighted Graphs" (arXiv:2008.12167)

