Graph Characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Future Directions

The Orthogonal Colouring Game

Melissa Huggan

Mount Allison University supported by AARMS

(Joint work with Stephan Dominique Andres, François Dross, Fionn Mc Inerney, and Richard J. Nowakowski)

Atlantic Graph Theory Seminar - 2022

February 2, 2022

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Outline

The Orthogonal Latin Square Colouring Game Ruleset How to Play

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Graph Characterizatio

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

Orthogonal Latin Square Colouring Game: Ruleset

Two players: Alice and Bob

• <u>Board</u>: a pair of $n \times n$ empty grids. Alice owns the first grid, Bob owns the second grid.

Graph Characterizatio

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

Orthogonal Latin Square Colouring Game: Ruleset

Two players: Alice and Bob

- <u>Board</u>: a pair of $n \times n$ empty grids. Alice owns the first grid, Bob owns the second grid.
- <u>Moves</u>: Alternate turns. Fill one cell of either grid with an integer 1, . . . , *m*.

Graph Characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Future Directions

Orthogonal Latin Square Colouring Game: Ruleset

Two players: Alice and Bob

- <u>Board</u>: a pair of $n \times n$ empty grids. Alice owns the first grid, Bob owns the second grid.
- <u>Moves</u>: Alternate turns. Fill one cell of either grid with an integer 1, . . . , *m*.
- Conditions:
 - Latin property: no repeated integers in a row or column.
 - Orthogonality: ordered pairs appear at most once in the superimposed grids.

Graph Characterizatio

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Future Directions

Orthogonal Latin Square Colouring Game: Ruleset

Two players: Alice and Bob

- <u>Board</u>: a pair of $n \times n$ empty grids. Alice owns the first grid, Bob owns the second grid.
- <u>Moves</u>: Alternate turns. Fill one cell of either grid with an integer 1, . . . , *m*.
- Conditions:
 - Latin property: no repeated integers in a row or column.
 - Orthogonality: ordered pairs appear at most once in the superimposed grids.

<u>How to win</u>: # entries in players' grid is their final score. Same score: Draw. Otherwise, higher score wins.

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

1	

Owned by Alice

Owned by Bob

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Orthogonal Colouring Game

Graph Characterization

Future Directions 000

How to Play: Example

Suppose m = 3.

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

3	1	х
	х	2

Owned by Alice Pairs: (1,3)

Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

Owned by Alice Pairs: (1,3) Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

Owned by Alice Pairs: (1,3) (1,1) Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

1		
	1	2
2		1

3	1	х
	х	2
Х		1

Owned by Alice Pairs: (1,3) (1,1) (2,2) Owned by Bob

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

1		
	1	2
2		1

3	1	х
	х	2
х	3	1

Owned by Alice Pairs: (1,3) (1,1) (2,2) Owned by Bob

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

The Orthogonal Colouring Game

Graph Characterization

Future Directions

3

How to Play: Example

Suppose m = 3.

1		
	1	2
2	3	1

3	1	х
	х	2
Х	3	1

Owned by Alice Pairs: (1,3) (1,1) (2,2) (3,3) Owned by Bob

イロト 不得 トイヨト イヨト

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

1		
	1	2
2	3	1

3	1	х
1	х	2
Х	3	1

Owned by Alice Pairs: (1,3) (1,1) (2,2) (3,3) Owned by Bob

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

1	2		3	
	1	2	1	
2	3	1	х	

3	1	х
1	Х	2
Х	3	1

Owned by Alice Pairs: (1,3) (1,1) (2,2) (3,3) (2,1) Owned by Bob

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

1	2	3	
	1	2	
2	3	1	

3	1	х
1	х	2
Х	3	1

Owned by Alice Pairs: (1,3) (1,1) (2,2) (3,3) (2,1) Owned by Bob

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

1	2	3	3	1	х
3	1	2	1	х	2
2	3	1	х	3	1

Owned by Alice Owned by Bob Pairs: (1,3) (1,1) (2,2) (3,3) (2,1) (3,1)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The Orthogonal Colouring Game

Graph Characterization

Future Directions

How to Play: Example

Suppose m = 3.

1	2	3	3	1	х
3	1	2	1	х	2
2	3	1	х	3	1

Owned by Alice Owned by Bob Pairs: (1,3) (1,1) (2,2) (3,3) (2,1) (3,1)

Alice's score: 9, Bob's score: 6. ALICE WINS!

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1	

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1	

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1		
	1	

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pairs: (1,1)

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pairs: (1,1)

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

Owned by Alice Pairs: (1,1)

Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1		
	1	
2		1

Owned by Alice Pairs: (1,1) (2,1)

Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1		
	1	
2		1

Owned by Alice Pairs: (1,1) (2,1) (1,2)

Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1		
	1	2
2		1

Owned by Alice Pairs: (1,1) (2,1) (1,2)

Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1		
	1	2
2		1

Owned by Alice Pairs: (1,1) (2,1) (1,2)

Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1		
	1	2
2	3	1

		1
2	1	
1		2

Owned by Alice Pairs: (1,1) (2,1) (1,2)

Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1		
	1	2
2	3	1

		1
2	1	
1	3	2

Owned by Alice Pairs: (1,1) (2,1) (1,2) (3,3) Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1	2	
	1	2
2	3	1

		1
2	1	
1	3	2

Owned by Alice Pairs: (1,1) (2,1) (1,2) (3,3) Owned by Bob
The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1	2	
	1	2
2	3	1

	2	1
2	1	
1	3	2

Owned by Alice Pairs: (1,1) (2,1) (1,2) (3,3) (2,2) Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1	2	
3	1	2
2	3	1

	2	1
2	1	
1	3	2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Owned by Alice Owned by Bob Pairs: (1,1) (2,1) (1,2) (3,3) (2,2) (3,2)

The Orthogonal Colouring Game

Graph Characterization

2

1

3

Future Directions

Can Bob do better?

1	2		
3	1	2	2
2	3	1	1

Owned by Alice Owned by Bob Pairs: (1,1) (2,1) (1,2) (3,3) (2,2) (3,2) (2,3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1

3

2

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1	2	3		2	1
3	1	2	2	1	3
2	3	1	1	3	2

Owned by Alice Owned by Bob Pairs: (1,1) (2,1) (1,2) (3,3) (2,2) (3,2) (2,3) (3,1)

・ロト・西ト・ヨト・ヨー シック

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1	2	3	3	2	1
3	1	2	2	1	3
2	3	1	1	3	2

 Owned by Alice
 Owned by Bob

 Pairs: (1,1) (2,1) (1,2) (3,3) (2,2) (3,2) (2,3) (3,1) (1,3)

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Can Bob do better?

1	2	3	3	2	1
3	1	2	2	1	3
2	3	1	1	3	2

 Owned by Alice
 Owned by Bob

 Pairs: (1,1) (2,1) (1,2) (3,3) (2,2) (3,2) (2,3) (3,1) (1,3)

Alice's score: 9, Bob's score: 9. DRAW!

Graph Characterization

Future Directions

What if Alice chooses a cell in Bob's square?

The Orthogonal Colouring Game

Graph Characterization

Future Directions 000

Changing Alice's Strategy

1	

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Pairs:

The Orthogonal Colouring Game

Graph Characterization

Future Directions 000

Changing Alice's Strategy

1	

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pairs:

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pairs:

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Owned by Alice

Owned by Bob

Pairs: (2,2)

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	
	1	

2	1

Owned by Alice

Owned by Bob

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pairs: (2,2)

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	
	1	

Owned by Alice Pairs: (2,2) (1,1)

Owned by Bob

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	
	1	

х	2	1
3	1	

Owned by Alice Pairs: (2,2) (1,1)

Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	х
	1	3

х	2	1
3	1	

Owned by Alice Pairs: (2,2) (1,1)

Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	х
	1	3
	3	

х	2	1
3	1	

Owned by Alice Pairs: (2,2) (1,1)

Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	х
	1	3
	3	

х	2	1
3	1	
	3	

Owned by Alice Pairs: (2,2) (1,1) (3,3) Owned by Bob

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	х
	1	3
	3	

х	2	1
3	1	х
	3	2

Owned by Alice Pairs: (2,2) (1,1) (3,3) Owned by Bob

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	х
х	1	3
2	3	

х	2	1
3	1	х
	3	2

Owned by Alice Pairs: (2,2) (1,1) (3,3) Owned by Bob

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	х
х	1	3
2	3	1

х	2	1
3	1	х
	3	2

Owned by Alice Pairs: (2,2) (1,1) (3,3) (1,2) Owned by Bob

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	x
х	1	3
2	3	1

х	2	1
3	1	х
1	3	2

Owned by Bob

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Owned by Alice Pairs: (2,2) (1,1) (3,3) (1,2) (2,1)

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Changing Alice's Strategy

1	2	х
х	1	3
2	3	1

х	2	1
3	1	х
1	3	2

Owned by Alice Owned by Bob Pairs: (2,2) (1,1) (3,3) (1,2) (2,1)

Alice's score: 7, Bob's score: 7. DRAW!

The Orthogonal Latin Square Colouring Game ${\overset{\circ}{_{\circ}}}_{\circ\circ\circ\circ\circ\circ\bullet\circ}$

The Orthogonal Colouring Game

Graph Characterization

Future Directions 000

What is Bob doing?

The Orthogonal Latin Square Colouring Game ${\overset{\circ}{_{\circ}}}_{\circ\circ\circ\circ\circ\circ\bullet\circ}$

The Orthogonal Colouring Game

Graph Characterization

Future Directions 000

What is Bob doing?

The Orthogonal Latin Square Colouring Game ${\overset{\circ}{_{\circ}}}_{\circ\circ\circ\circ\circ\circ\bullet\circ}$

The Orthogonal Colouring Game

Graph Characterization

Future Directions 000

What is Bob doing?

The Orthogonal Colouring Game

Graph Characterization

Future Directions 000

What is Bob doing?

The Orthogonal Colouring Game

Graph Characterization

Future Directions 000

What is Bob doing?

The Orthogonal Colouring Game

Graph Characterization

Future Directions

What is Bob doing?

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

Graph Characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Future Directions

Generalizing the Game: Definition Interlude

Let G be a graph, $u, v \in V(G)$, and $\{1, \ldots, m\}$ a set of colours.

• $c_i(y)$: colour assigned $y \in V(G)$ in colouring *i*.

Graph Characterization

Future Directions

Generalizing the Game: Definition Interlude

Let G be a graph, $u, v \in V(G)$, and $\{1, \ldots, m\}$ a set of colours.

• $c_i(y)$: colour assigned $y \in V(G)$ in colouring *i*.

Proper Colouring: Adjacent vertices receive different colours.

Graph Characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Future Directions

Generalizing the Game: Definition Interlude

Let G be a graph, $u, v \in V(G)$, and $\{1, \ldots, m\}$ a set of colours.

• $c_i(y)$: colour assigned $y \in V(G)$ in colouring *i*.

Proper Colouring: Adjacent vertices receive different colours.

Orthogonal Colouring: Let i and j be a pair of orthogonal colourings of a graph G. We then have that

if
$$c_i(u) = c_i(v)$$
, then $c_j(u) \neq c_j(v)$.

Graph Characterization

Future Directions

Example

Proper Colouring: Adjacent vertices receive different colours.

Orthogonal Colouring: Let i and j be a pair of orthogonal colourings of a graph G. We then have that

if
$$c_i(u) = c_i(v)$$
, then $c_j(u) \neq c_j(v)$.

Graph Characterization

・ロト ・ 同ト ・ ヨト ・ ヨト

Future Directions

Example

Proper Colouring: Adjacent vertices receive different colours.

Orthogonal Colouring: Let i and j be a pair of orthogonal colourings of a graph G. We then have that

if
$$c_i(u) = c_i(v)$$
, then $c_j(u) \neq c_j(v)$.

Graph Characterization

・ロト ・ 同ト ・ ヨト ・ ヨト

Future Directions

Example

Proper Colouring: Adjacent vertices receive different colours.

Orthogonal Colouring: Let i and j be a pair of orthogonal colourings of a graph G. We then have that

if
$$c_i(u) = c_i(v)$$
, then $c_j(u) \neq c_j(v)$.

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

THE ORTHOGONAL COLOURING GAME: Ruleset

- <u>Board</u>: Disjoint isomorphic copies of a finite graph G, G_A and G_B . Alice owns G_A . Bob owns G_B .
- <u>Moves</u>: Colour a vertex in either graph from {1,..., *m*}, satisfying (1) proper colouring; (2) orthogonality.

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

THE ORTHOGONAL COLOURING GAME: Ruleset

- <u>Board</u>: Disjoint isomorphic copies of a finite graph G, G_A and G_B . Alice owns G_A . Bob owns G_B .
- <u>Moves</u>: Colour a vertex in either graph from {1,..., *m*}, satisfying (1) proper colouring; (2) orthogonality.

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

THE ORTHOGONAL COLOURING GAME: Ruleset

- <u>Board</u>: Disjoint isomorphic copies of a finite graph G, G_A and G_B . Alice owns G_A . Bob owns G_B .
- <u>Moves</u>: Colour a vertex in either graph from {1,..., *m*}, satisfying (1) proper colouring; (2) orthogonality.

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

THE ORTHOGONAL COLOURING GAME: Ruleset

- <u>Board</u>: Disjoint isomorphic copies of a finite graph G, G_A and G_B . Alice owns G_A . Bob owns G_B .
- <u>Moves</u>: Colour a vertex in either graph from {1,..., *m*}, satisfying (1) proper colouring; (2) orthogonality.

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

THE ORTHOGONAL COLOURING GAME: Ruleset

- <u>Board</u>: Disjoint isomorphic copies of a finite graph G, G_A and G_B . Alice owns G_A . Bob owns G_B .
- <u>Moves</u>: Colour a vertex in either graph from {1,..., *m*}, satisfying (1) proper colouring; (2) orthogonality.

Graph Characterization

uture Directions

THE ORTHOGONAL COLOURING GAME: Ruleset

- <u>Board</u>: Disjoint isomorphic copies of a finite graph G, G_A and G_B . Alice owns G_A . Bob owns G_B .
- <u>Moves</u>: Colour a vertex in either graph from {1,..., *m*}, satisfying (1) proper colouring; (2) orthogonality.

Graph Characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

uture Directions

THE ORTHOGONAL COLOURING GAME: Ruleset

- <u>Board</u>: Disjoint isomorphic copies of a finite graph G, G_A and G_B . Alice owns G_A . Bob owns G_B .
- <u>Moves</u>: Colour a vertex in either graph from {1,..., *m*}, satisfying (1) proper colouring; (2) orthogonality.

Graph Characterization

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Future Directions

Game Outcomes: Can Alice ever win?

Example: m = 1

Case 1:

Graph Characterization

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Future Directions

Game Outcomes: Can Alice ever win?

Example: m = 1

Case 1:

Graph Characterization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Future Directions

Game Outcomes: Can Alice ever win?

Example: m = 1

Case 1:

Graph Characterization

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Future Directions

Game Outcomes: Can Alice ever win?

Example: m = 1

Case 2:

Graph Characterization

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Future Directions

Game Outcomes: Can Alice ever win?

Example: m = 1

Case 2:

Graph Characterization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Future Directions

Game Outcomes: Can Alice ever win?

Example: m = 1

Case 2:

Graph Characterization

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Future Directions

Game Outcomes: Can Alice ever win?

Example: m = 1

Case 3:

Graph Characterization

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Future Directions

Game Outcomes: Can Alice ever win?

Example: m = 1

Case 3:

Graph Characterization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Future Directions

Game Outcomes: Can Alice ever win?

Example: m = 1

Case 3:

Graph Characterization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Future Directions

Game Outcomes: Can Bob ever win?

Graph Characterization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Future Directions

Game Outcomes: Can Bob ever win?

Graph Characterization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Future Directions

Game Outcomes: Can Bob ever win?

Graph Characterization

イロト 不得 トイヨト イヨト

æ

Future Directions

Game Outcomes: Can Bob ever win?

Graph Characterization

イロト 不得 トイヨト イヨト

3

Future Directions

Game Outcomes: Can Bob ever win?

Graph Characterization

イロト 不得 トイヨト イヨト

3

Future Directions

Game Outcomes: Can Bob ever win?

Graph Characterization

イロト 不得 トイヨト イヨト

3

Future Directions

Game Outcomes: Can Bob ever win?

Graph Characterization

イロト 不得 トイヨト イヨト

3

Future Directions

Game Outcomes: Can Bob ever win?

Graph Characterization

イロト 不得 トイヨト イヨト

3

Future Directions

Game Outcomes: Can Bob ever win?

Example: Let m = 2.

Alice's score: 2, Bob's score: 4. Bob Wins!

The Orthogonal Colouring Game

Graph Characterization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Future Directions

What about Draw games?

The Orthogonal Colouring Game

Graph Characterization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Future Directions

What about Draw games?

The Orthogonal Colouring Game

Graph Characterization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Future Directions

What about Draw games?

The Orthogonal Colouring Game

Graph Characterization

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Future Directions

What about Draw games?

The Orthogonal Colouring Game

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

What about Draw games?

Example: Let m = 1.

The game is a Draw.

The Orthogonal Colouring Game

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

Complexity

Theorem

Determining the outcome of the orthogonal colouring game which includes a partial colouring is PSPACE-complete, for all $m \ge 3$.

Graph Characterization

Future Directions

Definition An *involution* of G is an automorphism σ of G with the property

$$\forall v \in V : \quad (\sigma \circ \sigma)(v) = v.$$

We define an involution of G to be *strictly matched* if

(SI 1) the set $F \subseteq V$ of fixed points of σ induces a complete graph, and

(SI 2) for every $v \in V \setminus F$, we have the (matching) edge $v\sigma(v) \in E$.

Graph Characterization

(日) (四) (日) (日) (日)

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem

Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.

Graph Characterization

(日) (四) (日) (日) (日)

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem

Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.

Graph Characterization

(日) (四) (日) (日) (日)

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem

Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.

Graph Characterization

(日) (四) (日) (日) (日)

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem

Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.

Graph Characterization

(日) (四) (日) (日) (日)

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem

Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.

Graph Characterization

(日) (四) (日) (日) (日)

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem

Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.

Graph Characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem

Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.

Example: m = 2

0000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

When does Outcome = Draw?

 $MOC_m(G)$: orthogonal colouring game G with m colours.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Future Directions

When does Outcome = Draw?

 $MOC_m(G)$: orthogonal colouring game G with m colours.

Lemma

For any graph G and all $m \in \mathbb{N}$ with $m \ge \Delta(G) + \alpha(G)$, both players have a strategy to draw in the $MOC_m(G)$ game, where $\Delta(G)$ is the max degree of G, $\alpha(G)$ is the stability number of G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Future Directions

When does Outcome = Draw?

 $MOC_m(G)$: orthogonal colouring game G with m colours.

Lemma

For any graph G and all $m \in \mathbb{N}$ with $m \ge \Delta(G) + \alpha(G)$, both players have a strategy to draw in the $MOC_m(G)$ game, where $\Delta(G)$ is the max degree of G, $\alpha(G)$ is the stability number of G.

Corollary

For all $m, n \in \mathbb{N}$ with $m \ge 3n - 2$, both players have a strategy to draw in the $MOC_m(K_n \square K_n)$ game.

Future Directions 000

When does Outcome = Draw?

 $MOC_m(G)$: orthogonal colouring game G with m colours.

Lemma

For any graph G and all $m \in \mathbb{N}$ with $m \ge \Delta(G) + \alpha(G)$, both players have a strategy to draw in the $MOC_m(G)$ game, where $\Delta(G)$ is the max degree of G, $\alpha(G)$ is the stability number of G.

Corollary

For all $m, n \in \mathbb{N}$ with $m \ge 3n - 2$, both players have a strategy to draw in the $MOC_m(K_n \Box K_n)$ game.

Lemma

For all $n \in \mathbb{N}$, both players have a strategy to guarantee a draw in the $MOC_1(K_n \Box K_n)$ game.

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

Graph Characterization

Theorem

A graph G admits a strictly matched involution if and only if its vertex set V can be partitioned into a clique C and a set inducing a graph that has a perfect matching M such that:

- 1. for any two edges $vw, xy \in M$, the graph induced by v, w, x, y is isomorphic to
 - a 2K₂ or
 - a C₄ or
 - a K₄;
- 2. for any edge $vw \in M$ and any vertex $z \in C$, the graph induced by the vertices v, w, z is isomorphic to
 - a $K_1 \cup K_2$ or
 - a K₃.

Graph Characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Future Directions

```
Sketch of proof ('\Rightarrow')
```


Graph Characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Future Directions

```
Sketch of proof ('\Rightarrow')
```


Graph Characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Future Directions

```
Sketch of proof ('\Rightarrow')
```


Graph Characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Future Directions

```
Sketch of proof ('\Rightarrow')
```


Graph Characterization

イロト 不得 トイヨト イヨト

э

Future Directions

```
Sketch of proof ('\Rightarrow')
```


Graph Characterization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Future Directions

```
Sketch of proof ('\Rightarrow')
```

Assume G admits a strictly matched involution. Consider $vw \in M$ and $z \in C$, and the induced graph of v, w, z:

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

```
Sketch of proof ('\Rightarrow')
```

Assume G admits a strictly matched involution. Consider $vw \in M$ and $z \in C$, and the induced graph of v, w, z:

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

```
Sketch of proof ('\Rightarrow')
```

Assume G admits a strictly matched involution. Consider $vw \in M$ and $z \in C$, and the induced graph of v, w, z:

The Orthogonal Latin Square Colouring Game 0 0000000 The Orthogonal Colouring Game

Graph Characterization

Future Directions

Graphs up to order n = 5which admit a strictly matched involution

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

Structural results

Corollary

Any graph G on n vertices admitting a strictly matched involution has a partition of its vertex set

Graph Characterization

Future Directions

Structural results

Corollary

Any graph G on n vertices admitting a strictly matched involution has a partition of its vertex set

Theorem

Given a graph G, it is NP-complete to determine if G admits a strictly matched involution.

The Orthogonal Latin Square Colouring Game 0 0000000 The Orthogonal Colouring Game

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

Summary

Summary:

- If G admits a strictly matched involution, then there exists a drawing strategy for Bob.
- Subclass of graphs that also have an Alice drawing strategy (based on the number of colours).
- Characterized graphs that admit a strictly matched involution.

Graph Characterization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Future Directions

Future Directions

Future Directions:

- Characterize the class of graphs that admit a strictly matched involution for which the game with *m* colours is a Draw (Bob win resp.).
- Determine the outcome for other classes of graphs.
- What about playing under the misère winning convention?

Graph Characterization Future Directions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

000

References

- S.D. Andres, F. Dross, M. Huggan, F. Mc Inerney, R.J. Nowakowski, The Complexity of two Colouring Games, Preprint: https://hal.archives-ouvertes.fr/hal-02053265.
- S.D. Andres, M. Huggan, F. Mc Inerney, R.J. Nowakowski, The orthogonal colouring game, Theoretical Computer Science, 795, (2019), 312-325.
- U. Larsson, J.P. Neto, R.J. Nowakowski, C.P. Santos, Guaranteed Scoring Games, Electron. J. Comb., 23 (2016).
- U. Larsson, R.J. Nowakowski, C.P. Santos, Scoring games: the state of play. in: U. Larsson (Ed.) Games of no Chance 5, in: Mathematical Sciences Research Publications, vol. 70, Cambridge Univ. Press, 2019, pp. 89–111.

The Orthogonal Latin Square Colouring Game 0 0000000 The Orthogonal Colouring Game

Graph Characterization

Future Directions

Thank you!

Melissa Huggan AARMS Postdoctoral Fellow mhuggan@mta.ca

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @