The Orthogonal Colouring Game

Melissa Huggan

Mount Allison University supported by AARMS
(Joint work with Stephan Dominique Andres, François Dross, Fionn Mc Inerney, and Richard J. Nowakowski)

Atlantic Graph Theory Seminar - 2022

February 2, 2022

Outline

The Orthogonal Latin Square Colouring Game Ruleset How to Play

The Orthogonal Colouring Game

Graph Characterization

Future Directions

Orthogonal Latin Square Colouring Game: Ruleset

Two players: Alice and Bob

- Board: a pair of $n \times n$ empty grids. Alice owns the first grid, Bob owns the second grid.

Orthogonal Latin Square Colouring Game: Ruleset

Two players: Alice and Bob

- Board: a pair of $n \times n$ empty grids. Alice owns the first grid, Bob owns the second grid.
- Moves: Alternate turns. Fill one cell of either grid with an integer $1, \ldots, m$.

Orthogonal Latin Square Colouring Game: Ruleset

Two players: Alice and Bob

- Board: a pair of $n \times n$ empty grids. Alice owns the first grid, Bob owns the second grid.
- Moves: Alternate turns. Fill one cell of either grid with an integer $1, \ldots, m$.
- Conditions:
- Latin property: no repeated integers in a row or column.
- Orthogonality: ordered pairs appear at most once in the superimposed grids.

Orthogonal Latin Square Colouring Game: Ruleset

Two players: Alice and Bob

- Board: a pair of $n \times n$ empty grids. Alice owns the first grid, Bob owns the second grid.
- Moves: Alternate turns. Fill one cell of either grid with an integer $1, \ldots, m$.
- Conditions:
- Latin property: no repeated integers in a row or column.
- Orthogonality: ordered pairs appear at most once in the superimposed grids.
How to win: \# entries in players' grid is their final score. Same score: Draw. Otherwise, higher score wins.

How to Play: Example

Suppose $m=3$.

Owned by Alice

Owned by Bob

Pairs:

How to Play: Example

Suppose $m=3$.

Owned by Alice

Owned by Bob

Pairs:

How to Play: Example

Suppose $m=3$.

Owned by Alice

Owned by Bob

Pairs:

How to Play: Example

Suppose $m=3$.

Owned by Alice

Owned by Bob

Pairs:

How to Play: Example

Suppose $m=3$.

Owned by Alice

Owned by Bob

Pairs:

How to Play: Example

Suppose $m=3$.

Owned by Alice

Owned by Bob

Pairs: $(1,3)$

How to Play: Example
Suppose $m=3$.

Owned by Alice

Owned by Bob

Pairs: $(1,3)$

How to Play: Example

Suppose $m=3$.

Owned by Alice

Owned by Bob

Pairs: $(1,3)(1,1)$

How to Play: Example

Suppose $m=3$.

Owned by Alice

Owned by Bob

Pairs: $(1,3)(1,1)(2,2)$

How to Play: Example

Suppose $m=3$.

Owned by Alice

Owned by Bob

Pairs: $(1,3)(1,1)(2,2)$

How to Play: Example

Suppose $m=3$.

Owned by Alice
Pairs: $(1,3)(1,1)(2,2)(3,3)$

3	1	x
	x	2
x	3	1

Owned by Bob

How to Play: Example

Suppose $m=3$.

Owned by Alice
Pairs: $(1,3)(1,1)(2,2)(3,3)$

How to Play: Example

Suppose $m=3$.

Owned by Alice

3	1	\times
1	\times	2
\times	3	1

Owned by Bob

Pairs: $(1,3)(1,1)(2,2)(3,3)(2,1)$

How to Play: Example

Suppose $m=3$.

Owned by Alice

3	1	\times
1	\times	2
\times	3	1

Owned by Bob

Pairs: $(1,3)(1,1)(2,2)(3,3)(2,1)$

How to Play: Example

Suppose $m=3$.

Owned by Alice

3	1	\times
1	\times	2
\times	3	1

Owned by Bob

Pairs: $(1,3)(1,1)(2,2)(3,3)(2,1)(3,1)$

How to Play: Example

Suppose $m=3$.

Owned by Alice

3	1	x
1	\times	2
x	3	1

Owned by Bob

Pairs: $(1,3)(1,1)(2,2)(3,3)(2,1)(3,1)$

Alice's score: 9, Bob's score: 6. ALICE WINS!

Can Bob do better?

Can Bob do better?

Owned by Alice
Pairs:

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs:

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs:

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)(2,1)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)(2,1)(1,2)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)(2,1)(1,2)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)(2,1)(1,2)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)(2,1)(1,2)$

Can Bob do better?

Owned by Alice
Pairs: $(1,1)(2,1)(1,2)(3,3)$

Can Bob do better?

Owned by Alice
Pairs: $(1,1)(2,1)(1,2)(3,3)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)(2,1)(1,2)(3,3)(2,2)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)(2,1)(1,2)(3,3)(2,2)(3,2)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)(2,1)(1,2)(3,3)(2,2)(3,2)(2,3)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)(2,1)(1,2)(3,3)(2,2)(3,2)(2,3)(3,1)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)(2,1)(1,2)(3,3)(2,2)(3,2)(2,3)(3,1)(1,3)$

Can Bob do better?

Owned by Alice

Owned by Bob

Pairs: $(1,1)(2,1)(1,2)(3,3)(2,2)(3,2)(2,3)(3,1)(1,3)$

Alice's score: 9, Bob's score: 9. DRAW!

What if Alice chooses a cell in Bob's square?

Changing Alice's Strategy

Owned by Alice
Pairs:

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs:

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs:

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs: $(2,2)$

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs: $(2,2)$

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs: $(2,2)(1,1)$

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs: $(2,2)(1,1)$

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs: $(2,2)(1,1)$

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs: $(2,2)(1,1)$

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs: $(2,2)(1,1)(3,3)$

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs: $(2,2)(1,1)(3,3)$

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs: $(2,2)(1,1)(3,3)$

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs: $(2,2)(1,1)(3,3)(1,2)$

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs: $(2,2)(1,1)(3,3)(1,2)(2,1)$

Changing Alice's Strategy

Owned by Alice

Owned by Bob

Pairs: $(2,2)(1,1)(3,3)(1,2)(2,1)$

Alice's score: 7, Bob's score: 7. DRAW!

What is Bob doing?

What is Bob doing?

1		

What is Bob doing?

1		

What is Bob doing?

What is Bob doing?

What is Bob doing?

Generalizing the Game: Definition Interlude

Let G be a graph, $u, v \in V(G)$, and $\{1, \ldots, m\}$ a set of colours.

- $c_{i}(y)$: colour assigned $y \in V(G)$ in colouring i.

Generalizing the Game: Definition Interlude

Let G be a graph, $u, v \in V(G)$, and $\{1, \ldots, m\}$ a set of colours.

- $c_{i}(y)$: colour assigned $y \in V(G)$ in colouring i.

Proper Colouring: Adjacent vertices receive different colours.

Generalizing the Game: Definition Interlude

Let G be a graph, $u, v \in V(G)$, and $\{1, \ldots, m\}$ a set of colours.

- $c_{i}(y)$: colour assigned $y \in V(G)$ in colouring i.

Proper Colouring: Adjacent vertices receive different colours.
Orthogonal Colouring: Let i and j be a pair of orthogonal colourings of a graph G. We then have that

$$
\text { if } c_{i}(u)=c_{i}(v) \text {, then } c_{j}(u) \neq c_{j}(v)
$$

Example

Proper Colouring: Adjacent vertices receive different colours.
Orthogonal Colouring: Let i and j be a pair of orthogonal colourings of a graph G. We then have that

$$
\text { if } c_{i}(u)=c_{i}(v) \text {, then } c_{j}(u) \neq c_{j}(v)
$$

Example

Proper Colouring: Adjacent vertices receive different colours.
Orthogonal Colouring: Let i and j be a pair of orthogonal colourings of a graph G. We then have that

$$
\text { if } c_{i}(u)=c_{i}(v) \text {, then } c_{j}(u) \neq c_{j}(v)
$$

Example: $m=3$

Pairs
(Blue, Red)
(Red, Blue)
(Blue, Yellow)
(Yellow, Red)

Example

Proper Colouring: Adjacent vertices receive different colours.
Orthogonal Colouring: Let i and j be a pair of orthogonal colourings of a graph G. We then have that

$$
\text { if } c_{i}(u)=c_{i}(v) \text {, then } c_{j}(u) \neq c_{j}(v)
$$

Example: $m=3$

Pairs
(Red, Red)
(Blue, Blue)
(Blue, Yellow)
(Yellow, Yellow)

THE ORTHOGONAL COLOURING GAME: Ruleset

- Board: Disjoint isomorphic copies of a finite graph G, G_{A} and G_{B}. Alice owns G_{A}. Bob owns G_{B}.
- Moves: Colour a vertex in either graph from $\{1, \ldots, m\}$, satisfying (1) proper colouring; (2) orthogonality.

Example: $m=2$

G_{A}

G_{B}

THE ORTHOGONAL COLOURING GAME: Ruleset

- Board: Disjoint isomorphic copies of a finite graph G, G_{A} and G_{B}. Alice owns G_{A}. Bob owns G_{B}.
- Moves: Colour a vertex in either graph from $\{1, \ldots, m\}$, satisfying (1) proper colouring; (2) orthogonality.

Example: $m=2$

G_{A}

G_{B}

THE ORTHOGONAL COLOURING GAME: Ruleset

- Board: Disjoint isomorphic copies of a finite graph G, G_{A} and G_{B}. Alice owns G_{A}. Bob owns G_{B}.
- Moves: Colour a vertex in either graph from $\{1, \ldots, m\}$, satisfying (1) proper colouring; (2) orthogonality.

Example: $m=2$

G_{A}

G_{B}

THE ORTHOGONAL COLOURING GAME: Ruleset

- Board: Disjoint isomorphic copies of a finite graph G, G_{A} and G_{B}. Alice owns G_{A}. Bob owns G_{B}.
- Moves: Colour a vertex in either graph from $\{1, \ldots, m\}$, satisfying (1) proper colouring; (2) orthogonality.

Example: $m=2$

G_{A}

G_{B}

THE ORTHOGONAL COLOURING GAME: Ruleset

- Board: Disjoint isomorphic copies of a finite graph G, G_{A} and G_{B}. Alice owns G_{A}. Bob owns G_{B}.
- Moves: Colour a vertex in either graph from $\{1, \ldots, m\}$, satisfying (1) proper colouring; (2) orthogonality.

Example: $m=2$

G_{A}

G_{B}

THE ORTHOGONAL COLOURING GAME: Ruleset

- Board: Disjoint isomorphic copies of a finite graph G, G_{A} and G_{B}. Alice owns G_{A}. Bob owns G_{B}.
- Moves: Colour a vertex in either graph from $\{1, \ldots, m\}$, satisfying (1) proper colouring; (2) orthogonality.

Example: $m=2$

G_{A}

G_{B}

THE ORTHOGONAL COLOURING GAME: Ruleset

- Board: Disjoint isomorphic copies of a finite graph G, G_{A} and G_{B}. Alice owns G_{A}. Bob owns G_{B}.
- Moves: Colour a vertex in either graph from $\{1, \ldots, m\}$, satisfying (1) proper colouring; (2) orthogonality.

Example: $m=2$

Game Outcomes: Can Alice ever win?

Example: $m=1$
Case 1:
Pairs

G_{A}
G_{B}

Game Outcomes: Can Alice ever win?

Example: $m=1$
Case 1:
Pairs

Game Outcomes: Can Alice ever win?

Example: $m=1$
Case 1:

Alice Wins!!

Game Outcomes: Can Alice ever win?

Example: $m=1$
Case 2:
Pairs

Game Outcomes: Can Alice ever win?

Example: $m=1$
Case 2:

Game Outcomes: Can Alice ever win?

Example: $m=1$
Case 2:

Alice Wins!!

Game Outcomes: Can Alice ever win?

Example: $m=1$
Case 3:
Pairs

G_{A}
G_{B}

Game Outcomes: Can Alice ever win?

Example: $m=1$
Case 3:
Pairs

Game Outcomes: Can Alice ever win?

Example: $m=1$
Case 3:

Alice Wins!!

Game Outcomes: Can Bob ever win?

Example: Let $m=2$.

G_{A}

Game Outcomes: Can Bob ever win?

Example: Let $m=2$.

Game Outcomes: Can Bob ever win?

Example: Let $m=2$.

Game Outcomes: Can Bob ever win?

Example: Let $m=2$.

Game Outcomes: Can Bob ever win?

Example: Let $m=2$.

Game Outcomes: Can Bob ever win?

Example: Let $m=2$.

Game Outcomes: Can Bob ever win?

Example: Let $m=2$.

Game Outcomes: Can Bob ever win?

Example: Let $m=2$.

Game Outcomes: Can Bob ever win?

Example: Let $m=2$.

Alice's score: 2, Bob's score: 4. Bob Wins!

What about Draw games?

Example: Let $m=1$.

G_{A}

GB

What about Draw games?

Example: Let $m=1$.

G_{A}
G_{B}

What about Draw games?

Example: Let $m=1$.

G_{A}

Pairs

G_{B}

What about Draw games?

Example: Let $m=1$.

G_{A}

Pairs

G_{B}

What about Draw games?

Example: Let $m=1$.

The game is a Draw.

Complexity

Theorem
Determining the outcome of the orthogonal colouring game which includes a partial colouring is PSPACE-complete, for all $m \geq 3$.

Definition

An involution of G is an automorphism σ of G with the property

$$
\forall v \in V: \quad(\sigma \circ \sigma)(v)=v
$$

We define an involution of G to be strictly matched if
(SI 1) the set $F \subseteq V$ of fixed points of σ induces a complete graph, and
(SI 2) for every $v \in V \backslash F$, we have the (matching) edge $v \sigma(v) \in E$.

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem
Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.
Example: $m=2$

G_{A}
Pairs

G_{B}

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem
Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.
Example: $m=2$

G_{A}
Pairs

G_{B}

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem
Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.
Example: $m=2$

G_{A}
Pairs

G_{B}

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem
Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.
Example: $m=2$

G_{A}
Pairs

G_{B}

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem
Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.
Example: $m=2$

G_{A}

Pairs

(Red, Red)

G_{B}

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem
Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.
Example: $m=2$

G_{A}

Pairs

(Red, Red)

THE ORTHOGONAL COLOURING GAME: Main Theorem

Theorem
Let G be a graph that admits a strictly matched involution and $m \in \mathbb{N}$. Then the second player has a strategy guaranteeing a draw in the orthogonal colouring game with m colours.
Example: $m=2$

G_{B}
(Blue, Blue)

When does Outcome = Draw?

$M O C_{m}(G)$: orthogonal colouring game G with m colours.

When does Outcome = Draw?

$M O C_{m}(G)$: orthogonal colouring game G with m colours.
Lemma
For any graph G and all $m \in \mathbb{N}$ with $m \geq \Delta(G)+\alpha(G)$, both players have a strategy to draw in the $M O C_{m}(G)$ game, where $\Delta(G)$ is the max degree of $G, \alpha(G)$ is the stability number of G.

When does Outcome = Draw?

$M O C_{m}(G)$: orthogonal colouring game G with m colours.
Lemma
For any graph G and all $m \in \mathbb{N}$ with $m \geq \Delta(G)+\alpha(G)$, both players have a strategy to draw in the $M O C_{m}(G)$ game, where $\Delta(G)$ is the max degree of $G, \alpha(G)$ is the stability number of G.

Corollary
For all $m, n \in \mathbb{N}$ with $m \geq 3 n-2$, both players have a strategy to draw in the $M O C_{m}\left(K_{n} \square K_{n}\right)$ game.

When does Outcome = Draw?

$M O C_{m}(G)$: orthogonal colouring game G with m colours.

Lemma

For any graph G and all $m \in \mathbb{N}$ with $m \geq \Delta(G)+\alpha(G)$, both players have a strategy to draw in the $M O C_{m}(G)$ game, where $\Delta(G)$ is the max degree of $G, \alpha(G)$ is the stability number of G.

Corollary
For all $m, n \in \mathbb{N}$ with $m \geq 3 n-2$, both players have a strategy to draw in the $\mathrm{MOC}_{m}\left(K_{n} \square K_{n}\right)$ game.

Lemma
For all $n \in \mathbb{N}$, both players have a strategy to guarantee a draw in the $M O C_{1}\left(K_{n} \square K_{n}\right)$ game

Graph Characterization

Theorem

A graph G admits a strictly matched involution if and only if its vertex set V can be partitioned into a clique C and a set inducing a graph that has a perfect matching M such that:

1. for any two edges $v w, x y \in M$, the graph induced by v, w, x, y is isomorphic to

- a $2 K_{2}$ or
- a C_{4} or
- a K_{4};

2. for any edge $v w \in M$ and any vertex $z \in C$, the graph induced by the vertices v, w, z is isomorphic to

- a $K_{1} \cup K_{2}$ or
- a K_{3}.

Sketch of proof (${ }^{\prime} \Rightarrow$ ')

Assume G admits a strictly matched involution.
Consider $v w, x y \in M$, and the induced graph of v, w, x, y :

Sketch of proof (${ }^{\prime} \Rightarrow$ ')

Assume G admits a strictly matched involution.
Consider $v w, x y \in M$, and the induced graph of v, w, x, y :

Sketch of proof (${ }^{\prime} \Rightarrow$ ')

Assume G admits a strictly matched involution.
Consider $v w, x y \in M$, and the induced graph of v, w, x, y :

Sketch of proof (${ }^{\prime} \Rightarrow$ ')

Assume G admits a strictly matched involution.
Consider $v w, x y \in M$, and the induced graph of v, w, x, y :

Sketch of proof (${ }^{\prime} \Rightarrow$ ')

Assume G admits a strictly matched involution.
Consider $v w, x y \in M$, and the induced graph of v, w, x, y :

Sketch of proof (${ }^{\prime} \Rightarrow$ ')

Assume G admits a strictly matched involution. Consider $v w \in M$ and $z \in C$, and the induced graph of v, w, z :

z

Sketch of proof (${ }^{\prime} \Rightarrow$ ')

Assume G admits a strictly matched involution. Consider $v w \in M$ and $z \in C$, and the induced graph of v, w, z :

Sketch of proof (${ }^{\prime} \Rightarrow$ ')

Assume G admits a strictly matched involution. Consider $v w \in M$ and $z \in C$, and the induced graph of v, w, z :

Graphs up to order $n=5$

which admit a strictly matched involution

Structural results

Corollary

Any graph G on n vertices admitting a strictly matched involution has a partition of its vertex set

Structural results

Corollary

Any graph G on n vertices admitting a strictly matched involution has a partition of its vertex set

Theorem
Given a graph G, it is NP-complete to determine if G admits a strictly matched involution.

Summary

Summary:

- If G admits a strictly matched involution, then there exists a drawing strategy for Bob.
- Subclass of graphs that also have an Alice drawing strategy (based on the number of colours).
- Characterized graphs that admit a strictly matched involution.

Future Directions

Future Directions:

- Characterize the class of graphs that admit a strictly matched involution for which the game with m colours is a Draw (Bob win resp.).
- Determine the outcome for other classes of graphs.
- What about playing under the misère winning convention?

References

- S.D. Andres, F. Dross, M. Huggan, F. Mc Inerney, R.J. Nowakowski, The Complexity of two Colouring Games, Preprint: https://hal.archives-ouvertes.fr/hal-02053265.
- S.D. Andres, M. Huggan, F. Mc Inerney, R.J. Nowakowski, The orthogonal colouring game, Theoretical Computer Science, 795, (2019), 312-325.
- U. Larsson, J.P. Neto, R.J. Nowakowski, C.P. Santos, Guaranteed Scoring Games, Electron. J. Comb., 23 (2016).
- U. Larsson, R.J. Nowakowski, C.P. Santos, Scoring games: the state of play. in: U. Larsson (Ed.) Games of no Chance 5, in: Mathematical Sciences Research Publications, vol. 70, Cambridge Univ. Press, 2019, pp. 89-111.

Thank you!

Melissa Huggan
AARMS Postdoctoral Fellow mhuggan@mta.ca MountAllison

U N I VERSIT Y

AARMS
Atlantic Association for Research in the Mathematical Sciences

