Reconfiguration Graphs for Dominating Sets

Margaret-Ellen Messinger

Feb 2022

The reconfiguration problem involves determining if one feasible solution can be transformed into another by following a predetermined rule.

Any reconfiguration problem can be modelled with a *reconfiguration graph*.

Each dominating set of a graph G is represented by a vertex in the reconfiguration graph

Let x,y be two nodes in the reconfiguration graph D(G) and let X,Y denote the dominating sets of G represented by x,y.

$$x \sim y \text{ in } D(G) \iff$$

set *X* can be obtained by adding a vertex of *G* to *Y* or removing a vertex of *G* from *Y*.

Theorem: The number of dominating sets of a finite graph is odd.

[Brouwer, Csorba, Schrijver, unpublished]

Let
$$\mathcal{A} := \{(S, T) : S, T \subseteq V(G), S \cap T = \emptyset, st \notin E(G) \forall s \in S, t \in T\}$$

Let
$$S \subseteq V(G)$$
 and $\mathcal{C}_S = V(G) \setminus N[S]$

$$\mathcal{C}_S = \emptyset$$
 iff $N[S] = V(G)$, i.e. S is a dominating set

$$(S,T) \in \mathcal{A} \text{ iff } T \subseteq \mathcal{C}_S$$

$$|\{T:(S,T)\in A\}|=2^{|\mathcal{C}_S|}$$

$$(S,T)=(T,S)$$
 only when $S=T=\emptyset$. Thus, $|\mathcal{A}|$ is odd.

Summer 2021

For which graphs G, is D(G) Eulerian?

Amanda Porter

Mount Allison University
Reconfiguration Graphs and Dominating Sets

Lemma 1. For a graph G with m components G_1, G_2, \ldots, G_m ,

$$\mathcal{D}(G_1) \square \mathcal{D}(G_2) \square \dots \mathcal{D}(G_m) \cong \mathcal{D}(G).$$

[MP 2022+]

Theorem 2. For a graph G with m components G_1, G_2, \ldots, G_m . Then $\mathcal{D}(G)$ is Eulerian if and only if $\mathcal{D}(G_i)$ is Eulerian for all $i \in \{1, 2, \ldots, m\}$.

[MP 2022+]

 $\mathcal{D}(K_n) \cong Q_n$ minus the "bottom element"

 $\mathcal{D}(K_n \text{ minus a perfect matching}) \cong Q_n \text{ minus the "bottom two rows"}$

- $\Rightarrow n$ is even
- \Rightarrow any two vertices dominate the domination reconfiguration graph

Corollary 7. For a connected graph G, $\mathcal{D}(G)$ is Eulerian if and only if G is an isolated vertex or a complete graph (on $n \geq 4$ vertices) minus a perfect matching.

[MP 2022+]

Corollary 7. For a connected graph G, $\mathcal{D}(G)$ is Eulerian if and only if G is an isolated vertex or a complete graph (on $n \geq 4$ vertices) minus a perfect matching.

[MP 2022+]

Let S be a subset of k vertices that do not dominate G and suppose every subset of k+1 vertices dominates G.

August 19-23, 2019

Workshop for Women in Graph Theory and Applications (WIGA)

ORGANIZERS

Daniela Ferrero, Texas State University **Sandra Kingan**, Brooklyn College, CUNY **Linda Lesniak**, Western Michigan University

RESEARCH TEAMS & LEADERS

BREAKING SYMMETRIES

Debra Boutin, Hamilton College **Sally Cockburn**, Hamilton College

EDGE CONDITIONS IN K-PARTITE GRAPHS

Jill Faudree, University of Alaska **Linda Lesniak**, Western Michigan University

GRAPH SEARCHING

Leslie Hogben, Iowa State University **Daniela Ferrero**, Texas State University

DATA STORAGE, PROTECTION AND ACCESSIBILITY

Gretchen Matthews, Virginia Polytechnic Institute and State University Christine Kelley, University of Nebraska

METRIC DIMENSION

Ortud Oellermann, University of Winnipeg
Linda Eroh, University of Wisconsin at

RECONFIGURATION PROBLEMS

Ruth Haas, University of Hawaii at Manoa **Karen Seyffarth**, University of Calgary

More information is available at www.ima.umn.edu/2018-2019/ SW8.19-23.19

[ABCHMSS 2021]

K. Adaricheva, C. Bozeman, N.E. Clarke, R. Haas, M.E. Messinger, K. Seyffarth and H. Smith, Reconfiguration graphs for dominating sets, Chapter 6 in *Research Trends in Graph Theory and Applications*, D. Ferrero, L. Hogben, S.R. Kingan and G.L. Matthews Eds., Springer International Publishing (2021).

[ABCHMSS 2022+]

K. Adaricheva, C. Bozeman, N.E. Clarke, R. Haas, M.E. Messinger, K. Seyffarth, H. Smith, Hamilton Paths in Dominating Graphs of Trees and Cycles, submitted.

Operation I. Let H be a graph with vertices u, v and x such that $N_H(u) = N_H(v) = \{x\}$. We say that H' := H - v is obtained from H by Operation I.

Lemma 6. Let H and H' be graphs such that H' is obtained from H by Operation I. If $\mathcal{D}(H')$ has a Hamilton path, then $\mathcal{D}(H)$ has a Hamilton path.

Operation I. Let H be a graph with vertices u, v and x such that $N_H(u) = N_H(v) = \{x\}$. We say that H' := H - v is obtained from H by Operation I.

Lemma 6. Let H and H' be graphs such that H' is obtained from H by Operation I. If $\mathcal{D}(H')$ has a Hamilton path, then $\mathcal{D}(H)$ has a Hamilton path.

Operation II. Let H be a graph with vertices u, v and w such that $N_H(v) = \{u, w\}$ and $N_H(w) = \{v\}$. We say that H' := H - w - v is obtained from H by Operation II.

Lemma 7. Let H and H' be graphs such that H' is obtained from H by Operation II. If $\mathcal{D}(H')$ has a Hamilton path, then $\mathcal{D}(H)$ has a Hamilton path.

Theorem 4. For any tree T, $\mathcal{D}(T)$ has a Hamilton path.

Theorem 5. For all integers $n \geq 3$, $\mathcal{D}(C_n)$ has a Hamilton path if and only if $n \not\equiv 0 \pmod{4}$.

Thanks!

Natural Sciences and Engineering Research Council of Canada

Conseil de recherches en sciences naturelles et en génie du Canada

