
The Localization Number   
of a Graph

Anthony Bonato 
(he/him/his)

Ryerson University

Atlantic Graph Theory 
Seminar Series



Land acknowledgement

We acknowledge the privilege of working on 
the traditional territory of the Haudensaunee, 
Mississauga and Anishnaabeg peoples, and 
within the lands protected by the Dish With 
One Spoon Wampum agreement. 







R

C



R

C



R

C

C



R

C

C

C



Game of Cops and Robbers
(Nowakowski,Winkler,83), (Quilliot,78)

• two players Cops C and robber R play at 
alternate time-steps; cops go first

• players move to vertices along edges; may 
move to neighbors or pass

• cops try to capture the robber by landing on 
them, while robber tries to evade capture



Cop number
(Aigner,Fromme,84)

• minimum number of cops needed to 
capture the robber is the cop number c(G)

– well-defined as c(G) ≤ |V(G)|
– better: c(G) ≤ 𝛾(G)



How big can the cop number be?

Meyniel’s Conjecture:  If G is connected of 
order n, then c(G) = O(n1/2).





Frankl’s bound

Theorem (Frankl,87) If G is connected, then

𝑐 G = 𝑂 𝑛
log log 𝑛
log 𝑛

.



Sketch of Frankl’s proof
• Moore bound:  𝑛 ≤ 1 + ∆∑!"#$%&(∆ − 1)!= 𝑂(∆$)
• there is either an isometric path or closed 

neighbor set of order
log 𝑛

log log 𝑛

• either subgraph can be 1-guarded (via a 
retraction)
– guarding the subgraph costs one cop

• Induction. 



State-of-the-art
• (Lu,Peng,13), (Scott,Sudakov,11), 

(Frieze,Krivelevich,Loh,12) proved that

Soft Meyniel’s conjecture: for some ε > 0,
c(G) = O(n1-ε).

𝑐(G) = 𝑂
𝑛

2(&%((&)) *+,! -
= 𝑛&%((&)



Incidence graphs of projective planes

• properties: bipartite, order/size 2(q2+q+1), (q+1)-regular, 
diameter 3, girth 6, vertices have at most one common neighbor

16

Fano plane Heawood graph



Meyniel extremal families 
• a family of connected graphs (Gn: n ≥ 1) is 

Meyniel extremal if there is a constant d > 0, 
such that for all  n ≥ 1, c(Gn) ≥ dn1/2

• incidence graphs of projective planes: 
– order  2(q2+q+1), cop number q+1
– Meyniel extremal (fill in non-prime orders)



Complexity
• (Berrarducci,Intrigila, 93), (Hahn,MacGillivray, 06), 

(B,Chiniforooshan, 09), (B,MacGillivray,17)

“c(G) ≤ k?” k fixed: in P; running time O(n2k+1),               
n = |V(G)|

• (Fomin,Golovach,Kratochvíl,Nisse,Suchan,08):

if k not fixed, then computing the cop number is  
NP-hard



EXPTIME-Completeness

Goldstein, Reingold Conjecture: if k is 
not fixed, then computing the cop 
number is EXPTIME-complete.

– same complexity as say, generalized chess

• settled by (Kinnersley,15)



Genus
• (Aigner, Fromme, 84) planar graphs (genus 0) 

have cop number ≤ 3.

• (Clarke, 02) outerplanar graphs have 
cop number ≤ 2.



Higher genus
Schroeder’s Conjecture: If G has genus k, then                      

c(G) ≤ k + 3.

• true for k = 0,1
• (Schroeder,01): c(G) ≤ 3k/2 + 3.
• (Bowler,Erde,Lehner,Pitz,21+):  c(G) ≤ 4k/3 + 10/3
• (Lehner,21+): If G has genus 1, then c(G) ≤ 3



• let’s change the rules…
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How many cops 
are needed to win?



The localization game
• robber: 

– invisible, moves first
– move to neighbors or pass

• cop: 
– move to any vertex
– alternate moves with the robber 



Localization game

• cops send out distance probes, giving the 
distance to the robber

• the cops capture the robber if they know which 
vertex they occupy

• robber is omniscient: knows all future moves of 
the cops 
– avoids a random capture by the cops



Localization number

𝜁(G) = minimum number of cops  
needed to capture the robber

• well-defined as 𝜁(G) ≤ |V(G)| - 1



Metric dimension
• (Slater,75), (Harary,Melter,76) 

the metric dimension β(G) is the minimum  
number of cops needed to capture the   
robber in one round

• 𝜁(G) ≤ β(G) 
– analogy with c(G) ≤ 𝛾(G)



Origins
• (Seager,12) introduced localization game with one cop

– no-backtrack rule: R cannot visit a vertex occupied by a cop in previous round

• (Carraher,Choi,Delcourt,Erickson,West,12)
– present version with one cop

• (Seager,14) trees satisfy 𝜁 = 2 exactly when they contain:



Knowns
• (Haslegrave,Johnson,Koch,17) 

𝜁(G) ≤ (∆/&)!

0
+1

• (Bosek, et al,18) x 2
– 𝜁(G) unbounded on planar graphs
– 𝜁(G) ≤ pw(G)
– computing 𝜁(G) ≤ k is NP-complete
– 𝜁(G) ≤ 3 for outerplanar graphs

• the localization number was studied for binomial random graphs



Localization and coloring

• (Johnson, Koch,17): assuming no backtracking, 
if one cop wins, then 𝜒(G) ≤ 4

• graph showing this bound is tight:



Chromatic number

Conjecture: (Bosek et al,18) 
There is an integer-valued function f such 
that 𝜁(G) ≤ k implies that 𝜒(G) ≤ f(k).



Conjecture solved
Theorem (B,Kinnersley,20) 
For a graph G, 

𝜒(G) ≤ 3𝜁(G).

• for eg, the robber wins
against a cop in: 



Graph degeneracy
• the degeneracy of a graph G, dg(G)

– the least k so that V(G) can be linearly   
ordered so that each vertex is adjacent to at 
most k vertices that follow it

↔ the maximum, over all subgraphs H of G, 
of 𝛿(H)

• if dg(G) = k, then 𝜒(G) ≤ k+1



Proof sketch
• Claim: if dg(G) = k, then 𝜁(G) ≥ log3(k+1)

• suppose there are m cops, with m < log3(k+1) 
• fix a subgraph H with dg(G) = 𝛿(H) = k
• keep the robber in H say on v

v H
G



Proof sketch, cont.
• for a cop on x, let dx = dG(x,v)

• for w in NH[v], 
dG(x,w) 𝜖 {dx -1,dx,dx +1}

• vertices in NH[v] correspond to at 
most 3m < k+1 distinct distance 
vectors

• by the Pigeonhole Principle, some 
two vertices in NH[v], say a and b, 
share the same distance vector 

• then R moves to one of a or b and 
is safe for another round

v
H

G

Ca

b
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d



Graph families

• (BK,20) if G is outerplanar, then 𝜁(G) ≤ 2.

• (BK,20) for a hypercube Qn,  

log! 𝑛 ≤ 𝜁(Qn) ≤ log! 𝑛 + 2



Localizing projective planes
(B,Huggan,Marbach,21+):
if P is a projective plane of order q with incidence 
graph G, then 

𝜁(G) = q+1.

• 𝜁(G) = 3: 𝜁(G) = 4: 



Sketch of lower bound
• for a contradiction, suppose 

that q cops win
• assume R has two points a

and b in its territory 
• a cop must distinguish a and b
• each remaining q-1 cops can 

uniquely identify at most one 
vertex in N(R)

• at least two vertices of N(R) 
remain in robber territory, a 
contradiction
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Other designs



Diameter 2 case



Polarity graphs

• suppose PG(2,q) has points P
and lines L. A polarity is an 
involutory function π: P→ L that 
preserves incidence

• polarity graph: vertices are 
points, distinct x and y adjacent if 
x ϵ π(y)



Properties of polarity graphs

• order q2+q+1, size q(q+1)2/2

• (q,q+1)-regular

• C4-free

• diameter 2



Localizing polarity graphs

(B,Huggan,Marbach,21+):
If G is a polarity graph of order q2+q+1, then 

(2q-5)/3 ≤ 𝜁(G) ≤ 2q-1.



Kneser graphs

• non-intersection 
graphs K(k,n)
– the Petersen graph is 

K(2,5)

• the graph K(k,n) is 
diameter 2 if n ≥ 3k 



Localization of Kneser graphs (BHM,21+)

• if k is even and n ≥ 3k, then 
𝜁(K(k,n)) = n/2 + n/k + O(1)

• if k is odd and n ≥ 3k, then 
n/2 + n/k - k/2 -1≤ 𝜁(K(k,n)) ≤ n/2 + (3/2)n/k + O(1)
– proved using a new notion of hypergraph detection

• for even k ≥ 6, β(K(k,n)) = n/2+n/k for infinitely many n

– improves on upper bound !
"#$%

2𝑘 − 1
𝑘 − 1

(Bailey et al, 2013)



Moore graphs

• diameter d and girth 2d+1
• diameter 2 case: 

– 5-cycle
– Petersen graph
– Hoffman-Singleton graph
– hypothetical graph of 

order 3,250 and 57-regular



Localization number of 
Moore graphs of diameter 2

Moore graph G 𝜻(G)

Petersen graph 3

Hoffman-Singleton graph 6 or 7

hypothetical graph of 
order 3,250

56 or 57

(BHM,21+):



Unknowns
• exact values on hypercubes, polarity graphs, 

Kneser graphs?

• is computing 𝜁 EXPTIME-complete?

• Hoffman-Singleton graph?
– 𝜁 = 6 or 7 (!)
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• @Anthony_Bonato


