Definition Motivations Domination polynomial About the proof Related results

Complex Zeros of Edge-Cover Polynomials of Hypergraphs

Atlantic Graph Theory Seminar 2022

Ferenc Bencs joint work with: Péter Csikvári, Guus Regts

arXiv:2012.00806

Korteweg de Vries Institute University of Amsterdam

February 16th 2022

What about the zeros of graph polynomials?

Definition Motivations Domination polynom About the proof Related results Investigating and locating the zeros of graph polynomials could lead to

- information about the coefficients (E.g. Newton lemma, Brenti-Royle-Wagner)
- algorithmic aspects of the computation of the polynomial (E.g. Patel-Regts)
- understanding statistical physical models.

Problem

What is the relation between the location of the zeros of graph polynomials (e.g. largest, smallest modulus, etc.) and their structure? (e.g. $\Delta(G)$, *n*, etc.)?

What about the zeros of graph polynomials?

Definition Motivations Domination polynom About the proof Related results Investigating and locating the zeros of graph polynomials could lead to

- information about the coefficients (E.g. Newton lemma, Brenti-Royle-Wagner)
- algorithmic aspects of the computation of the polynomial (E.g. Patel-Regts)
- understanding statistical physical models.

Problem

What is the relation between the location of the zeros of graph polynomials (e.g. largest, smallest modulus, etc.) and their structure? (e.g. $\Delta(G)$, *n*, etc.)?

Wagner's approach had success story:

- independence polynomial zeros of line graphs are real [Heilmann, Lieb]
- ferromagnetic Ising model zeros are on the unit circle [Lee, Yang]
- antiferromagnetic Ising model zeros of bounded degree graphs are in a ring
- antiferromagnetic Ising model zeros of line graphs are real [B, Csikvári, Regts]
- edge cover zeros in a "nice region" [B, Csikvári, Regts]

Edge covers

Definition

Motivations

Domination polynomial

About the proof

Related results

For a given subset of the edges $F \subseteq E(G)$ is an edge covering if $\cup F = V(G)$.

$$\mathcal{E}(G,z) = \sum_{F} z^{|F|}.$$

Edge covers

Definition

Motivations

Domination polynomial

About the proof

Related results

For a given subset of the edges $F \subseteq E(G)$ is an edge covering if $\cup F = V(G)$.

$$\mathcal{E}(G,z)=\sum_{F}z^{|F|}.$$

$$\mathcal{E}(G, x) = z^6 + 6z^5 + 12z^4 + 7z^3$$

Observations, facts

Definition

- Motivations
- About the proof
- Related results

- If G contains an isolated vertex, then $\mathcal{E}(G, z) \equiv 0$.
- The largest degree of $\mathcal{E}(G, z)$ is |E|.
- Multiplicity of 0 is $\rho(G)$, that is $n \nu(G)$.
- $\mathcal{E}(C_n, x)$ is a transform of the first Chebyshev polynomial. Therefore the zeros of $\mathcal{E}(C_n, x)$ are dense in (-4, 0].

Observations, facts

Definition

- Motivations Domination polynom
- About the proof
- Related results

- If G contains an isolated vertex, then $\mathcal{E}(G, z) \equiv 0$.
- The largest degree of $\mathcal{E}(G, z)$ is |E|.
- Multiplicity of 0 is $\rho(G)$, that is $n \nu(G)$.
- $\mathcal{E}(C_n, x)$ is a transform of the first Chebyshev polynomial. Therefore the zeros of $\mathcal{E}(C_n, x)$ are dense in (-4, 0].

Theorem (Csikvári, Oboudi)

All the zeros of $\mathcal{E}(G, z)$ are contained in

$$igg\{ z \mid |z| < rac{(2+\sqrt{3})^2}{(1+\sqrt{3})} pprox 5.099 igg\}$$

Moreover, if n large enough and $\delta(G) > \sqrt{2n \ln n}$, then $\{z \mid |z| < 4\}$.

Result on graphs

Theorem (B, Csikvári, Regts)

Definition

Motivations

Domination polynomial

About the proof

Related results

All the zeros of $\mathcal{E}(G, z)$ are contained in

 $\{z \mid |z| \le 4\}.$

Moreover -4 never a zero.

Figure: Zeros of the edge cover polynomial of some graphs on 10 vertices

Result on graphs

Theorem (B, Csikvári, Regts)

Definition

Motivations

Domination polynomial

About the proof

Related results

All the zeros of $\mathcal{E}(G, z)$ are contained in

$$\{-(1-\alpha)^2 \mid |\alpha| \le 1\} \subseteq \{z \mid |z| \le 4\}.$$

Moreover -4 never a zero.

Figure: Zeros of the edge cover polynomial of some graphs on 10 vertices

A "related" graph polynomial

Definition

Motivations

Domination polynomial

About the proof

5/15

A "related" graph polynomial

Motivations Domination polynomial

About the proof

E.g.

A vertex set $A \subseteq V$ is a dominating set of V, if $\forall v \in V$ there is a vertex $a \in A$ such that $v \in N_G[a].$

$$D(G,x) = \sum_{A ext{ dominating }} x^{|A|}$$

5 / 15

A "related" graph polynomial

Motivations Domination polynomial

About the proof

Related results

A vertex set $A \subseteq V$ is a dominating set of V, if $\forall v \in V$ there is a vertex $a \in A$ such that $v \in N_G[a]$.

W

$$D(G, x) = \sum_{A ext{ dominating }} x^{|A|}$$

E.g.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

A "related" graph polynomial

Motivations
Domination polynomial

About the proof

Related results

A vertex set $A \subseteq V$ is a dominating set of V, if $\forall v \in V$ there is a vertex $a \in A$ such that $v \in N_G[a]$.

$$D(G, x) = \sum_{A \text{ dominating }} x^{|A|}$$

 $D(G, x) = x^5 + 5x^4 + 10x^3 + 7x^2$

Definition

Motivations

Domination polynomial

About the proof

Related results

- \bullet All the complex zeros are dense in $\mathbb C$
- All real zeros are dense in $(\infty, 0]$

[Brown, Tufts] [Cameron]

Definition

Motivations

Domination polynomial

About the proof

Related results

- ullet All the complex zeros are dense in ${\mathbb C}$
 - All real zeros are dense in $(\infty, 0]$
 - If z_0 is a zero of D(G,x), then $|1+z_0| \leq (2^n-1)^{1/(\delta(G)+1)} < 2^{n/\delta(G)}$

[Brown, Tufts] [Cameron] [Oboudi]

Domination polynomial

About the proof

- All the complex zeros are dense in $\mathbb C$ [Brown, Tufts] • All real zeros are dense in $(\infty, 0]$
- If z_0 is a zero of D(G, x), then $|1 + z_0| \le (2^n 1)^{1/(\delta(G) + 1)} < 2^{n/\delta(G)}$
- If z_0 is a zero of D(G, x), then $|z_0| \le n$

[Cameron] [Oboudi]

[Cameron]

Definition

Domination polynomial

About the proo

- All the complex zeros are dense in \mathbb{C} [Brown, Tufts]• All real zeros are dense in $(\infty, 0]$ [Cameron]• If z_0 is a zero of D(G, x), then $|1 + z_0| \le (2^n 1)^{1/(\delta(G)+1)} < 2^{n/\delta(G)}$ [Oboudi]• If z_0 is a zero of D(G, x), then $|z_0| \le n$ [Cameron]
- If z_0 is a zero of D(G, x), then $|z_0| \le 2^{\Delta(G)+1}$ [B, Csikvári, Regts]

Motivations

Domination polynomial

About the proo

Related results

• All the complex zeros are dense in \mathbb{C} [Brown, Tufts] • All real zeros are dense in $(\infty, 0]$ [Cameron] • If z_0 is a zero of D(G, x), then $|1 + z_0| \le (2^n - 1)^{1/(\delta(G)+1)} < 2^{n/\delta(G)}$ [Oboudi] • If z_0 is a zero of D(G, x), then $|z_0| \le n$ [Cameron] • If z_0 is a zero of D(G, x), then $|z_0| \le 2^{\Delta(G)+1}$ [B, Csikvári, Regts] The Relation:

If \mathcal{H}_G is the hypergraph on V(G) with hyperedges $E = \{N_G[v]\}_{v \in V(G)}$

Then A is a dominating set if and only if the hyperedges $\{N_G[v]\}_{v \in A}$ cover all the vertices.

New	setup:	
-----	--------	--

Definition

Motivations

Domination polynomial

About the proof

New setup: For a hypergraph $\mathcal{H} = (V, E)$ define the

edge cover polynomial as

.

$$\mathcal{E}(\mathcal{H}, z) = \sum_{F} z^{|F|},$$

where the sum goes through those $F \subseteq E$, such that $\cup F \supseteq V$

Motivations

Domination polynomial

About the proof

New setup: For a hypergraph $\mathcal{H} = (V, E)$ define the

edge cover polynomial as

$$\mathcal{E}(\mathcal{H}, z) = \sum_{F} z^{|F|},$$

Domination polynomial About the proof

Motivations

Definition Motivations

Domination polynomial

About the proof

Related results

$$\mathcal{E}(\mathcal{H}, S, z) = \sum_{F} z^{|F|},$$

where the sum goes through those $F \subseteq E$, such that $\cup F \supseteq V \setminus S$.

New setup:

For a hypergraph $\mathcal{H} = (V, E)$ define the *relaxed edge cover polynomial* over S as

$$\mathcal{E}(\mathcal{H}, S, z) = \sum_{F} z^{|F|},$$

where the sum goes through those $F \subseteq E$, such that $\cup F \supseteq V \setminus S$.

 $z^{3} + 2z^{2}$

About the proof

New setup:

For a hypergraph $\mathcal{H} = (V, E)$ define the *relaxed edge cover polynomial* over S as

$$\mathcal{E}(\mathcal{H}, \mathcal{S}, \mathbf{z}) = \sum_{F} \mathbf{z}^{|F|},$$

where the sum goes through those $F \subseteq E$, such that $\cup F \supseteq V \setminus S$.

Observation: For any $F \subseteq E$ to be an edge cover can be decided only from the degree sequence.

 $F \subseteq E \text{ s.t } \cup F \supseteq V \setminus S \quad \iff \quad \forall v \in V \setminus S : \quad \deg_F(v) \ge 1$

We will use Wagner's subgraph counting polynomial in hypergraph settings.

About the proof

Strategy: express the model as a half-edge model, then use Asano-contraction to make the choice of half-edges of an edge to be consistent and keep following the change of the zero-free region!

Motivations

Domination polynomial

About the proof

Strategy: express the model as a half-edge model, then use Asano-contraction to make the choice of half-edges of an edge to be consistent and keep following the change of the zero-free region!

For each v and for any subset of the edges $N_v = \{v \in e\}$ establish a weight and encode it into a polynomial as follows:

$$\mathcal{K}^{(v)}(z) = \sum_{F \subseteq \{e \in E \mid u \in e\}} u^{(v)}_{|F|} z^{|F|}$$

Definition Motivations Domination polynomial

About the proof

Strategy: express the model as a half-edge model, then use Asano-contraction to make the choice of half-edges of an edge to be consistent and keep following the change of the zero-free region!

For each v and for any subset of the edges $N_v = \{v \in e\}$ establish a weight and encode it into a polynomial as follows:

$$\mathcal{K}^{(v)}(z) = \sum_{F \subseteq \{e \in E \mid u \in e\}} u_{|F|}^{(v)} z^{|F|}$$

then the corresponding subhypergraph counting polynomial is

$$Z_{\mathcal{W}}(\mathcal{H};z) = \sum_{F\subseteq E}$$

Definition Motivations Domination polynomial About the proof

Strategy: express the model as a half-edge model, then use Asano-contraction to make the choice of half-edges of an edge to be consistent and keep following the change of the zero-free region!

For each ν and for any subset of the edges $N_{\nu} = \{\nu \in e\}$ establish a weight and encode it into a polynomial as follows:

$$\mathcal{K}^{(v)}(z) = \sum_{F \subseteq \{e \in E \mid u \in e\}} u_{|F|}^{(v)} z^{|F|}$$

then the corresponding subhypergraph counting polynomial is

$$Z_{\mathcal{W}}(\mathcal{H};z) = \sum_{F \subseteq E} \prod_{v \in V} u_{|F \cap N_v|}^{(v)}$$

Definition Motivations Domination polynomial About the proof

Strategy: express the model as a half-edge model, then use Asano-contraction to make the choice of half-edges of an edge to be consistent and keep following the change of the zero-free region!

For each ν and for any subset of the edges $N_{\nu} = \{\nu \in e\}$ establish a weight and encode it into a polynomial as follows:

$$\mathcal{K}^{(v)}(z) = \sum_{F \subseteq \{e \in E \mid u \in e\}} u_{|F|}^{(v)} z^{|F|}$$

then the corresponding subhypergraph counting polynomial is

$$Z_{\mathcal{W}}(\mathcal{H};z) = \sum_{F \subseteq E} \prod_{v \in V} u_{|F \cap N_v|}^{(v)} z^{\sum_{v \in V} \deg_F(v)}$$

Definition Motivations Domination polynomial About the proof

Strategy: express the model as a half-edge model, then use Asano-contraction to make the choice of half-edges of an edge to be consistent and keep following the change of the zero-free region!

For each v and for any subset of the edges $N_v = \{v \in e\}$ establish a weight and encode it into a polynomial as follows:

$$\mathcal{K}^{(v)}(z) = \sum_{F \subseteq \{e \in E \mid u \in e\}} u_{|F|}^{(v)} z^{|F|}$$

then the corresponding subhypergraph counting polynomial is

$$Z_{\mathcal{W}}(\mathcal{H};z) = \sum_{F \subseteq E} \prod_{v \in V} u_{|F \cap N_v|}^{(v)} z^{\sum_{v \in V} \deg_F(v)}$$

E.g: Edge cover relaxed over S: • If $v \in S$, then $u_{|F|}^{(v)} \equiv 1$, thus $\mathcal{K}^{(v)}(z) = \sum_{F \subseteq \{e \in E \mid u \in e\}} 1 \cdot z^{|F|}$

Definition Motivations Domination polynor About the proof

Strategy: express the model as a half-edge model, then use Asano-contraction to make the choice of half-edges of an edge to be consistent and keep following the change of the zero-free region!

For each v and for any subset of the edges $N_v = \{v \in e\}$ establish a weight and encode it into a polynomial as follows:

$$\mathcal{K}^{(v)}(z) = \sum_{F \subseteq \{e \in E \mid u \in e\}} u_{|F|}^{(v)} z^{|F|}$$

then the corresponding subhypergraph counting polynomial is

$$Z_{\mathcal{W}}(\mathcal{H};z) = \sum_{F \subseteq E} \prod_{v \in V} u_{|F \cap N_v|}^{(v)} z^{\sum_{v \in V} \deg_F(v)}$$

E.g: Edge cover relaxed over S: • If $v \in S$, then $u_{|F|}^{(v)} \equiv 1$, thus $\mathcal{K}^{(v)}(z) = \sum_{F \subseteq \{e \in E \mid u \in e\}} 1 \cdot z^{|F|} = (1+z)^{\deg(v)}$

Definition Motivations Domination polynor About the proof

Strategy: express the model as a half-edge model, then use Asano-contraction to make the choice of half-edges of an edge to be consistent and keep following the change of the zero-free region!

For each v and for any subset of the edges $N_v = \{v \in e\}$ establish a weight and encode it into a polynomial as follows:

$$\mathcal{K}^{(v)}(z) = \sum_{F \subseteq \{e \in E \mid u \in e\}} u_{|F|}^{(v)} z^{|F|}$$

then the corresponding subhypergraph counting polynomial is

$$Z_{\mathcal{W}}(\mathcal{H};z) = \sum_{F \subseteq E} \prod_{v \in V} u_{|F \cap N_v|}^{(v)} z^{\sum_{v \in V} \deg_F(v)}$$

E.g: Edge cover relaxed over S: • If $v \in S$, then $u_{|F|}^{(v)} \equiv 1$, thus $K^{(v)}(z) = \sum_{F \subseteq \{e \in E \mid u \in e\}} 1 \cdot z^{|F|} = (1+z)^{\deg(v)}$

• If v
otin S, then $\mathcal{K}^{(v)}(z) = (1+z)^{{
m deg}(v)} - 1$

Definition Motivations Domination polynom About the proof

Definition

Motivations

Domination polynomial

About the proof

Definition

Motivations

Domination polynomial

About the proof

Related results

Start with $u^{(v)} \equiv 1$ (and introduce a variable for each vertex), then

$$Z_0(z_1,\ldots,z_n)=\sum_{F\subseteq E}\prod_{v\in V}z_v^{\deg_F(v)}=\prod_{e\in E}(1+\prod_{v\in e}z_v),$$

Definition Motivations

Domination polynomial

About the proof

Related results

Start with $u^{(v)} \equiv 1$ (and introduce a variable for each vertex), then

$$Z_0(z_1,\ldots,z_n)=\sum_{F\subseteq E}\prod_{\nu\in V}z_{\nu}^{\deg_F(\nu)}=\prod_{e\in E}(1+\prod_{\nu\in e}z_{\nu}),$$

then one by one replace at each vertex the "local contribution functions":

Definition Motivations Domination polynomial

About the proof

Related results

Start with $u^{(v)} \equiv 1$ (and introduce a variable for each vertex), then

$$Z_0(z_1,\ldots,z_n)=\sum_{F\subseteq E}\prod_{\nu\in V}z_{\nu}^{\deg_F(\nu)}=\prod_{e\in E}(1+\prod_{\nu\in e}z_{\nu}),$$

then one by one replace at each vertex the "local contribution functions":

What is the change, when we are revealing v?

$$Z_{k-1}(z_1,\ldots,z_n) = \sum_{i=0}^{\deg_E(v)} P_i(z_{\neq v}) \cdot z_v^i \longrightarrow$$

Definition Motivations

Domination polynomial

About the proof

Related results

Start with $u^{(v)} \equiv 1$ (and introduce a variable for each vertex), then

$$Z_0(z_1,\ldots,z_n)=\sum_{F\subseteq E}\prod_{\nu\in V}z_{\nu}^{\deg_F(\nu)}=\prod_{e\in E}(1+\prod_{\nu\in e}z_{\nu}),$$

then one by one replace at each vertex the "local contribution functions":

What is the change, when we are revealing v?

$$Z_{k-1}(z_1,\ldots,z_n) = \sum_{i=0}^{\deg_E(v)} P_i(z_{\neq v}) \cdot z_v^i \longrightarrow \sum_{i=0}^{\deg_E(v)} u_i^{(v)} \cdot P_i(z_{\neq v}) \cdot z_v^i = Z_k(z_1,\ldots,z_n)$$

Definition Motivations

Domination polynoi

About the proof

Related results

Start with $u^{(v)} \equiv 1$ (and introduce a variable for each vertex), then

$$Z_0(z_1,\ldots,z_n)=\sum_{F\subseteq E}\prod_{\nu\in V}z_{\nu}^{\deg_F(\nu)}=\prod_{e\in E}(1+\prod_{\nu\in e}z_{\nu}),$$

then one by one replace at each vertex the "local contribution functions":

What is the change, when we are revealing v?

$$Z_{k-1}(z_1,\ldots,z_n) = \sum_{i=0}^{\deg_E(v)} P_i(z_{\neq v}) \cdot z_v^i \longrightarrow \sum_{i=0}^{\deg_E(v)} u_i^{(v)} \cdot P_i(z_{\neq v}) \cdot z_v^i = Z_k(z_1,\ldots,z_n)$$

This is the "Schur-Szegő composition" of $Z_{k-1}(z)$ and $\mathcal{K}^{(\nu)}(z)$!

Definition Motivations Domination polynomial About the proof

Theorem (Wagner's theorem for hypergraphs – univariate)

For a \mathcal{H} hypergraph

$$Z_{\mathcal{W}}(\mathcal{H}; z) = \sum_{F \subseteq E} \prod_{v \in V} u_{\deg_F(v)}^{(v)} z^{\sum_{v \in V} \deg_F(v)}$$

has its complex zeros only in $\{z \mid |z| \leq M\}$, if

• $K^{(v)}(z)$ has zeros only in $\{z \mid |z| \leq M\}$.

Recall: Edge cover relaxed over S:

• If $v \in S$, then $\mathcal{K}^{(v)}(z) = (1+z)^{\deg(v)}$, i.e. z = -1 is the only zero.

Definition Motivations Domination polyno

About the proof

Related results

Theorem (Wagner's theorem for hypergraphs – univariate)

For a \mathcal{H} hypergraph

$$Z_{\mathcal{W}}(\mathcal{H}; z) = \sum_{F \subseteq E} \prod_{v \in V} u_{\deg_F(v)}^{(v)} z^{\sum_{v \in V} \deg_F(v)}$$

has its complex zeros only in $\{z \mid |z| \le M\}$, if

• $K^{(v)}(z)$ has zeros only in $\{z \mid |z| \leq M\}$.

Recall: Edge cover relaxed over S:

- If $v \in S$, then $\mathcal{K}^{(v)}(z) = (1+z)^{\deg(v)}$, i.e. z = -1 is the only zero.
- If $v \notin S$, then $\mathcal{K}^{(v)}(z) = (1+z)^{\deg(v)} 1$, i.e. the zero has length at most 2.

Corollary (Almost "Edge cover" polynomial)

For any hypergraph $\mathcal H$ and $S\subseteq V$

$$Z_{\mathcal{W}}(\mathcal{H},z) = \sum_{F} z^{\sum_{v \in V} \deg_{F}(v)}$$

has its complex zeros in $\{z \mid |z| \leq 2\}$.

If \mathcal{H} is a *b*-uniform hypergraph, then for any subhypergraph *F*

$$\sum_{v\in V} \deg_F(v) = b|F|,$$

thus

$$Z_{\mathcal{W}}(\mathcal{H},z) = \sum_{F} z^{\sum_{v \in V} \deg_{F}(v)} = \sum_{F} z^{b|F|} = \mathcal{E}(\mathcal{H},S,z^{b}).$$

Motivations

About the proof

Domination polynomial

What can we do if ${\mathcal H}$ is not uniform?

Related results

Let $\hat{\mathcal{H}}$ be a *b*-uniform hypergraph obtained from \mathcal{H} by adding new vertices into each hyperedge. We also add these new vertices into the relaxed vertex set. Thus

$$\mathcal{E}(\mathcal{H}, S, z) = \mathcal{E}(\widehat{\mathcal{H}}, S \cup \{\text{new vertices}\}, z)$$

Corollaries

Definition Motivations Domination polynomial About the proof Related results

Theorem (B, Csikvári, Regts)

For a hypergraph \mathcal{H} without isolated vertices and with edges of size at most b, the zeros of $\mathcal{E}(\mathcal{H}, z)$ are contained in

 $\{z \mid |z| \leq 2^b\}.$

Corollaries

Definition Motivations Domination polynomial About the proof Related results

Theorem (B, Csikvári, Regts)

For a hypergraph \mathcal{H} without isolated vertices and with edges of size at most b, the zeros of $\mathcal{E}(\mathcal{H},z)$ are contained in

 $\{z \mid |z| \le 2^b\}.$

Corollary (Independence polynomail)

For a hypergraph \mathcal{H} , the zeros of $\mathcal{I}(\mathcal{H}, z)$ are contained in

 $\{z \mid |z| \geq 2^{-\Delta(\mathcal{H})}\}.$

Questions

Related results

Problem

Problem

Is -2^{b} in the closure of the zeros of the edge cover polynomial of hypergraphs of edge size at most b?

Problem

Is $-2^{\Delta(G)+1}$ in the closure of the zeros of the domination polynomial of bounded degree graphs?

シロケ 不良 不良 不良 うんの

THANK YOU FOR YOUR ATTENTION!

Multivariate version

For every vertex v we encode the allowed local configurations into

$$\mathcal{K}^{(v)}(\{z_e\}) = \sum_{F \subseteq \{v \in e\}} u_F^{(v)} \prod_{e \in F} z_e.$$

E.g. Edge cover

Related results

Domination polynomial

About the proof

• If
$$v \in S$$
, then $\mathcal{K}^{(v)}(z) = \prod_{e \in N_v} (1+z_e)$

• If
$$v \notin S$$
, then $\mathcal{K}^{(v)}(z) = \prod_{e \in N_v} (1+z_e) - 1$

• each case $\mathcal{K}^{(v)}(z)$ is $\{z \mid |z+1| > 1\} \times \cdots \times \{z \mid |z+1| > 1\}$ nonvanishing.

Theorem (Wagner's theorem for hypergraphs – multivariate)

For a \mathcal{H} hypergraph

$$Z_{\mathcal{W}}(\mathcal{H}; z) = \sum_{F \subseteq E} \prod_{v \in V} u_{F \cap N_v}^{(v)} \prod_{e \in F} z_e$$

is $(\mathbb{C} \setminus (-1)^{|e_1|+1}Q^{|e_1|}) \times \cdots \times (\mathbb{C} \setminus (-1)^{|e_m|+1}Q^{|e_m|})$ -nonvanishing, if for every vertex v the multivariate polynomial $K^{(v)}(z)$ is $(\mathbb{C} \setminus Q) \times \cdots \times (\mathbb{C} \setminus Q)$ -nonvanishing.