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What about the zeros of graph polynomials?

Investigating and locating the zeros of graph polynomials could lead to

information about the coefficients (E.g. Newton lemma, Brenti-Royle-Wagner)

algorithmic aspects of the computation of the polynomial (E.g. Patel-Regts)

understanding statistical physical models.

Problem

What is the the relation between the location of the zeros of graph polynomials (e.g. largest,
smallest modulus, etc.) and their structure? (e.g.∆(G), n, etc.)?

Wagner’s approach had success story:

independence polynomial zeros of line graphs are real [Heilmann, Lieb]

ferromagnetic Ising model zeros are on the unit circle [Lee, Yang]

antiferromagnetic Ising model zeros of bounded degree graphs are in a ring

antiferromagnetic Ising model zeros of line graphs are real [B, Csikvári, Regts]

edge cover zeros in a “nice region” [B, Csikvári, Regts]
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Edge covers

For a given subset of the edges F ⊆ E(G) is an edge covering if ∪F = V (G).

E(G , z) =
∑
F

z |F |.

1 2

3

5

4

E(G , x) = z6 + 6z5 + 12z4 + 7z3
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Observations, facts

If G contains an isolated vertex, then E(G , z) ≡ 0.

The largest degree of E(G , z) is |E |.
Multiplicity of 0 is ρ(G), that is n − ν(G).

E(Cn, x) is a transform of the first Chebyshev polynomial. Therefore the zeros of E(Cn, x)
are dense in (−4, 0].

Theorem (Csikvári, Oboudi)

All the zeros of E(G , z) are contained in{
z | |z | < (2 +

√
3)2

(1 +
√

3)
≈ 5.099

}
Moreover, if n large enough and δ(G) >

√
2n ln n, then {z ||z | < 4}.
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Result on graphs

Theorem (B, Csikvári, Regts)

All the zeros of E(G , z) are contained in

{−(1− α)2 | |α| ≤ 1} ⊆

{z | |z | ≤ 4}.

Moreover −4 never a zero.

Figure: Zeros of the edge cover polynomial of some graphs on 10 vertices
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A “related” graph polynomial

A vertex set A ⊆ V is a dominating set of V , if ∀v ∈ V there is a vertex a ∈ A such that
v ∈ NG [a].

D(G , x) =
∑

A dominating

x |A|

E.g.

D(G , x) = x5 + 5x4 + 10x3 + 7x2
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Properties of the zeros of the Domination polynomial

All the complex zeros are dense in C [Brown, Tufts]

All real zeros are dense in (∞, 0] [Cameron]

If z0 is a zero of D(G , x), then |1 + z0| ≤ (2n − 1)1/(δ(G)+1) < 2n/δ(G) [Oboudi]

If z0 is a zero of D(G , x), then |z0| ≤ n [Cameron]

If z0 is a zero of D(G , x), then |z0| ≤ 2∆(G)+1 [B, Csikvári, Regts]

The Relation:
If HG is the hypergraph on V (G) with hyperedges E = {NG [v ]}v∈V (G)

Then A is a dominating set if and only if the hyperedges {NG [v ]}v∈A cover all the vertices.
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The Relation:
If HG is the hypergraph on V (G) with hyperedges E = {NG [v ]}v∈V (G)

Then A is a dominating set if and only if the hyperedges {NG [v ]}v∈A cover all the vertices.

6 / 15



Definition

Motivations

Domination polynomial

About the proof

Related results

Properties of the zeros of the Domination polynomial

All the complex zeros are dense in C [Brown, Tufts]

All real zeros are dense in (∞, 0] [Cameron]

If z0 is a zero of D(G , x), then |1 + z0| ≤ (2n − 1)1/(δ(G)+1) < 2n/δ(G) [Oboudi]

If z0 is a zero of D(G , x), then |z0| ≤ n [Cameron]

If z0 is a zero of D(G , x), then |z0| ≤ 2∆(G)+1 [B, Csikvári, Regts]
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Generalization/relaxation helps

New setup:

For a hypergraph H = (V ,E) define the

relaxed

edge cover polynomial

over S

as

E(H,

S ,

z) =
∑
F

z |F |,

where the sum goes through those F ⊆ E , such that ∪F ⊇ V

\ S

.

z3 + z2
z3 + 2z2

Observation: For any F ⊆ E to be an edge cover can be decided only from the degree sequence.

F ⊆ E s.t ∪ F ⊇ V \ S ⇐⇒ ∀v ∈ V \ S : degF (v) ≥ 1

We will use Wagner’s subgraph counting polynomial in hypergraph settings.
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Wagner’s “subhypergraph” counting polynomial

Strategy: express the model as a half-edge model, then use Asano-contraction to make the
choice of half-edges of an edge to be consistent and keep following the change of the zero-free
region!

For each v and for any subset of the edges Nv = {v ∈ e} establish a weight and encode it into
a polynomial as follows:

K (v)(z) =
∑

F⊆{e∈E | u∈e}

u
(v)
|F |z
|F |

then the corresponding subhypergraph counting polynomial is

ZW(H; z) =
∑
F⊆E

∏
v∈V

u
(v)
|F∩Nv |z

∑
v∈V degF (v)

E.g: Edge cover relaxed over S :

If v ∈ S , then u
(v)
|F | ≡ 1, thus

K (v)(z) =
∑

F⊆{e∈E | u∈e}

1 · z |F | = (1 + z)deg(v)

If v /∈ S , then K (v)(z) = (1 + z)deg(v) − 1

8 / 15
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The method

Start with u(v) ≡ 1 (and introduce a variable for each vertex), then

Z0(z1, . . . , zn) =
∑
F⊆E

∏
v∈V

zdegF (v)
v =

∏
e∈E

(1 +
∏
v∈e

zv ),

then one by one replace at each vertex the “local contribution functions”:

What is the change, when we are revealing v?

Zk−1(z1, . . . , zn) =

degE (v)∑
i=0

Pi (z6=v ) · z iv −→
degE (v)∑
i=0

u
(v)
i · Pi (z6=v ) · z iv = Zk(z1, . . . , zn)

This is the “Schur-Szegő composition” of Zk−1(z) and K (v)(z)!
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Theorem (Wagner’s theorem for hypergraphs – univariate)

For a H hypergraph

ZW(H; z) =
∑
F⊆E

∏
v∈V

u
(v)
degF (v)z

∑
v∈V degF (v)

has its complex zeros only in {z | |z | ≤ M}, if
1 K (v)(z) has zeros only in {z | |z | ≤ M}.

Recall: Edge cover relaxed over S :

If v ∈ S , then K (v)(z) = (1 + z)deg(v), i.e. z = −1 is the only zero.

If v /∈ S , then K (v)(z) = (1 + z)deg(v) − 1, i.e. the zero has length at most 2.
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Corollary (Almost “Edge cover” polynomial )

For any hypergraph H and S ⊆ V

ZW(H, z) =
∑
F

z
∑

v∈V degF (v)

has its complex zeros in {z | |z | ≤ 2}.

If H is a b-uniform hypergraph, then for any subhypergraph F∑
v∈V

degF (v) = b|F |,

thus
ZW(H, z) =

∑
F

z
∑

v∈V degF (v) =
∑
F

zb|F | = E(H,S , zb).
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What can we do if H is not uniform?

Let Ĥ be a b-uniform hypergraph obtained from H by adding new vertices into each hyperedge.
We also add these new vertices into the relaxed vertex set.
Thus

E(H, S , z) = E(Ĥ, S ∪ {new vertices}, z)
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Corollaries

Theorem (B, Csikvári, Regts)

For a hypergraph H without isolated vertices and with edges of size at most b, the zeros of
E(H, z) are contained in

{z | |z | ≤ 2b}.

Corollary (Independence polynomail)

For a hypergraph H, the zeros of I(H, z) are contained in

{z | |z | ≥ 2−∆(H)}.
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Questions

Problem

Is the closure of the zeros of edge cover polynomials of all graphs the cardioid?

Problem

Is −2b in the closure of the zeros of the edge cover polynomial of hypergraphs of edge size at
most b?

Problem

Is −2∆(G)+1 in the closure of the zeros of the domination polynomial of bounded degree graphs?
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Multivariate version

For every vertex v we encode the allowed local configurations into

K (v)({ze}) =
∑

F⊆{v∈e}

u
(v)
F

∏
e∈F

ze .

E.g. Edge cover

If v ∈ S , then K (v)(z) =
∏

e∈Nv
(1 + ze)

If v /∈ S , then K (v)(z) =
∏

e∈Nv
(1 + ze)− 1

each case K (v)(z) is {z | |z + 1| > 1} × · · · × {z | |z + 1| > 1} nonvanishing.

Theorem (Wagner’s theorem for hypergraphs – multivariate)

For a H hypergraph

ZW(H; z) =
∑
F⊆E

∏
v∈V

u
(v)
F∩Nv

∏
e∈F

ze

is
(
C \ (−1)|e1|+1Q|e1|

)
× · · · ×

(
C \ (−1)|em|+1Q|em|

)
-nonvanishing, if for every vertex v the

multivariate polynomial K (v)(z) is (C \ Q)× · · · × (C \ Q)-nonvanishing.
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