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Points in the plane
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Problem: Given a collection of points in the plane, and a vantage point
V , order the points of S from closest to farthest.
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Induced permutation 43251

Problem: Given a collection of points in the plane, and a vantage point
V , order the points of S from closest to farthest.
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Expanding circles
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Move the vantage point
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Induced permutation 24135
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Motivation – social choice theory

There are n candidates running for office.
Each candidate is rated 0 – 10 on two independent issues, e.g.,
baseball and hockey. So each candidate is represented by an
ordered pair (a,b), where 0 ≤ a,b ≤ 10.
The voter V also rates herself on the same two issues.
Then the induced permutation represents the voter’s preference
list.

Goal: Find the maximum possible number of distinct preference
lists.
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Maximum

Question: Given n points fixed in the plane, how many distinct
orderings are possible when the vantage point can roam freely?
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43521
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Bisectors

Draw the perpendicular bisector determined by points 1 and 2. If the
vantage point V is below the line, then 1 precedes 2 in the induced
permutation.

1
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3

4

The perpendicular bisector of points 1 and 2.
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Bisectors
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Two perpendicular bisectors.
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Bisectors
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These three perpendicular bisectors are coincident.
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Bisectors

1

2

3

4

3412

All the perpendicular bisectors.

Fact: The number of achievable permutations = the number of regions
determined by all the perpendicular bisectors.
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Maximum
Question: Given n points in “free position” the plane, how many distinct
orderings are possible?

1

2

3

4

5

V

max =
1
24

(
3n4 − 10n3 + 21n2 − 14n + 24

)

n 1 2 3 4 5 6 7 8 9 10
max 1 2 6 18 46 101 197 351 583 916

https://oeis.org/A308305
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Theorem
Given S ⊂ R2 with |S| = n, the maximum number of orderings is

1
24

(
3n4 − 10n3 + 21n2 − 14n + 24

)
.

Proof idea: Use v − e + r = 1 for an associated graph.
Make a planar graph using the perpendicular bisectors, and draw
a big circle around everything.
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max =
1

24

(
3n4 − 10n3 + 21n2 − 14n + 24

)
.

Next, count the number of vertices of degree 3, 4, and 6.

v3 = 2
(

n
2

)
, v4 = 3

(
n
4

)
, v6 =

(
n
3

)
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v3 = 2
(

n
2

)
, v4 = 3

(
n
4

)
, v6 =

(
n
3

)
Number of vertices:

v = v3 + v4 + v6

= 2
(

n
2

)
+ 3
(

n
4

)
+

(
n
3

)
=

1
24

(
3n4 − 14n3 + 45n2 − 34n

)
.

Number of edges: 2e = 3v3 + 4v4 + 6v6.

e = (3v3 + 4v4 + 6v6)/2

= 3
(

n
2

)
+ 6
(

n
4

)
+ 3
(

n
3

)
=

1
4

(
n4 − 4n3 + 11n2 − 8n

)
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Then the number of regions is r = −v + e + 1.

r = −v + e + 1

=

(
n
2

)
+ 3
(

n
4

)
+ 2
(

n
3

)
+ 1

=
1

24

(
3n4 − 10n3 + 21n2 − 14n + 24

)
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History

Suppose S ⊂ Rd , and |S| = n. Then the maximum number of
regions is

s(n,n) + s(n,n − 1) + · · ·+ s(n,n − d),

where s(n, k) is the unsigned Stirling number of the first kind.
(s(n, k) counts the number of permutations of {1, . . . ,n} with
exactly k cycles.)

I Good and Tideman, “Stirling numbers and a geometric structure
from voting theory,” J. Combinatorial Theory Ser. A 23 (1977),
34–45.

I T. Zaslavsky, “Perpendicular dissections of space,” Discrete
Comput. Geom. 27 (2002), 303–351.
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Minimum

Question: Given n points in Rd , what is the minimum possible number
of orderings we generate?

Easiest case: d = 1.

Dimension 1: The minimum occurs when the n points are equally
spaced on a line.

Answer: n equally spaced points generate 2n− 3 distinct midpoints, so
min = 2n − 2.
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Minimum in all dimensions
Theorem
Let S ⊂ Rn with |S| = n. Then min = 2n − 2, and this occurs precisely
when the points are collinear and equally spaced (for n > 4).

d = 1: First, prove this for S ⊂ R1, i.e., sets of points on the real
line.
d = 2: Next, assume S ⊂ R2. Then, if the points are not collinear,
use Ungar’s theorem on slopes:

Ungar [1980]: n points in the plane (not all on a line)
determine at least n − 1 distinct slopes.

d > 2: Higher dimensional analogues of Ungar’s theorem and
projection finish this problem.

Pach, Pinchasi, Sharir [2004]: n points in R3 determine
at least 2n − 3 different directions.

These two papers settled two conjectures of Scott [1970].
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Between the min and the max?
Question: Fix n and let k be an integer between the min and the max.
Is there a configuration of points that produces exactly k orderings?

Dimension 1: min = 2n − 2 max =
n2 − n + 2

2

Theorem

Fix n > 0. For all k in [2n − 2, n2−n+2
2 ], there is a configuration S ⊂ Z

such that S generates exactly k regions.

Sum-set Problem. Let n be given and let k satisfy
2n − 3 ≤ k ≤ n2−n

2 . Then there is a collection of integers
a1 < a2 < · · · < an such that the number of distinct sums
ai + aj (where i 6= j ) is exactly k .
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Between the min and the max?

Question: Fix n and let k be an integer between the min and the max.
Is there a configuration of points in the plane that produces exactly k
orderings?

min = 2n − 2 max =
1

24

(
3n4 − 10n3 + 21n2 − 14n + 24

)

n 2 3 4 5 6 7 8 9 10
min 2 4 6 8 10 12 14 16 18
max 2 6 18 46 101 197 351 583 916

Gary Gordon (Lafayette College) Distance permutations AMS 26 / 57



Filling in the gaps in the plane – computer evidence

n (Possible) Possible Numbers of Orderings
2 2
3 4, 6
4 6, 7, 8, 10, 12, 16, 17, 18
5 8, 9, 10, 11, 12, 14, 16, 18, 20, 24, 26, 28, 30, 36, 38, 40, 42, 44, 45, 46

n = 4.

Min = 6, Max = 18.

Achievable percentage is 61.53%.
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Filling in the gaps in the plane – computer evidence

n (Possible) Possible Numbers of Orderings
2 2
3 4, 6
4 6, 7, 8, 10, 12, 16, 17, 18
5 8, 9, 10, 11, 12, 14, 16, 18, 20, 24, 26, 28, 30, 36, 38, 40, 42, 44, 45, 46

n = 5.

Min = 8, Max = 46.

Achievable percentage is 61.53%.
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Filling in the gaps in the plane – computer evidence

n 2 3 4 5 6 7 8 9 10
min 2 4 6 8 10 12 14 16 18
max 2 6 18 46 101 197 351 583 916

n = 6.

Min = 10, Max = 101.

Achievable percentage is 46.74%.
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Filling in the gaps in the plane – computer evidence

n 2 3 4 5 6 7 8 9 10
min 2 4 6 8 10 12 14 16 18
max 2 6 18 46 101 197 351 583 916

n = 7.

Min = 12, Max = 197.

Achievable percentage is 52.15%.
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Filling in the gaps in the plane – computer evidence

n 2 3 4 5 6 7 8 9 10
min 2 4 6 8 10 12 14 16 18
max 2 6 18 46 101 197 351 583 916

n = 8.

Min = 14, Max = 351.

Achievable percentage is 58.88%.
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Percent achievable

n 4 5 6 7 8
min 6 8 10 12 14
max 18 46 101 197 351
% 61.53% 61.53% 46.74% 52.15% 58.88%

n = 8.

Min = 14, Max = 351.
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Filling in the gaps in the plane

Theorem
The following number of orderings are achievable by some
configuration of n points in the plane.

1 At the bottom, all k satisfying

min = 2n − 2 ≤ k ≤ 1
2

n2 − 1
2

n + 1

are possible.
2 At the top, all k satisfying

max−
⌊n

2

⌋
− 1 ≤ k ≤ max .
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Two vantage points

Given n points in the plane, locate two distinct vantage points V1 and
V2. Compute the average distance from V1 and V2 to each point.

1

2

3

4

5

V1 V2

4
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Two vantage points

Given n points in the plane, locate two distinct vantage points V1 and
V2. Compute the average distance from V1 and V2 to each point.
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V1 V2

43
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Two vantage points

Given n points in the plane, locate two distinct vantage points V1 and
V2. Compute the average distance from V1 and V2 to each point.
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V1 V2
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Two vantage points

Given n points in the plane, locate two distinct vantage points V1 and
V2. Compute the average distance from V1 and V2 to each point.
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Two vantage points

Given n points in the plane, locate two distinct vantage points V1 and
V2. Compute the average distance from V1 and V2 to each point.
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V1 V2

43251

Gary Gordon (Lafayette College) Distance permutations AMS 38 / 57



Expanding ellipses
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Expanding ellipses
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Expanding ellipses
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Expanding ellipses
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Expanding ellipses
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Max and min for two vantage points in the plane

Problem: Determine the max and the min for the number of orderings
produced with two vantage points.

n 2 3 4 5 6 7 8 9 10
min 2 4 8 16 30 54 94 160 268
max 2 6 24 120 ≥ 680∗ ? ? ? ?

* Charles Kulick reported that “this took an entire weekend of
computation on two rows of Lafayette laptops.”
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Two vantage points, minimum number of orderings
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Two vantage points, linear point-sets
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Two vantage points, linear point-sets
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4352678910
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Two vantage points, linear point-sets

Note: Betweenness property of linear sequences: After the first
position, i can appear only after either i − 1 or i + 1 appears.

0
1

2
3

4
5

6
7

8
9

-1.0 -0.5 0.5 1.0

0.05

0.10

0.15

0.20

0.25

0.30

4352678910

First bound: The minimum number of possible orderings is ≤ 2n−1.
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Two vantage points, linear point-sets

Quiz: Suppose we have 8 points equally spaced on a line. One of
these is possible, and the other isn’t. Which is which?

1 4,3,2,5,6,7,1,8
2 4,3,5,2,6,7,1,8

Both satisfy betweenness property.
0

1
2

3
4

5
6

7
8

9

-1.0 -0.5 0.5 1.0

0.05

0.10

0.15

0.20

0.25

0.30
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Two vantage points, linear point-sets

Quiz: Suppose we have 8 points equally spaced on a line. One of
these is possible, and the other isn’t. Which is which?

1 4,3,2,5,6,7,1,8
2 4,3,5,2,6,7,1,8 is possible!

0
1

2
3

4
5

6
7

8
9

-1.0 -0.5 0.5 1.0

0.05

0.10

0.15

0.20

0.25

0.30

4,3,2,5,6,7,1,8 is impossible because the sequence has two
consecutive downs and two consecutive ups:

D D U U U D U
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Velocity

Vantage points are located at(±1,0).
Let t represent the (changing) positive x-intercept.

Then ellipse equation is
x2

t2 +
y2

t2 − 1
= 1.

Finally, the points reside on the line y = mx + b has m,b > 0.

����
-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

2.5
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Velocity

Let x1(t) and x2(t) be the x-coordinates of the two intersection

points. Let vi(t) =
dx
dt

evaluated at x = xi , with i = 1,2.

����
-3 -2 -1 1 2 3
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Velocity

����
-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

2.5

|v2(t)| − |v1(t)| =
4bmt(

t2
(
m2 + 1

)
− 1
)2 .
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Velocity

|v2(t)| − |v1(t)| =
4bmt(

t2
(
m2 + 1

)
− 1
)2 .

2 3 4 5 6

0.02

0.04

0.06

0.08

Difference of speeds.

Note: The point on the right moves faster than the point on the left.
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Upper bound on minimum
First, some data:

n 1 2 3 4 5 6 7 8 9 10
min 1 2 4 8 16 30 54 94 160 268

This counts the number of sequences of 0’s and 1’s of length n that
have the property that consecutive 0’s and consecutive 1’s cannot both
appear except at the beginning or the end of the sequence.

For instance, the sequence
11011101000 is good, but
but 10001100 is bad.

This is 2an−1 where an is OEIS sequence A000126.

Very cool fact: This bound equals 2fn+4 − 2n − 4, where fn is the nth

Fibonacci number.
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Unfortunately, . . .
This bound is too big.

1.05 1.10 1.15 1.20 1.25

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ratio of speeds. There is a unique max.

Conclusion: Assume b,m > 0. Suppose the sequence generated has
“up-blocks” a1,a2, . . . . Then the up blocks form a unimodal sequence,
i.e.,

a1 ≤ a2 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ ar .
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Things to do
For one vantage point:

I characterize the permutations that appear;
I fill in more of the gaps.

For two vantage points:
I Find any reasonable bounds on the max and the min.
I extend to higher dimensions.

.
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