Permutations of finite subsets of \mathbb{R}^{2} generated by Euclidean distances.

Gary Gordon - Lafayette College

Brittany Shelton (Albright College), Students: Alvaro Carbonero (UNLV), Beth Anne Castellano (Lafayette), Charles Kulick (U. Scranton), Karie Schmitz (Truman State)

Points in the plane

Problem: Given a collection of points in the plane, and a vantage point V, order the points of S from closest to farthest.

Points in the plane

Induced permutation 43251
Problem: Given a collection of points in the plane, and a vantage point V, order the points of S from closest to farthest.

Expanding circles

Move the vantage point

Induced permutation 24135

Motivation - social choice theory

- There are n candidates running for office.
- Each candidate is rated $0-10$ on two independent issues, e.g., baseball and hockey. So each candidate is represented by an ordered pair (a, b), where $0 \leq a, b \leq 10$.
- The voter V also rates herself on the same two issues.
- Then the induced permutation represents the voter's preference list.

Goal: Find the maximum possible number of distinct preference lists.

Maximum

Question: Given n points fixed in the plane, how many distinct orderings are possible when the vantage point can roam freely?

Bisectors

Draw the perpendicular bisector determined by points 1 and 2 . If the vantage point V is below the line, then 1 precedes 2 in the induced permutation.

The perpendicular bisector of points 1 and 2 .

Bisectors

Two perpendicular bisectors.

Bisectors

These three perpendicular bisectors are coincident.

Bisectors

All the perpendicular bisectors.
Fact: The number of achievable permutations = the number of regions determined by all the perpendicular bisectors.

Maximum

Question: Given n points in "free position" the plane, how many distinct orderings are possible?

$$
\max =\frac{1}{24}\left(3 n^{4}-10 n^{3}+21 n^{2}-14 n+24\right)
$$

n	1	2	3	4	5	6	7	8	9	10
\max	1	2	6	18	46	101	197	351	583	916

https://oeis.org/A308305

Theorem

Given $S \subset \mathbb{R}^{2}$ with $|S|=n$, the maximum number of orderings is

$$
\frac{1}{24}\left(3 n^{4}-10 n^{3}+21 n^{2}-14 n+24\right) .
$$

Theorem

Given $S \subset \mathbb{R}^{2}$ with $|S|=n$, the maximum number of orderings is

$$
\frac{1}{24}\left(3 n^{4}-10 n^{3}+21 n^{2}-14 n+24\right) .
$$

Proof idea: Use $v-e+r=1$ for an associated graph.

- Make a planar graph using the perpendicular bisectors, and draw a big circle around everything.

$$
\max =\frac{1}{24}\left(3 n^{4}-10 n^{3}+21 n^{2}-14 n+24\right)
$$

- Next, count the number of vertices of degree 3, 4, and 6 .

$$
\max =\frac{1}{24}\left(3 n^{4}-10 n^{3}+21 n^{2}-14 n+24\right)
$$

- Next, count the number of vertices of degree 3,4 , and 6 .

$$
v_{3}=2\binom{n}{2}, \quad v_{4}=3\binom{n}{4}, \quad v_{6}=\binom{n}{3}
$$

$$
v_{3}=2\binom{n}{2}, \quad v_{4}=3\binom{n}{4}, \quad v_{6}=\binom{n}{3}
$$

- Number of vertices:

$$
\begin{aligned}
v & =v_{3}+v_{4}+v_{6} \\
& =2\binom{n}{2}+3\binom{n}{4}+\binom{n}{3} \\
& =\frac{1}{24}\left(3 n^{4}-14 n^{3}+45 n^{2}-34 n\right)
\end{aligned}
$$

- Number of edges: $2 e=3 v_{3}+4 v_{4}+6 v_{6}$.

$$
\begin{aligned}
e & =\left(3 v_{3}+4 v_{4}+6 v_{6}\right) / 2 \\
& =3\binom{n}{2}+6\binom{n}{4}+3\binom{n}{3} \\
& =\frac{1}{4}\left(n^{4}-4 n^{3}+11 n^{2}-8 n\right)
\end{aligned}
$$

- Then the number of regions is $r=-v+e+1$.

$$
\begin{aligned}
r & =-v+e+1 \\
& =\binom{n}{2}+3\binom{n}{4}+2\binom{n}{3}+1 \\
& =\frac{1}{24}\left(3 n^{4}-10 n^{3}+21 n^{2}-14 n+24\right)
\end{aligned}
$$

History

- Suppose $S \subset \mathbb{R}^{d}$, and $|S|=n$. Then the maximum number of regions is

$$
s(n, n)+s(n, n-1)+\cdots+s(n, n-d)
$$

where $s(n, k)$ is the unsigned Stirling number of the first kind. $(s(n, k)$ counts the number of permutations of $\{1, \ldots, n\}$ with exactly k cycles.)

- Good and Tideman, "Stirling numbers and a geometric structure from voting theory," J. Combinatorial Theory Ser. A 23 (1977), 34-45.
- T. Zaslavsky, "Perpendicular dissections of space," Discrete Comput. Geom. 27 (2002), 303-351.

Minimum

Question: Given n points in \mathbb{R}^{d}, what is the minimum possible number of orderings we generate?

Easiest case: $d=1$.
Dimension 1: The minimum occurs when the n points are equally spaced on a line.

Answer: n equally spaced points generate $2 n-3$ distinct midpoints, so $\min =2 n-2$.

Minimum in all dimensions

Theorem

Let $S \subset \mathbb{R}^{n}$ with $|S|=n$. Then $\min =2 n-2$, and this occurs precisely when the points are collinear and equally spaced (for $n>4$).

- $d=1$: First, prove this for $S \subset \mathbb{R}^{1}$, i.e., sets of points on the real line.
- $d=2$: Next, assume $S \subset \mathbb{R}^{2}$. Then, if the points are not collinear, use Ungar's theorem on slopes:

Ungar [1980]: n points in the plane (not all on a line) determine at least $n-1$ distinct slopes.

- $d>2$: Higher dimensional analogues of Ungar's theorem and projection finish this problem.

Pach, Pinchasi, Sharir [2004]: n points in \mathbb{R}^{3} determine at least $2 n-3$ different directions.

These two papers settled two conjectures of Scott [1970].

Between the min and the max?

Question: Fix n and let k be an integer between the min and the max. Is there a configuration of points that produces exactly k orderings?

- Dimension 1: $\min =2 n-2 \quad \max =\frac{n^{2}-n+2}{2}$

Between the min and the max?

Question: Fix n and let k be an integer between the min and the max. Is there a configuration of points that produces exactly k orderings?

- Dimension 1: $\min =2 n-2 \quad \max =\frac{n^{2}-n+2}{2}$

Theorem

Fix $n>0$. For all k in $\left[2 n-2, \frac{n^{2}-n+2}{2}\right]$, there is a configuration $S \subset \mathbb{Z}$ such that S generates exactly k regions.

Between the min and the max?

Question: Fix n and let k be an integer between the min and the max. Is there a configuration of points that produces exactly k orderings?

- Dimension 1: $\min =2 n-2 \quad \max =\frac{n^{2}-n+2}{2}$

Theorem

Fix $n>0$. For all k in $\left[2 n-2, \frac{n^{2}-n+2}{2}\right]$, there is a configuration $S \subset \mathbb{Z}$ such that S generates exactly k regions.

Sum-set Problem. Let n be given and let k satisfy $2 n-3 \leq k \leq \frac{n^{2}-n}{2}$. Then there is a collection of integers $a_{1}<a_{2}<\cdots<a_{n}$ such that the number of distinct sums $a_{i}+a_{j}($ where $i \neq j)$ is exactly k.

Between the min and the max?

Question: Fix n and let k be an integer between the min and the max. Is there a configuration of points in the plane that produces exactly k orderings?

$$
\min =2 n-2 \quad \max =\frac{1}{24}\left(3 n^{4}-10 n^{3}+21 n^{2}-14 n+24\right)
$$

n	2	3	4	5	6	7	8	9	10
\min	2	4	6	8	10	12	14	16	18
\max	2	6	18	46	101	197	351	583	916

Filling in the gaps in the plane - computer evidence

n	(Possible) Possible Numbers of Orderings
2	2
3	4, 6
4	$6,7,8,10,12,16,17,18$
5	$8,9,10,11,12,14,16,18,20,24,26,28,30,36,38,40,42,44,45,46$
	$n=4$.

$$
\operatorname{Min}=6, \operatorname{Max}=18
$$

Achievable percentage is 61.53%.

Filling in the gaps in the plane - computer evidence

n	(Possible) Possible Numbers of Orderings
2	2
3	4,6
4	$6,7,8,10,12,16,17,18$
5	$8,9,10,11,12,14,16,18,20,24,26,28,30,36,38,40,42,44,45,46$

$$
n=5
$$

$$
\operatorname{Min}=8, \operatorname{Max}=46
$$

Achievable percentage is 61.53%.

Filling in the gaps in the plane - computer evidence

n	2	3	4	5	6	7	8	9	10
\min	2	4	6	8	10	12	14	16	18
\max	2	6	18	46	101	197	351	583	916

$$
n=6
$$

$$
\operatorname{Min}=10, \operatorname{Max}=101
$$

Achievable percentage is 46.74%.

Filling in the gaps in the plane - computer evidence

n	2	3	4	5	6	7	8	9	10
\min	2	4	6	8	10	12	14	16	18
\max	2	6	18	46	101	197	351	583	916

$$
n=7 .
$$

$$
\operatorname{Min}=12, \operatorname{Max}=197
$$

Achievable percentage is 52.15%.

Filling in the gaps in the plane - computer evidence

n	2	3	4	5	6	7	8	9	10
\min	2	4	6	8	10	12	14	16	18
\max	2	6	18	46	101	197	351	583	916

Achievable percentage is 58.88%.

Percent achievable

n	4	5	6	7	8
\min	6	8	10	12	14
\max	18	46	101	197	351
$\%$	61.53%	61.53%	46.74%	52.15%	58.88%

$$
n=8 .
$$

ต
$\operatorname{Min}=14, \operatorname{Max}=351$.

Filling in the gaps in the plane

Theorem

The following number of orderings are achievable by some configuration of n points in the plane.
(1) At the bottom, all k satisfying

$$
\min =2 n-2 \leq k \leq \frac{1}{2} n^{2}-\frac{1}{2} n+1
$$

are possible.
(2) At the top, all k satisfying

$$
\max -\left\lfloor\frac{n}{2}\right\rfloor-1 \leq k \leq \max
$$

Two vantage points

Given n points in the plane, locate two distinct vantage points V_{1} and V_{2}. Compute the average distance from V_{1} and V_{2} to each point.

Two vantage points

Given n points in the plane, locate two distinct vantage points V_{1} and V_{2}. Compute the average distance from V_{1} and V_{2} to each point.

Two vantage points

Given n points in the plane, locate two distinct vantage points V_{1} and V_{2}. Compute the average distance from V_{1} and V_{2} to each point.

432

Two vantage points

Given n points in the plane, locate two distinct vantage points V_{1} and V_{2}. Compute the average distance from V_{1} and V_{2} to each point.

Two vantage points

Given n points in the plane, locate two distinct vantage points V_{1} and V_{2}. Compute the average distance from V_{1} and V_{2} to each point.

Expanding ellipses

Max and min for two vantage points in the plane

Problem: Determine the max and the min for the number of orderings produced with two vantage points.

n	2	3	4	5	6	7	8	9	10
\min	2	4	8	16	30	54	94	160	268
\max	2	6	24	120	$\geq 680^{*}$	$?$	$?$	$?$	$?$

* Charles Kulick reported that "this took an entire weekend of computation on two rows of Lafayette laptops."

Two vantage points, minimum number of orderings

Two vantage points, linear point-sets

Two vantage points, linear point-sets

Two vantage points, linear point-sets

Note: Betweenness property of linear sequences: After the first position, i can appear only after either $i-1$ or $i+1$ appears.

First bound: The minimum number of possible orderings is $\leq 2^{n-1}$.

Two vantage points, linear point-sets

Quiz: Suppose we have 8 points equally spaced on a line. One of these is possible, and the other isn't. Which is which?
(1) $4,3,2,5,6,7,1,8$
(2) $4,3,5,2,6,7,1,8$

Both satisfy betweenness property.

Two vantage points, linear point-sets

Quiz: Suppose we have 8 points equally spaced on a line. One of these is possible, and the other isn't. Which is which?
(1) $4,3,2,5,6,7,1,8$
(2) $4,3,5,2,6,7,1,8$ is possible!

Two vantage points, linear point-sets

Quiz: Suppose we have 8 points equally spaced on a line. One of these is possible, and the other isn't. Which is which?
(1) 4,3,2,5,6,7,1,8
(2) 4,3,5,2,6,7,1,8 is possible!

$4,3,2,5,6,7,1,8$ is impossible because the sequence has two consecutive downs and two consecutive ups:

> D D U U U D U

Velocity

- Vantage points are located at($\pm 1,0)$.
- Let t represent the (changing) positive x-intercept.
- Then ellipse equation is $\frac{x^{2}}{t^{2}}+\frac{y^{2}}{t^{2}-1}=1$.
- Finally, the points reside on the line $y=m x+b$ has $m, b>0$.

Velocity

- Let $x_{1}(t)$ and $x_{2}(t)$ be the x-coordinates of the two intersection points. Let $v_{i}(t)=\frac{d x}{d t}$ evaluated at $x=x_{i}$, with $i=1,2$.

Velocity

Velocity

Difference of speeds.
Note: The point on the right moves faster than the point on the left.

Upper bound on minimum

First, some data:

n	1	2	3	4	5	6	7	8	9	10
\min	1	2	4	8	16	30	54	94	160	268

This counts the number of sequences of 0's and 1's of length n that have the property that consecutive 0's and consecutive 1's cannot both appear except at the beginning or the end of the sequence.

For instance, the sequence

- 11011101000 is good, but
- but 10001100 is bad.

This is $2 a_{n-1}$ where a_{n} is OEIS sequence A000126.

Upper bound on minimum

First, some data:

n	1	2	3	4	5	6	7	8	9	10
\min	1	2	4	8	16	30	54	94	160	268

This counts the number of sequences of 0's and 1's of length n that have the property that consecutive 0's and consecutive 1's cannot both appear except at the beginning or the end of the sequence.

For instance, the sequence

- 11011101000 is good, but
- but 10001100 is bad.

This is $2 a_{n-1}$ where a_{n} is OEIS sequence A000126.
Very cool fact: This bound equals $2 f_{n+4}-2 n-4$, where f_{n} is the $n^{\text {th }}$ Fibonacci number.

Unfortunately, ...

This bound is too big.

Ratio of speeds. There is a unique max.
Conclusion: Assume $b, m>0$. Suppose the sequence generated has "up-blocks" a_{1}, a_{2}, \ldots. Then the up blocks form a unimodal sequence, i.e.,

$$
a_{1} \leq a_{2} \leq \cdots \leq a_{k-1} \leq a_{k} \geq a_{k+1} \geq \cdots \geq a_{r} .
$$

Things to do

- For one vantage point:
- characterize the permutations that appear;
- fill in more of the gaps.
- For two vantage points:
- Find any reasonable bounds on the max and the min.
- extend to higher dimensions.

