# Zero-Locus and Activity-Locus of the Two–Terminal Reliability Polynomial

### Pjotr Buys

Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica Universiteit van Amsterdam



### March 10, 2022

This talk is inspired by [1].

 Jason Brown and Corey D. C. DeGagné. Roots of two-terminal reliability polynomials. *Networks*, 78(2):153–163, 2021.

# Motivation

We have a family of graphs  $\mathcal{G}$  with a graph polynomial  $G \mapsto Z_G$ .

## Strategy

Define a well chosen set of functions  ${\mathcal F}$  and define

• The Zero-Locus  $(\overline{\mathcal{Z}})$ : The closure of

$$\mathcal{Z} = \{z \in \mathbb{C} : Z_G(z) = 0 \text{ for some } G \in \mathcal{G}\}.$$

- The Activity-Locus ( $\mathcal{A}$ ): Parameters around which  $\mathcal{F}$  behaves chaotically.
- The Density-Locus (D
  ): Closure of parameters z<sub>0</sub> such that {f(z<sub>0</sub>) : f ∈ F} is *dense*.

Prove that  $\overline{\mathcal{Z}} = \mathcal{A} = \overline{\mathcal{D}}$  and use this to prove nice things.

We used this strategy in the case that  ${\mathcal{G}}$  is the set of bounded degree graphs for

- The ferromagnetic Ising model [B.-Galanis-Patel-Regts '20]
- The hard-core model [de Boer-B.-Guerini-Peters-Regts '21]

# Recap on the Two-Terminal Reliability Polynomial

Let G be a multigraph with vertices  $s, t \in V(G)$ . For  $p \in [0, 1]$  let every edge of G be independently *operational* with probability p. Denote the probability that the resulting subgraph has an (s, t)-path by

 $\operatorname{Rel}_{s,t}(G;p).$ 



We let

 $\mathcal{F}_{\mathrm{rel}} = \{ p \mapsto \mathrm{Rel}_{s,t}(G; p) : \text{for all multigraphs } G \text{ with terminals } s, t \}.$ 

They really are polynomials.

Pjotr Buys (Pjotr Buys)

# Recap on the Two-Terminal Reliability Polynomial

Let (G, s, t) and (H, u, v) be graphs with two terminals. We create a new graph (G[H(u, v)], s, t) by replacing every edge of G with a copy of H.



On the level of two-terminal reliability polynomials this has the effect of composition, i.e.

$$\operatorname{Rel}_{s,t}(G[H(u,v)];p) = \operatorname{Rel}_{s,t}(G;\operatorname{Rel}_{u,v}(H;p)).$$

So  $f, g \in \mathcal{F}_{rel}$  implies  $f \circ g \in \mathcal{F}_{rel}$ .

# The Zero-Locus



Roots of all two-terminal reliability polynomials of graphs with at most 7 edges

# The Zero-Locus

Define the zero-locus as the closure of

$$\mathcal{Z} = \{ w \in \mathbb{C} : f(w) = 0 \text{ for some non-zero } f \in \mathcal{F}_{\mathrm{rel}} \}.$$

#### Lemma

Let  $w \in \mathbb{C}$ , suppose there exists a non-constant  $f \in \mathcal{F}_{rel}$  such that  $f(w) \in \overline{Z}$ , then  $w \in \overline{Z}$ .



# Normal families

Let  ${\mathcal F}$  be a set of rational functions  $\widehat{\mathbb C}\to \widehat{\mathbb C}.$ 

## Definition

For an open subset  $U \subseteq \widehat{\mathbb{C}}$  we say that  $\mathcal{F}$  is *normal* on U if every sequence  $\{f_n\}_{n\geq 1} \subseteq \mathcal{F}$  has a subsequence that converges to a limit  $f: U \to \widehat{\mathbb{C}}$  uniformly on compact subsets of U.

### Definition

We say that a parameter  $z_0 \in \widehat{\mathbb{C}}$  is active for  $\mathcal{F}$  if  $\mathcal{F}$  is not normal on any neighborhood of  $z_0$ . The *activity-locus* of  $\mathcal{F}$  is the set of all active parameters.

### Definition

The Julia set of a rational function f is the activity-locus of  $\{f^{\circ n}\}_{n\geq 1}$ .

# Example

### Lemma

The Julia sets of f and p given by  $f(p) = p^2$  and  $g(p) = 1 - (1 - p)^2$  are C(0, 1) and C(1, 1) respectively.



## Definition

We define  $\mathcal{A}$  to be *the activity-locus* of  $\mathcal{F}_{Rel}$ .

For any  $f \in \mathcal{F}_{\text{Rel}}$  we have  $\{f^{\circ n}\}_{n \geq 1} \subseteq \mathcal{F}_{\text{Rel}}$ . Therefore, the Julia set of f is contained in  $\mathcal{A}$ . So  $C(0,1) \cup C(1,1) \subset \mathcal{A}$ .

### Theorem

The activity-locus is equal to the zero-locus, i.e.  $\overline{\mathcal{Z}} = \mathcal{A}$ .

The activity-locus is equal to the zero-locus, i.e.  $\overline{\mathcal{Z}} = \mathcal{A}$ .

## Proof.



The activity-locus is equal to the zero-locus, i.e.  $\overline{\mathcal{Z}} = \mathcal{A}$ .

## Proof.

Let  $z_0 \in \mathcal{A}$  and let U be any neighborhood of  $z_0$ .

## Theorem (Montel's theorem)

Let  $\mathcal{F}$  be a family of polynomials and  $U \subseteq \mathbb{C}$  an open set. If

 $\bigcup_{f\in\mathcal{F}}f(U)$ 

omits two distinct values in  $\mathbb{C}$ , then  $\mathcal{F}$  is normal on U.

Thus there is a  $z \in U$  and  $f \in \mathcal{F}_{Rel}$  such that  $f(z) \in \{0,2\}$ , so either f(z) = 0 or  $1 - (1 - f(z))^2 = 0$ .

### Lemma

Zeros are dense in B(0,1) and B(1,1), i.e.  $B(0,1) \cup B(1,1) \subset \overline{Z}$ .



# Corollary

*Zeros lie in the interior of the zero-locus, i.e.*  $\mathcal{Z} \subset int(\overline{\mathcal{Z}})$ *.* 



Lemma (Theorem 3.1. in [Brown, DeGagné])

Zeros are dense in a neighborhood of  $\overline{B(0,1) \cup B(1,1)}$ .



## Lemma

*Zeros are dense in*  $B(0, 1.08) \cup B(1, 1.08)$ *.* 



## Lemma

*Zeros are dense in*  $B(0, 1.08) \cup B(1, 1.08)$ *.* 



# Series-Parallel Graphs

Given two graphs (G, s, t) and (H, u, v) with two terminals we can compose them in the following two ways



# Series-Parallel Graphs

The graphs that can be formed by applying these two operations starting with single edges are called *series-parallel* graphs.



Series-parallel graphs with at most 4 edges.

Pjotr Buys (Pjotr Buys)

The Two-Terminal Reliability Polynomial

Denote the family of two-terminal reliability polynomials of series-parallel graphs by  $\mathcal{F}_{\rm SP}.$  The set  $\mathcal{F}_{\rm SP}$  can be defined as the smallest set satisfying:

- The constant polynomial  $p \mapsto p$  is an element of  $\mathcal{F}_{\mathrm{SP}}$ .
- If  $f, g \in \mathcal{F}_{\mathrm{SP}}$  then both  $p \mapsto f(p) \cdot g(p)$  and  $p \mapsto 1 (1 f(p))(1 g(p))$ are elements of  $\mathcal{F}_{\mathrm{SP}}$ .

For  $\mathcal{F}_{\rm SP}$  we can also define a zero-locus and an activity-locus. Everything I proved up until now is also true for this zero-locus and activity-locus.

### Theorem

The zero-locus of series-parallel graphs is contained in  $\overline{B(0,\phi) \cup B(1,\phi)}$ , where  $\phi = \frac{1}{2}(1+\sqrt{5}) \approx 1.61803$ .



Image of the zero-locus of series-parallel graphs

Pjotr Buys (Pjotr Buys)

The Two-Terminal Reliability Polynomial



Image of the zero-locus of series-parallel graphs

Pjotr Buys (Pjotr Buys)

The Two-Terminal Reliability Polynomial

Define the density-locus as the closure of

$$\mathcal{D} = \{ w \in \mathbb{C} : \{ f(w) : f \in \mathcal{F}_{\text{Rel}} \} \text{ is dense in } \mathbb{C} \}.$$

### Theorem

The density-locus is equal to the zero-locus, i.e.  $\overline{\mathcal{D}} = \overline{\mathcal{Z}}$ .

## Proof.

If  $w \in \mathcal{D}$  then there is an  $f \in \mathcal{F}_{Rel}$  such that  $f(w) \in B(0,1)$  and thus  $w \in \overline{\mathcal{Z}}$ .

The density-locus is equal to the zero-locus, i.e.  $\overline{\mathcal{D}} = \overline{\mathcal{Z}}$ .

## Proof.



## The density-locus is equal to the zero-locus, i.e. $\overline{\mathcal{D}} = \overline{\mathcal{Z}}$ .



## The density-locus is equal to the zero-locus, i.e. $\overline{\mathcal{D}} = \overline{\mathcal{Z}}$ .



The zero-locus contains an open neighborhood of the real interval  $(-\phi, \phi + 1)$ , where  $\phi = \frac{1}{2}(1 + \sqrt{5}) \approx 1.61803$ .

## Proof.





Pjotr Buys (Pjotr Buys)

The Two-Terminal Reliability Polynomial

March 10, 2022

28/30

- $\bullet\,$  Is the zero-locus of  $\mathcal{F}_{\rm rel}$  bounded?
- Can we prove topological properties of the zero-loci of  $\mathcal{F}_{\rm rel}$  and  $\mathcal{F}_{\rm SP}$ , e.g. (simply-)connectedness or (star-)convexity?
- Are there other families of graphs for which the corresponding set of functions  ${\cal F}$  has interesting properties?
- Can the framework be adapted for the all-terminal reliability polynomial?
- Can the framework be used to tackle problems in computational complexity?

# Zero-Locus and Activity-Locus of the Two–Terminal Reliability Polynomial

### Pjotr Buys

Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica Universiteit van Amsterdam



### March 10, 2022