Spectrum and Algebraic Connectivity of semni-regular random graphs

Theodore Koloudniscov

Algebraic connectivity (A.C.) is a measure of how fast the information can diffuse through a graph. It corresponds to the smallest non-zero eigenvalue of the graph laplacian:

- E.g. consensus model of information flow:

$$
\begin{aligned}
& \frac{d x_{j}}{d t}=\underbrace{\sum_{i \sim j}\left(x_{i}-x_{j}\right)}_{-(L \vec{x})_{j}} \\
& \text { sd ln: } \vec{x}=\sum_{i} c_{i} \vec{v}_{i} e^{-\mu_{i} t} \\
& \text { get: } \vec{x} \sim x_{\text {avg }}+c_{2} \vec{v}_{2} e^{-\mu_{2} t} \\
& \text { as } t \rightarrow \infty
\end{aligned}
$$

where

$$
\underline{\text { Large t: }} \begin{array}{ll}
\vec{x} \sim X_{\text {avg }}+C_{2} \vec{V}_{2} e^{-\mu_{2} t} & \mu_{i} \in \operatorname{spechrum}(L) ; \\
\text { as } t \rightarrow \infty & \mu_{1}=0 \\
\mu_{2}>0 \text { if } G
\end{array}
$$ is connertal

$\Rightarrow \mu_{2}$ is the rate of convergence to consensus.

Question: Among graphs of n vertices and m edges, which graph maximizes A.C.? [i.e. has best "diffusion" property?]

- d-regular graphs $\left(m=\frac{d}{2} n\right)$ are better than just Endos-Reney graphs
- For a random d-regulan graph, it is known that

$$
\mu_{2} \sim d-2 \sqrt{d-1} \text { as } n \rightarrow \infty
$$

[Alow 86, Nilliz004, Friedman 91, Broder-shamir 87]

- Car we do better if we relax the "regularity" assumption? Suppose that the average degree is d, but graph is not necessary regular...
- Yes if $d \in[3,8]$?
- Semi-regular random bipartite graph can have higher A.C...

Random Serari-Regular Bipartite (RSRB) graph model:

- Put d_{1} copies of vertices labelled $1 \ldots n_{1}$ into bag 1
- Put d_{2} copies of vertices labelled $n_{1}+1 \ldots n_{1}+n_{2}$ intobag2
- Drawn vertices at random, one from each bag, to create edges.
- Note that we must have $n_{1} d_{1}=n_{2} d_{2} \Rightarrow d=\frac{2 d_{1} d_{2}}{d_{1}+d_{2}}$

Example: $\quad n_{1}=3, d_{1}=2, \quad n_{2}=2, d_{2}=3$

Main Result 1.1. Consider a $\left(d_{1}, d_{2}\right)$ RSRB graph. In the limit $n \rightarrow \infty$, its spectrum density asymptotes to

$$
\rho(x)=\left\{\begin{array}{c}
\frac{1}{\pi} \frac{d_{1} d_{2}}{d_{1}+d_{2}} \frac{\sqrt{\left(x^{2}-r_{-}^{2}\right)\left(r_{+}^{2}-x^{2}\right)}}{\left(d_{1} d_{2}-x^{2}\right)|x|}, \quad|x| \in\left(r_{-}, r_{+}\right) \tag{1.3}\\
\frac{\left|d_{2}-d_{1}\right|}{d_{1}+d_{2}} \delta(x), \quad|x|<r_{-} \\
0, \quad|x|>r_{+}
\end{array}\right.
$$

where δ is the Dirac-delta function and

$$
\begin{equation*}
r_{ \pm}=\left(d_{1}+d_{2}-2 \pm \sqrt{\left(d_{1}+d_{2}-2\right)^{2}-\left(d_{2}-d_{1}\right)^{2}}\right)^{1 / 2} \tag{1.4}
\end{equation*}
$$

In other words, the number of eigenvalues inside any interval (a, b) asymptotes to $\int_{a}^{b} \rho(x) d x$ as $n \rightarrow \infty$. Moreover, its algebraic connectivity asymptotes to

$$
\begin{aligned}
& \mu \sim \frac{d_{1}+d_{2}}{2}-\left(\left(\frac{d_{2}-d_{1}}{2}\right)^{2}+r_{+}^{2}\right)^{1 / 2}, n \gg 1 \\
& \text { - Note : if } d_{1}=d_{2} \Rightarrow \mu \sim d-2 \sqrt{d-1} \quad[\text { Alone }, 86 \ldots] \\
& \rho \sim \frac{d}{2 \pi} \frac{\sqrt{4(d-1)-x^{2}}}{d^{2}-x^{2}},|x|<2 \sqrt{d-1} \\
& {[\text { Mackay, } 81] }
\end{aligned}
$$

So we recover d-reg. graphs as
special case...

$$
d_{1}=2, d_{2}=3
$$

(a)

$$
\frac{d=2 \cdot}{3-20}+d_{2}=2, d_{2}=6: d=3-2=0.16
$$

1920 vertices, 2880 edges, 1000 simulations

(b)

FIG. 2. (a) Full spectrum of random semi-regular bipartite graph with $\left(d_{1}, d_{2}\right)=(2,3)$. Numerics correspond to the histograph of eigenvalues of a single such graph with 1000 vertices, computed numerically using Matlab. Asymptotics corresponds to the formula (1.3). The height of the lollypop corresponds to the weight delta function at the origin. (b) Comparison of algebraic connectivity between $(3,3)$ regular bipartite, $(2,6)$ semi-regiular bipartite graphs, and the asymptotic theory. The two classes have the same number of vertices and edges, and (2,6) is 15% better than (3,3) (both for asymptotics and numerics).

$$
\begin{aligned}
& \text { Contusion: }(2,6) \text { seminegular is } 15 \% \text { "bette"" } \\
& \text { than } 3 \text {-reg [while having } \\
& \text { Some vertices e edge] }
\end{aligned}
$$

Spectrum: Trace method: $\quad \sum_{1}^{n} \lambda_{i}^{s}=\operatorname{trace} A^{s}$;
Let $\varphi_{s}=\frac{1}{n} \operatorname{trace}\left(A^{s}\right)$;
Let $\rho(x)$ be the spectrum density.
Formally: $p(x)=\frac{1}{n} \sum_{j=1}^{n} \delta\left(x-x_{j}\right)$; then

$$
\begin{equation*}
\int x^{s} \rho(x) d x=\varphi_{s} \tag{*}
\end{equation*}
$$

Step 1: compute φ_{S}. Step 2: Inert (*).
Computing Q_{S} : $\left(A^{S}\right)_{i i}$ is the $\#$ of closed walks of length s that start and end at vertex i.
Key insight: locally, semiregulor graph loons line a tree. So it is enough to compute \# of wakes on a tree.

Warvan-up: 3-reg graph:
Then $\phi_{S} \equiv \#$ of closed walks of length S on this tree:

3-reg locally loons like tree:

$$
\begin{aligned}
\varphi_{0} & =1 \\
\varphi_{\text {odd }} & =0 \\
\varphi_{2} & =3 \\
\varphi_{4} & =\underset{3 \times 2}{\downarrow \downarrow \uparrow}+\underset{3 \times 3}{\downarrow \uparrow \downarrow \uparrow}=15 \\
\varphi_{6} & =3 \varphi_{4}+\underset{\downarrow}{3} B_{2} \varphi_{2}+3 B_{4 \uparrow}
\end{aligned}
$$

where B_{S} : \#closed walks of length S on a binary tree:

$$
\begin{aligned}
& B_{2}=2, \quad B_{4}=2 \cdot 2+\underset{v \downarrow}{2 \cdot 2}=8 \Rightarrow \varphi_{6}=3[15+2 \cdot 3+8] \\
& \varphi_{8}=3 B_{6}+3 B_{4} \varphi_{2}+3 B_{2} \varphi_{4}+3 \varphi_{6}=87 \\
& B_{6}=2 B_{4}+2 B_{2} B_{2}+2 B_{4}
\end{aligned}
$$

General:

$$
\left\{\begin{array}{l}
\phi_{s}=\sum_{j=0}^{s-2} 3 \varphi_{j} B_{s-2-j} \\
B_{s}=\sum_{j=0}^{s-2} 2 B_{j} B_{s-2-j}
\end{array}\right.
$$

Generating for :

$$
\begin{aligned}
& B(x)=\sum_{s=2}^{\infty} B_{s} x^{s} ; j\left\{\begin{array}{l}
B=1+2 x^{2} B^{2} \\
\varphi=1+3 x^{2} \Phi B
\end{array}\right. \\
& \Phi(x)=\sum \phi_{s} x^{s}
\end{aligned} \begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
B=\frac{1}{4 x^{2}}\left(1-\sqrt{1-8 x^{2}}\right) \\
\varphi=\frac{1}{2}\left(\frac{3 \sqrt{1-8 x^{2}}-1}{1-9 x^{2}}\right)=1+3 x^{2}+15 x^{4}+87 x^{6}
\end{array}+\ldots\right.
\end{aligned}
$$

- Note singularity of $\phi(x)$ at $x=\frac{1}{\sqrt{8}}$

$$
\Rightarrow \varphi_{s} \sim c(\sqrt{8})^{s} \text { as } s \rightarrow \infty
$$

$$
\Rightarrow \lambda_{\max } \sim \sqrt{8}=2 \sqrt{2}
$$

(for adjanceny matrix A)
Now $L=3 I-A$

$$
\left.\Rightarrow \mu_{2} \sim 3-2 \sqrt{2}\right]\left[\begin{array}{l}
\text { Recovering } \\
\text { Alan }
\end{array}\right.
$$

Alan asymptoticick]

Full spectrum:
$[$ Mackay, 81$] e$

$$
\left\{\begin{aligned}
\varphi= & \frac{1}{2}\left(\frac{3 \sqrt{1-8 x^{2}}-1}{1-9 x^{2}}\right)=\sum \varphi_{s} x^{s} \\
& \int \rho x^{s} d s=\varphi_{s}
\end{aligned}\right.
$$

$\begin{aligned} & \text { Cauchy formula } \\ & \text { Stietjes Inversion] }\end{aligned} \varphi_{S}=\int_{|z|=\varepsilon} z^{-s-1} \phi(z) \frac{d z}{2 \pi i}$
[Stietjes Inversion]

$$
\begin{aligned}
& =\frac{i}{\pi} \int_{-\frac{1}{2}}^{\frac{1}{k}} x^{s} \frac{1}{x} \varphi\left(\frac{1}{x}\right) d x \\
\Rightarrow \rho(x) & =-\frac{1}{\pi} \operatorname{Im}\left(\frac{1}{x} \varphi\left(\frac{1}{x}\right)\right)
\end{aligned}
$$

For 3-regula graphs: $\rho(x)=\frac{1}{\pi} \frac{3}{2} \frac{\sqrt{8-x^{2}}}{9-x^{2}}$ [Mackay, 81]

Full pbon:

$$
\begin{aligned}
& \phi_{s}=\frac{d_{1}}{d_{1}+d_{2}} \phi_{A, s}+\frac{d_{2}}{d_{1}+d_{2}} \phi_{B, s}, \\
& \phi_{A, s}=d_{2} \sum_{j=0}^{s-2} \phi_{A, S} A_{s-2-2 ;}, \quad \phi_{B_{s}, s}=d_{1} \sum_{j=0}^{s-2} \phi_{B_{B}} B_{s-2-5 ;}, \\
& A_{s}=\left(d_{1}-1\right) \sum_{j=0}^{s-2} A_{j} B_{s-2-2}, \quad B_{s}=\left(d_{2}-1\right) \sum_{j=0}^{s-2} B_{B_{j} A_{s-2-j},},
\end{aligned}
$$

عx: $\quad d_{1}=2, d_{2}=3:$

$$
\begin{aligned}
& \Rightarrow \quad \phi(x)=\frac{d_{1} d_{2}}{d_{1}+d_{2}} \frac{\frac{d_{1}+d_{2}}{d_{1}}-\sqrt{\left(d_{2}-d_{1}\right)^{2} x^{4}+\left(4-2 d_{1}-2 d_{2}\right) x^{2}+1}-1}{d_{1} d_{2} x^{2}-1} . \\
& \Rightarrow \quad \rho(x)=-\frac{1}{\pi} \operatorname{Im}\left(\frac{1}{x} \phi\left(\frac{1}{x}\right)\right)=\frac{1}{\pi} \frac{1}{|x|} \frac{d_{1} d_{2}}{d_{1}+d_{2}} \frac{\sqrt{\left(r^{2}-x^{2}\right)\left(x^{2}-r_{2}^{2}\right)}}{d_{1} d_{2}-x^{2}}
\end{aligned}
$$

AC: $\quad L=D-A$; regularize:
E.x. $d_{1}=2, d_{2}=3$; add directed loop to vertices of degree 2; thar each vertex will have "degree" 3 :

- Then $L=D-A$ where $D=d_{2} I$

$$
\begin{aligned}
A & =1+\left(d_{2}-d_{1}\right) x A+\left(d_{1}-1\right) x^{2} A B, \\
B & =1+\left(d_{2}-1\right) x^{2} B A, \\
\phi_{A} & =1+d_{2} x^{2} \phi_{A} A \\
\phi_{B} & =1+x\left(d_{2}-d_{1}\right) \phi_{B}+d_{1} x^{2} \phi_{B} B, \\
\phi & =\frac{d_{1}}{d_{1}+d_{2}} \phi_{A}+\frac{d_{2}}{d_{1}+d_{2}} \phi_{B}
\end{aligned}
$$

- get a quartic for μ which yields (1.4).
construct a random graph of n vertices, where each vertex has degree d_{1} with prob. $1-p$, and degree d_{2} with prob p.

$$
\Sigma_{x}: \quad d=2.4^{\circ}
$$

RSRB
d1=2; d2=3; n1=30; n2=20;
$\operatorname{bag} 1=\bmod ([0: \mathrm{n} 1 * \mathrm{~d} 1-1], \mathrm{n} 1)+1$;
$\operatorname{bag} 2=\bmod ([0: \mathrm{n} 2 * d 2-1], \mathrm{n} 2)+1+\mathrm{n} 1$;
bag2=bag2 (randperm (numel (bag2))) ;
G=graph (bag1, bag2);
plot(G);

RSR

```
p=0.4; d1=2; d2=3; n=50;
n1=(1-p)*n; n2=p*n;
v1=mod([0:n1*d1-1], n1)+1;
v2=mod([0:n2*d2-1], n2)+1+n1;
bag=[v1, v2];
bag=bag(randperm(numel(bag)));
G=graph(bag(1:end/2), bag(end/2+1:end));
plot(G);
```


Main Result 1.2. Consider a $\left(p, d_{1}, d_{2}\right)$ random semi-regular graph. Let

$$
\begin{equation*}
F(R, x)=x\left(d_{2}-d_{1}\right)(1-R x) p+\left(R x^{2}\left(d_{2}-1\right)-1\right)\left(R^{2} x^{2}\left(d_{1}-1\right)+R x\left(d_{2}-d_{1}\right)-R+1\right) . \tag{1.7}
\end{equation*}
$$

Let x be the smallest root of the system $F=0=\partial F / \partial R$. Then in the limit $n \rightarrow \infty$, the $A C$ is given by $\mu=d_{2}-1 / x$.
In general, eliminating R from the system $F=0=\partial F / \partial R$ is a straightforward computer algebra computation using a resultant, and yields in a th degree polynomial for x. It is too ugly to write down here for general $d_{1}, d_{2}-$ see Appendix A for Maple code. In the case $d_{1}=2, d_{2}=3$, RSR graph has average degree $2+p$, and μ is the smallest root of

$$
\begin{equation*}
0=\mu(\mu-4)\left(\mu^{2}-4 \mu-1\right)+2 \mu\left(3 \mu^{3}-33 \mu^{2}+89 \mu-19\right) p+\left(-15 \mu^{2}-30 \mu+1\right) p^{2}+8 p^{3} \tag{1.8}
\end{equation*}
$$

Figure 3 compares μ given by (1.8) with numerical computations of μ for randomly chosen ($p, 2,3$) RSR graphs. Note that the numerical result approaches the asymptotic value of μ as the number of edges n is increased.

The corresponding generating function $\phi(x)=\sum \phi_{s} x^{s}$ solves the equations

$$
\begin{align*}
A & =1+x\left(d_{2}-d_{1}\right) A+\left(d_{1}-1\right) x^{2} A R \\
B & =1+\left(d_{2}-1\right) B R \\
R & =(1-p) A+p B \\
\phi_{A} & =1+x\left(d_{2}-d_{1}\right) \phi_{A}+d_{1} x^{2} \phi_{A} R \tag{2.17}\\
\phi_{B} & =1+d_{2} x^{2} \phi_{B} R \\
\phi & =(1-p) \phi_{A}+p \phi_{B} .
\end{align*}
$$

Eliminating A and B yields a cubic $F(R ; x)=0$ given by (1.7). The AC is then given by $\mu=d_{2}-1 / x$, where x is the singularity of $R(x)$ that is closest to the origin. By implicit function theorem, this happens when $F_{R}=0$. In other words, x satisfies $F=0=\partial F / \partial R$.

RSR model with $d=4$						
d_{1}	4	3	3	2	2	2
d_{2}	4	5	6	5	6	7
p		0.5	$1 / 3$	$2 / 3$	0.5	0.4
$\mu_{\text {asympt }}$	$\mathbf{0 . 5 3 5 9}$	0.44261	0.39162	0.3333	0.25352	0.20748
$\mu_{\text {numerics }}$	0.551	0.488	0.451	0.286	0.217	0.174
std	0.010	0.020	0.022	0.062	0.051	0.045
diff $\%$	2.8%	10%	15%	-14%	-14%	-19%

Challenge 1. Describe the full distribution of $A C$, particularly for $R S R$ graphs. Explain why it can be multi-peaked when $d_{1} \neq d_{2}$.

Challenge 2. Find a family of random graphs which has a higher algebraic connectivity than d-regular random graphs when average degree $d \geq 10$. Explore if more complex degree distribution (e.g. tri-regular) can be better than semi-regular for say, $d=3$.

Challenge 3. For fixed average degree d and fixed number of vertices n, find graphs (not necessarily d-regular) with highest possible girth.

It is better to be semi-regular when you have a low degree
T. Kolokolnikov

- available on arxiv on wy website.

