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Triple Systems

Kirkman’s Schoolgirl Problem

In (1847) Rev. T.P. Kirkman posed the following riddle:

Fifteen young ladies in a school walk out three abreast for
seven days in succession:
it is required to arrange them daily so that no two shall walk
twice abreast.

Girls are numbered from 0 to 14, the following is a solution:

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
0, 5, 10 0, 1, 4 1, 2, 5 4, 5, 8 2, 4, 10 4, 6, 12 10, 12, 3
1, 6, 11 2, 3, 6 3, 4, 7 6, 7, 10 3, 5, 11 5, 7, 13 11, 13, 4
2, 7, 12 7, 8, 11 8, 9, 12 11, 12, 0 6, 8, 14 8, 10, 1 14, 1, 7
3, 8, 13 9, 10, 13 10, 11, 14 13, 14, 2 7, 9, 0 9, 11, 2 0, 2, 8
4, 9, 14 12, 14, 5 13, 0, 6 1, 3, 9 12, 13, 1 14, 0, 3 5, 6, 9

A solution to this problem is an example of a Kirkman triple system.

Peter Danziger The Hamilton-Waterloo Problem AARMS AGTS 2021 3 / 55



Triple Systems

Kirkman’s Schoolgirl Problem

In (1847) Rev. T.P. Kirkman posed the following riddle:

Fifteen young ladies in a school walk out three abreast for
seven days in succession:
it is required to arrange them daily so that no two shall walk
twice abreast.

Girls are numbered from 0 to 14, the following is a solution:

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
0, 5, 10 0, 1, 4 1, 2, 5 4, 5, 8 2, 4, 10 4, 6, 12 10, 12, 3
1, 6, 11 2, 3, 6 3, 4, 7 6, 7, 10 3, 5, 11 5, 7, 13 11, 13, 4
2, 7, 12 7, 8, 11 8, 9, 12 11, 12, 0 6, 8, 14 8, 10, 1 14, 1, 7
3, 8, 13 9, 10, 13 10, 11, 14 13, 14, 2 7, 9, 0 9, 11, 2 0, 2, 8
4, 9, 14 12, 14, 5 13, 0, 6 1, 3, 9 12, 13, 1 14, 0, 3 5, 6, 9

A solution to this problem is an example of a Kirkman triple system.

Peter Danziger The Hamilton-Waterloo Problem AARMS AGTS 2021 3 / 55



Triple Systems

Kirkman Triple Systems

Can be easily greneralised to arbitrary v .

A Triangle Factor of a graph G is a spanning subgraph of G, every
component of which is a triangle.

A Triangle Factorisation is a partition of the edges G into triangle
factors.

A Kirkman Triple System, KTS(v ), is a asks for a Triangle Factorisation
of the complete graph on v points Kv .
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Triple Systems

Example: KTS(9)

{1,2,3} {4,5,6} {7,8,9}
{1,6,8} {2,4,9} {3,5,7}
{1,5,9} {2,6,7} {3,4,8}
{1,4,7} {2,5,8} {3,6,9}
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Triple Systems

Example: Affine Plane

y = c (mod 3) c = 0,1,2
x + 2y = c (mod 3) c = 0,1,2
x + y = c (mod 3) c = 0,1,2
x = c (mod 3) c = 0,1,2
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Triple Systems

4 edge disjoint Triangle Factors

Example
KTS(9), r = 4
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Triple Systems

Theorem (Ray-Chaudhuri and Wilson (1971))
A KTS(v) exists if and only if v ≡ 0 mod 3
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Triple Systems

Theorem (Ray-Chaudhuri and Wilson (1971))
A KTS(v) exists if and only if v ≡ 0 mod 3

The Oberwolfach problem can be thought of as a generalisation of
Kirkman Triple Systems
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The Oberwolfach Problem

The Oberwolfach problem

The Oberwolfach problem was posed by Ringel in the 1960s.
At the Conference center in Oberwolfach, Germany

The Oberwolfach problem was originally motivated as a seating
problem:
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The Oberwolfach Problem

Oberwolfach Problem

In the 1960s, Ringel posed the following problem:
There are v mathematicians attending a conference.
The dining venue has t round tables, which seat m1, m2, . . ., mt
people (where Σt

i=1mi = v ).
Can the attendees be seated over r successive days of the
conference in such a way that every person is seated next to
every other person exactly once?
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The Oberwolfach Problem

2-Factorizations

A 2-factor of a graph G is a spanning 2-regular subgraph.

A 2-factor F containing αi cycles of length mi , 1 ≤ i ≤ t , will be
denoted F = [m1

α1 ,m2
α2 , . . . ,mt

αt ].

If F = [mt ], we will call it uniform and refer to a Cm-factor.

A 2-factorization is a decomposition of a graph G into 2-factors.

If H is a collection of 2-factors of G, an H-factorization is a
2-factorization in which every 2-factor is isomorphic to an element
of H.

If H = {F}, we will write F -factorization.

Peter Danziger The Hamilton-Waterloo Problem AARMS AGTS 2021 10 / 55



The Oberwolfach Problem

Oberwolfach Problem

So the Oberwolfach problem asks:

Given a 2-factor F = [m1,m2, . . . ,mt ], of order v
is there an F -factorization of Kv ?

Since each 2-factor "uses" 2 edges incident with a given vertex,
v must be odd.

(
r = v−1

2

)
For even v , we consider instead an F -factorization of Kv − I and(
r = v−2

2

)
.

More generally, given a graph G and a 2-factor
F = [m1,m2, . . . ,mt ], is there an F -factorization of G?
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The Oberwolfach Problem

A [33]-factorization of K9

Example

F = [33], r = 4
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The Oberwolfach Problem

Example n = 8, F = [4,4]

s s
s s

s s
s s

A [4,4]−Factor
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The Oberwolfach Problem

Example n = 8, F = [4,4]
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The Oberwolfach Problem

Example n = 8, F = [4,4]
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The Oberwolfach Problem

Example n = 8, F = [4,4]
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Peter Danziger The Hamilton-Waterloo Problem AARMS AGTS 2021 13 / 55



The Oberwolfach Problem

Example n = 8, F = [4,4]
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The Oberwolfach Problem

Oberwolfach problem – major known results

OP([35]) was solved by Kirkman in 1850. (15 schoolgirls problem)

OP([v ]) was solved by Walecki in 1892.(Hamiltonian Factorization)

There is no solution to OP([32]), OP([34]), OP([4,5]), OP([32,5]).
These are the only known exceptions.

Every other instance has a solution when v ≤ 60
(Deza, Franek, Hua, Meszka, Rosa, 2010;
Salassa, Dragotto, Traetta, Buratti, Della Croce, 2021+)

OP([mt ]) is solved (Alspach, Stinson, Schellenberg and Wagner,
1989; Hoffman and Schellenberg, 1991)

OP([m1,m2]) is solved (Traetta, 2013)

OP(F ) is solved when F has only even cycles
(Häggkvist, 1985; Bryant and Danziger, 2011)

The general problem is still open.
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The Oberwolfach Problem

Notational Interlude: Lexicographic Products

For a graph G, G[n] denotes the lexicographic product of G with Kn,
the independent graph on n vertices and no edges.

V (G[n]) = V (G)× Zn,
E(G[n]) = {{(x ,a), (y ,b)} : {x , y} ∈ E(G), a,b ∈ Zn}.

We are particularly interested in Km[n], the multipartite graph with m
parts of size n.

And are also interested in Cm[n], where consecutive parts are joined in
a cycle.
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The Oberwolfach Problem

Example C5[7]

We start with C5,
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The Oberwolfach Problem

Example C5[7]

We start with C5, and "blow up" each point by 7
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The Oberwolfach Problem

Example C5[7]

Wherever G has an edge, join all blown up points

Peter Danziger The Hamilton-Waterloo Problem AARMS AGTS 2021 16 / 55



The Oberwolfach Problem

Example C5[7]

We can talk about edges with difference d , here d = 2
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Generalised Oberwolfach Problem

Generalised Oberwolfach Problem OP(F1, . . . ,Ft)

Given t 2−factors F1,F2, . . . ,Ft order v and
non-negative integers α1, α2, . . . , αt such that

α1 + α2 + · · ·+ αt =

{ v−1
2 v odd

v−2
2 v even

Find a 2-factorisation of Kv , or Kv − I if v is even, in which there are
exactly αi 2-factors isomorphic to Fi for i = 1,2, . . . , t .
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Generalised Oberwolfach Problem

Asymptotic Results

Theorem (Glock, Joos, Kim, Kühn, Osthus, 2019)
For every η > 0, there exists an v0 ∈ N such that for all odd v ≥ v0,
given 2-regular graphs of order v, F1, . . . ,Ft , and α1, . . . , αt ∈ N, with
α1 + . . .+ αt = (v − 1)/2 and α1 ≥ ηv then OP(v ; F1, . . . ,Ft ) has a
solution.

Pros:
Shows eventual existence (Yay!)

Cons:
v0 is hard to pin down - Bounds are hard to find - it is very large
Methods are probabilistic and not constructive.

Dukes, Ling 2007 Showed asymptotic existence in the Uniform Case -
Wilson type Constructive methods with (very large) Explicit bounds.
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Generalised Oberwolfach Problem

Generalise to other Graphs G, OP(G;F1, . . . ,Ft)

We can also consider Factorisations of other graphs G.

Of particular interest are the cases when:
G = Km[n], the multipartite complete graph with m parts of size n
and;

Theorem (Liu 2003)

The complete multipartite graph Km[n], m ≥ 2, has a 2−factorisation
into k−cycles if and only if k | mn, (n − 1)m is even, further k is even
when n = 2, and (k ,n,m) 6∈ {(3,3,2), (3,6,2), (3,3,6), (6,2,6)}.

G = Cm[n] a cycle of length m "blown up" by n.
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Hamilton-Waterloo

Hamilton - Waterloo: Include the Pub (t = 2)
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Hamilton-Waterloo

Hamilton - Waterloo: Include the Pub (t = 2)
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Hamilton-Waterloo

Hamilton-Waterloo: Include the Pub (t = 2)

In the Hamilton-Waterloo variant of the problem the conference has
two venues (t = 2)

The first venue (Hamilton) has circular tables corresponding to a
2−factor F1 of order v .

The second venue (Waterloo) circular tables each corresponding to
another 2−factor F2 also of order v .
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Hamilton-Waterloo

Hamilton-Waterloo

The Hamilton-Waterloo problem thus requires a factorization of Kv
(or Kv − I if v is even) into two 2-factors, F1 and F2, with α factors
of the form F1 and β factors of the form F2.

Again, the number of days (times a factor appears) is

r = α + β =

{
v−1

2 v odd
v−2

2 v even
=

⌊
v − 1

2

⌋
.

We will generally assume that α, β > 0, so there is at least one
factor of each type.

We denote a solution to this problem by HWP(v ; F1,F2;α, β)

If F1 = [mt1 ] and F2 = [nt2 ], we write HWP(v ; m,n;α, β).
Such factors are called uniform.
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Hamilton-Waterloo

Generalized Hamilton-Waterloo

More generally:

Given a graph G, two 2-factors F1 and F2, and integers α and β,
with α + β = |E(G)|/2, is there a {F1,F2}-factorization of G, with
α F1 factors and β F2 factors?

We write HW(G; F1,F2, α, β).

If F1 = [mt1 ] and F2 = [nt2 ], ie they are uniform, we write
HWP(G; m,n;α, β).

Of particular interest is the case when G = Cm[n] a cycle of length
m "blown up" by n.
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Hamilton-Waterloo

Example v = 8, F1 = [8], α = 2, F2 = [4,4], β = 1
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An F1−Factor of K8
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Hamilton-Waterloo

Example v = 8, F1 = [8], α = 2, F2 = [4,4], β = 1
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Hamilton-Waterloo

Example v = 8, F1 = [8], α = 2, F2 = [4,4], β = 1

��
��

��
��

��
��

��
��

��
��

��
��

B
B
B
B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
B
B
B
BB

PPPPPPPPPPPP

PPPPPPPPPPPP

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

s s
s s

s s
s s

An F2−Factor of K8
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Hamilton-Waterloo

Example v = 8, F1 = [8], α = 2, F2 = [4,4], β = 1

@
@

@
@

@
@
@
@

�
�
�
�

�
�
�
�

��
��

��
��

��
��

��
��

��
��

��
��

B
B
B
B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
B
B
B
BB

PPPPPPPPPPPP

PPPPPPPPPPPP

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

@
@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@
@
@
@
@
@@

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

��
�
��

�
��

�
��

�
��

�HHH
HHH

HHH
HHH

HHH

s s
s s

s s
s s

HWP(8; F1,F2; 2,1)
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Hamilton-Waterloo

Hamilton? - Waterloo?

Hamilton?
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Hamilton-Waterloo

Hamilton? - Waterloo?

Hamilton?

Hamiltonian?
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Hamilton-Waterloo

Hamilton? - Waterloo?

Hamilton?

Hamiltonian? Waterloo?
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Hamilton-Waterloo

Hamilton? - Waterloo?

Hamilton?

Hamiltonian? Waterloo?
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Hamilton-Waterloo

Hamilton - Waterloo

3rd Ontario Combinatorics Workshop
McMaster University, Hamilton, Ontario, Feb. 1988.
University of Waterloo, Waterloo, Ontario, Oct. 1987;
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Hamilton-Waterloo

Hamilton - Waterloo?

3rd Ontario Combinatorics Workshop
McMaster University, Hamilton, Ontario, Feb. 1988.

University of Waterloo, Waterloo, Ontario, Oct. 1987;

Organizers

Alex Rosa
McMaster University
Hamilton, Ontario

Charlie Colbourn
University of Waterloo

Waterloo, Ontario
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Hamilton-Waterloo

Hamilton - Waterloo
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Uniform Cycle Lengths

Uniform cycle lengths

Theorem (Necessary conditions)

If HWP(v ; m,n;α, β) has a solution, then m,n ≥ 3, m | v, n | v and
α + β = b(v − 1)/2c.

The case m = n is the Oberwolfach problem with uniform cycle
lengths. So we’ll assume m 6= n.

From now on, we’ll also assume (WLOG) that n > m ≥ 3.

Peter Danziger The Hamilton-Waterloo Problem AARMS AGTS 2021 29 / 55



Uniform Cycle Lengths

Hamilton-Waterloo Problem Small Cases

Theorem (Franek and Rosa, 2000; Franek, Holub and Rosa, 2004;
Adams and Bryant, 2006; (D 2021+))

If v is odd and v ≤ 17 or v is even and v ≤ 10 (16), there is a solution
to every instance of the Hamilton-Waterloo problem, except that there
is no solution to:

• HWP(7; [3,4], [7]; 2,1), • HWP(8; [3,5], [42]; 2,1),
• HWP(8; [3,5], [42]; 1,2), • HWP(9; [33], [4,5]; 2,2),
• HWP(9; [33],F ; 3,1), F ∈ {[4,5], [3,6], [9]},
• HWP(15, [35],F ; 6,1), F ∈ {[32,4,5], [3,5,7], [53], [42,7], [7,8]}
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Uniform Cycle Lengths

Solutions to HW(v ;m,n;α, β) Early Results

(m,n) = (3,15) or (5,15), v odd
(Adams, Billington, Bryant and El-Zanati, 2002);

(m,n) = (3,5), v odd, except when (v , α, β) = (15,6,1) and
possibly when β = 1 or v ≡ 0 (mod 15)
(Adams, Billington, Bryant and El-Zanati, 2002);

(m,n) = (3, v), v odd, except possibly for 14 values of v (Dinitz
and Ling, 2009). Partial solutions for v even (Lei and Shen, 2012).

(m,n) = (3,4), (Danziger, Quattrocchi and Stevens, 2009);
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Uniform Cycle Lengths

Known solutions to HW(v ;m,n;α, β) 2016

Sparse families of cyclic solutions have been found.
(Buratti and Danziger, 2015)

(m,n) = (4,2k + 1) (Obadasi and Ozkan, 2016)

(m,n) = (3,7), v odd (Lei and Fu, 2016);

(m,n) = (3,3x) v odd, Except a finite number of x values, also
considered v even, (Asplund, Kamin, Keranen, Pastine and
Özkan, 2016);

Many Families (Kerenan and Pastine 2016) - Considered Kt [w ].
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GOP: Even Cycle Sizes

Hamilton Waterloo Even Cycle sizes

We first consider the case when both m and n are
both Even.
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GOP: Even Cycle Sizes

Generalised Oberwolfach Problem and Häggkvist

Theorem (Häggkvist (1985))

Let n ≡ 2 mod 4, and F1, . . . ,Ft be bipartite 2−factors of order n then
OP(F1, . . . ,Ft ) has solution, with an even number of factors isomorphic
to each Fi .

Corollary (t = 1)

Let n ≡ 2 mod 4, and F be a bipartite 2−factor of order n then OP(F )
has solution.

Corollary (t = 2)
Let n ≡ 2 mod 4, and F1,F2 be bipartite 2−factors of order n then
OP(F1,F2) (Hamilton-Waterloo) has solution where there are an even
number of each of the factors. (Both α and β are even)
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GOP: Even Cycle Sizes

Häggkvist Doubling: Factoring Cm[2]

Lemma (Häggkvist (1985))

For any m > 1 and for each bipartite 2-regular graph F of order 2m,
there exists a 2-factorisation of Cm[2] in which each 2-factor is
isomorphic to F .

Given a cycle C

C
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GOP: Even Cycle Sizes

Häggkvist Doubling: Factoring Cm[2]

Lemma (Häggkvist (1985))

For any m > 1 and for each bipartite 2-regular graph F of order 2m,
there exists a 2-factorisation of Cm[2] in which each 2-factor is
isomorphic to F .

Given a cycle C, consider C[2]; Choosing a cycle in this way, leaves a
factor of the same type

C[2]
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GOP: Even Cycle Sizes

Häggkvist Solution to v = 2s ≡ 2 mod 4

Let s be odd, and v = 2s ≡ 2 mod 4.

Given bipartite 2−factors F1, . . . ,F m−1
4

, each of order 2s
(not necessarily distinct).

Since s is odd, Ks has a factorisation into Hamiltonian cycles Hi ,
1 ≤ i ≤ s−1

2 .

Now doubling, we have a H[2] factorisation of Ks[2]

We can factor Hi [2] into 2 copies of Fi by Häggkvist doubling as above.

Result is a factorisation of Ks[2] ∼= K2s \ I into pairs of factors each
isomorphic to Fi , i = 1, . . . m−1

4 plus a 1-factor I.
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GOP: Even Cycle Sizes

Even Cycle Sizes

Theorem (Bryant, Danziger 2011)

If n ≡ 0 mod 4 and F1,F2, . . . ,Ft are bipartite 2-regular graphs of
order n and α1, α2, . . . , αt are non-negative integers such that

α1 + α2 + · · ·+ αt = n−2
2 ,

αi is even for i = 2,3, . . . , t ,
α1 ≥ 3 is odd,

then OP(F1, . . . ,Ft ) has a solution with αi 2-factors isomorphic to Fi for
i = 1,2, . . . , t .
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GOP: Even Cycle Sizes

...and so...

Corollary (t = 1)

Let n be even and F be a bipartite 2−factor of order n then OP(F ) has
solution.

Corollary (t = 2)
Let n be even and F1,F2 be bipartite 2−factors of order n then
HWP(v ,F1,F2, α, β) if and only if α + β = v−2

2 except possibly when
v ≡ 0 (mod 4) and either α = 1 or β = 1
v ≡ 2 (mod 4) and α and β are both odd.
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GOP: Even Cycle Sizes

Hamilton Waterloo - Uniform Factors - Even Cycles

Let m and n both be even.

Theorem (Bryant, Danziger and Dean, 2013)

If m | n there is a solution to HWP(v ,m,n, α, β) if and only if
α + β = v−2

2 and n | v.

Theorem (Burgess, Danziger, Traetta 2019)

If m - n, then there is a solution to HWP(v ; m,n;α, β) if and only if m
and n are both divisors of v and α + β = v−2

2 , except possibly when at
least one of the following holds:

β = 1;
β = 3 and v ≡ 2 (mod 4);
α = 1 and m,n ≡ 0 (mod 4);
α = 1, v ≡ 2 (mod 4) and mn - v;
v = 2mn/gcd(m,n) ≡ 2 (mod 4) α and β both odd.
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Uniform Odd Cycles

Hamilton Waterloo Odd Cycle sizes

We now consider the case when both m and n are
both odd.
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Uniform Odd Cycles

Uniform Odd Cycles

Theorem (Burgess, Danziger, Traetta, 2018)
Let m and n be odd integers with n > m ≥ 3 and α, β ≥ 0
Then HWP(v ; m,n, α, β) has a solution if and only if m and n are
divisors of v and α + β = b v−1

2 c,
except when (v ,m, α, β) ∈ {(6,3,2,0), (12,3,5,0)} and
possibly when at least one of the following holds:

1 β = 1;
2 β = 3 and m - n;
3 α = 1, m - n and mn - v;
4 v = s · mn

gcd(m,m) where s ∈ {1,2,4};
5 (v ,m) ∈ {(6n,3), (18n,3 gcd(m,n))};
6 v is even and (m,n, β) = (5,7,5).
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Uniform Odd Cycles

Uniform Odd Cycles - v Odd

In particular, if v is odd, we have the following near-complete solution
to HWP(v ; m,n;α, β).

Corollary (Burgess, Danziger, Traetta, 2018)
Let m, n and v be odd integers with n ≥ m ≥ 3, and let α and β be
non-negative integers. Then HWP(v ; m,n, α, β) has a solution if and
only if m,n | v and α + β = v−1

2 , except possibly when one of the
following holds:

1 β = 1;
2 β = 3 and m - n;
3 α = 1, m - n and mn - v;
4 v = mn

gcd(m,n) .
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Uniform Odd Cycles

Hamilton Waterloo Problem for the complete
equipartite graph

Theorem (Burgess, Danziger, Traetta, 2018)
Let t and w be positive integers with t ≥ 3. Also, let m and n be odd
divisors of w with n > m ≥ 3, and let α, β > 0. Then
HWP(Kt [w ]; m,n, α, β) has a solution if and only if 2(α+ β) = (t − 1)w,
except possibly when at least one of the following conditions holds:

1 β = 1;
2 β = 3 and m - m;
3 α = 1, m - n, and mn - v;
4 (m,n, β) ∈ {(3,7,5), (5,7,5)};
5 (m, t ,w) ∈ {(3 gcd(M,N),3,6N), (3,3,2N)}.
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Uniform Odd Cycles

Sketch: Solving Case m - n, v > mn
gcd(m,n)

Let g = gcd(m,n), m = m′g, n = n′g and v = m′n′gt = wt .

n > m and m - n =⇒ n′ > m′ > 1,

and

v >
mn

gcd(m,n)
=⇒ t > 1.
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Uniform Odd Cycles

Sketch: Solving Case m - n, v > mn
gcd(m,n)

Start with Kt [m′] (the complete multipartite graph with t parts of size
m′).

m′

m′

m′ m′

m′
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Uniform Odd Cycles

Sketch: Solving Case m - n, v > mn
gcd(m,n)

By the result of Liu (2003), there exists a Cm′-factorization of Kt [m′].

m′

m′

m′ m′

m′
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Uniform Odd Cycles

Sketch: Solving Case m - n, v > mn
gcd(m,n)

Blow up vertices by n = n′g, turning each Cm′ into a Cm′ [n′g].
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Uniform Odd Cycles

Sketch: Solving Case m - n, v > mn
gcd(m,n)

This gives us a Cm′ [n]-factorization of Kt [m′][n] ∼= Kt [m′n′g] = Kt [w ].

m′n

m′n

m′n m′n

m′n
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Uniform Odd Cycles

Sketch: Solving Case m - n, v > mn
gcd(m,n)

Fill in the parts of size m′n = mn′ by Cm or Cn factors as desired.

m′n

m′n

m′n m′n

m′n
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Uniform Odd Cycles

Sketch: Solving Case m - n, v > mn
gcd(m,n)

Need to be able to factor Cm′ [n] into Cm and Cn factors.
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Uniform Odd Cycles

The Hamilton-Waterloo problem for C ′m[n′g], m = m′g,
n = n′g

Theorem (Burgess, Danziger, Traetta, 2018)

Let m and n be odd integers with n > m ≥ 3, and let g 6= m be a
common divisor of m and n. Then there is a solution to
HW(Cm/g[n]; m,n;α, β) whenever α, β ≥ 0, α + β = n except possibly
when one of the following conditions hold:

β ∈ {1,3} or
g = 1, and

α = 2 and the smallest prime divisor of n is greater than m, or
(α,M) = (4,3);

g > 1 and α = 1.
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Uniform Odd Cycles

Cm-factors in Cm′[n]

A Cm-factor is formed from m′ differences with sum of order g in Zn.



1 2 3

2 3 1
−1 −2 −3
−3 −1 −2
−2 −3 −1



m′

n = n′g
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Uniform Odd Cycles

Cm-factors in Cm′[n]

A Cm-factor is formed from m′ differences with sum of order g in Zn.



1 2 3 1 −1
3 1 2 2 −2
2 3 1 3 −3
−1 −2 −3 −1 1
−3 −1 −2 −2 2
−2 −3 −1 −3 3



m′

n = n′g
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Uniform Odd Cycles

Cn-factors in Cm′[n]

We use a projection technique from Alspach, Stinson, Schellenberg
and Wagner 1989. Uses all edges ±d .

n′g

m′

n

Hamilton cycle in Kn n-cycle in Cm′ [n]
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Cycles with different parities

The new frontier: Cycles with opposite parities

Theorem (Kerenan and Pastine 2018)

Let x and y be odd with gcd(x , y) ≥ 3, and both x and y divide v then
HW(tv ; 2kx , y ;α, β) has solution for t ≥ 3, except possibly when
α, β = 1.
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Cycles with different parities

The new frontier: Cycles with opposite parities

Theorem (Burgess, Danziger, Traetta 2018)
Let m,n, v , α and β be positive integers such that n > m ≥ 3 and m is
an odd divisor of n. Then, HWP(v ; m,n;α, β) has solution if and only if
n | v and α + β = b v−1

2 c, except possibly when at least one of the
following conditions holds:

β = 1;
β = 2, n ≡ 2m mod 4m;
n ∈ {2m,6m};
v ∈ {n,2n,4n};
(m, v) = (3,6n).
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Cycles with different parities

The new frontier: Cycles with opposite parities

Corollary
Let m ≥ 3 be an odd divisor of n. The necessary conditions for the
solvability of HWP(v ; m,n; α, β) are sufficient whenever v > 6n > 36m
and β 6= 1.
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Cycles with different parities

Conclusions and Future Work

To do . . .

Solve the annoying exceptions

Deal with β = 1

Deal with small v , small β

Case n and m have different parities, particularly when m,n
co-prime

Generalise to more than two 2-factors when v is odd.
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Cycles with different parities

Generalised Oberwolfach Problem

GOP(v ; F1, . . . ,Ft )

When the factors are uniform, ie Fi = [mi ], we write
OP(v ; m1, . . . ,mt ;α1, . . . , αt ).
Clearly we require that mi | v for each i .

Let 3 ≤ m1 < . . . < mt and ` = lcm(m1, . . . ,mt ).

Theorem (Burgess, Danziger, Traetta, 2019+)

For v odd, OP(v ; m1, . . . ,mt ;α1, . . . , αt ) has a solution whenever
α1 + α2 + · · ·+ αt = v−1

2 and mi | v for each i, and
αi 6= 1 for every i;
gcd(m1, . . . ,mt ) ≥ 3;
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Thank You

The End

Thank You
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