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Definition: Let V be a finite set. A convexity, C , is a collection of subsets

of V that includes ∅ and V and is closed under taking intersections.

Definition: A set S ⊆ V (G) is digitally convex if, for every v ∈ V (G),
we have N [v] ⊆ N [S]⇒ v ∈ S.

→ Every vertex v 6∈ S must have private neighbour with

respect to S.

→ Collection of digitally convex sets in a graph G is the digital

convexity of G: D(G)
→ Number of digitally convex sets in G: nD (G)
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Theorem. (Lafrance, Oellermann, Pressey, 2016) Let G be a graph. If S

is a digitally convex set, then ϕ(S) = V (G)−N [S] is also a digitally

convex set.

→ This function ϕ is a bijection from D(G) to itself.

→ Every graph must have an even number of digitally convex

sets.
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Theorem. (Lafrance, Oellermann, Pressey, 2016) Let G be a graph. If S

is a digitally convex set, then ϕ(S) = V (G)−N [S] is also a digitally

convex set.
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Theorem: (Lafrance, Oellermann, Pressey, 2016) Let T be a tree of order

n. Then

for n even 2 · 2n/2 − 2

for n odd 3 · 2(n−1)/2 − 2

}

≤ nD(T ) ≤ 2n−1

The lower bound is attained by the spiderstar Sn and the upper bound by

the star K1,n−1.

K1,5 S6
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Definition: A 2-tree is a graph defined as follows: a 3-clique is a 2-tree

and a 2-tree of order n > 3 is constructed by adding a vertex v adjacent

to 2 pairwise adjacent vertices in a 2-tree of order n− 1.

Definition: A k-tree is a graph defined as follows: a k + 1-clique is a

k-tree of order n > k + 1 is constructed by adding a vertex v adjacent to

k pairwise adjacent vertices in a k-tree of order n− 1.
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nD(G1) = 10
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Theorem: Let G be a 2-tree of order n. Then nD (G) ≤ 2n−2.

This bound is attained by the 2-trees K2 +Kn−2.

nD (K2 +K4) = 16
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Theorem: Let G be a k-tree of order n. Then nD (G) ≤ 2n−k.

→ This bound is attained by the k-trees Kk +Kn−k
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Conjecture: Let G be a 2-tree of order n. Then

nD (G) ≥







3 · 2n/3 − 4, for n ≡ 0 (mod 3)

4 · 2(n−1)/3 − 4, for n ≡ 1 (mod 3)

5 · 2(n−2)/3 − 4, for n ≡ 2 (mod 3)

→ Conjecture might be proven by induction on n and by

dividing all 2-trees into subclasses based on the structure of

the neighbourhoods of vertices of degree 2.
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→ Begin with a K2 with vertices x and y

→ Repeat to add the remaining n− 2 vertices:

– Add vertex w adjacent to x and y

– Add vertex u adjacent to x and w

– Add vertex v adjacent to w and u

x y
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constructed as follows:
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→ Repeat to add the remaining n− 2 vertices:

– Add vertex w adjacent to x and y

– Add vertex u adjacent to x and w

– Add vertex v adjacent to w and u

x y

w
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Theorem: Let P 2
n be the square of the path Pn. Then the digitally convex

sets of P 2
n satisfy the recurrence

nD (P
2
n) = nD (P

2
n−1) + nD (P

2
n−3)

with nD (P
2
3 ) = 2, nD (P

2
4 ) = 4, nD (P

2
5 ) = 6. (OEIS sequence

A000930, multiplied by 2.)

nD (P
2
6 ) = nD(P

2
5 ) + nD (P

2
3 ) = 6 + 2 = 8
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Theorem: Let P k
n be the kth power of the path Pn. Then the digitally

convex sets of P k
n satisfy the recurrence

nD (P
k
n ) = nD (P

k
n−1) + nD(P

k
n−k−1)
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Theorem: Let Cn be the cycle of order n. Then, nD (C3) = 2,

nD (C4) = 6, nD (C5) = 12, nD (C6) = 20 and, for n ≥ 7,

nD (Cn) = 2nD(Cn−1)− nD (Cn−2) + nD (Cn−4).

This is equivalent to the number of cyclic binary n-bit strings with no

alternating substring of length greater than 2. (OEIS sequence A007039)
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Bijection between D(Cn) and cyclic binary n-bit strings without 010 or
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→ Label edges of Cn from 1 to n

→ Given a digitally convex set S, construct a cyclic binary

string S∗ such that bit i is 1 if edge i is incident with a vertex

in S, and 0 otherwise
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Theorem: Let Cn be the cycle of order n and let k ≥ 1. Then,

nD (C
k
i ) = 2 for 3 ≤ i ≤ 2k + 1, nD (C

k
j ) = 2 + j(j − 2k − 1) for

2k + 2 ≤ j ≤ 2k + 4 and, for n ≥ 2k + 5,

nD (C
k
n) = 2nD (C

k
n−1)− nD (C

k
n−2) + nD (C

k
n−2k−2).

→ Proof uses a bijection between the sets in D(Ck
n) and the

cyclic binary strings whose blocks (maximal runs of 0’s or

1’s) each have length at least k + 1
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Definition: The Cartesian product of graphs G and H , denoted by G�H

is the graph with vertex set V (G�H) = V (G)× V (H) and such that

two vertices (x, y) and (u, v) are adjacent in G�H if and only if x = u

in G and yv ∈ E(H) or y = v in H and xu ∈ E(G).
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Let A be an n×m binary array. Then A∗ is the n×m binary array

whose entries are the minimum over the closed neighbourhood of the

corresponding entry in A

A =
1 1 0
1 1 1
0 1 1

A∗ =
1 0 0
0 1 0
0 0 1
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Theorem: Let An,m be the set of all n×m binary arrays. Then

nD (Pn�Pm) = |A ∗

n,m|.

Outline of proof:
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Theorem: Let An,m be the set of all n×m binary arrays. Then

nD (Pn�Pm) = |A ∗

n,m|.

→ OEIS sequence A217637 — also equal to the number of

maximal independence sets in Pn�Pm�P2
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graph when an edge is added or removed?
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nD (P4) = 6
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→ Is there a formula or upper/lower bounds on nD (G�H) in

terms of nD(G) and nD(H)?

→ What do the digitally convex sets look like in other graph

products?

→ What happens to the number of digitally convex sets in a

graph when an edge is added or removed?

nD(P4 − e1) = 8
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Open Problems

→ Is there a formula or upper/lower bounds on nD (G�H) in

terms of nD(G) and nD(H)?

→ What do the digitally convex sets look like in other graph

products?

→ What happens to the number of digitally convex sets in a

graph when an edge is added or removed?

nD(P4 − e2) = 4
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THANK YOU!
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