Enumerating Digitally Convex Sets in Graphs

MacKenzie Carr Simon Fraser University

March 31, 2021

Background

Definitions

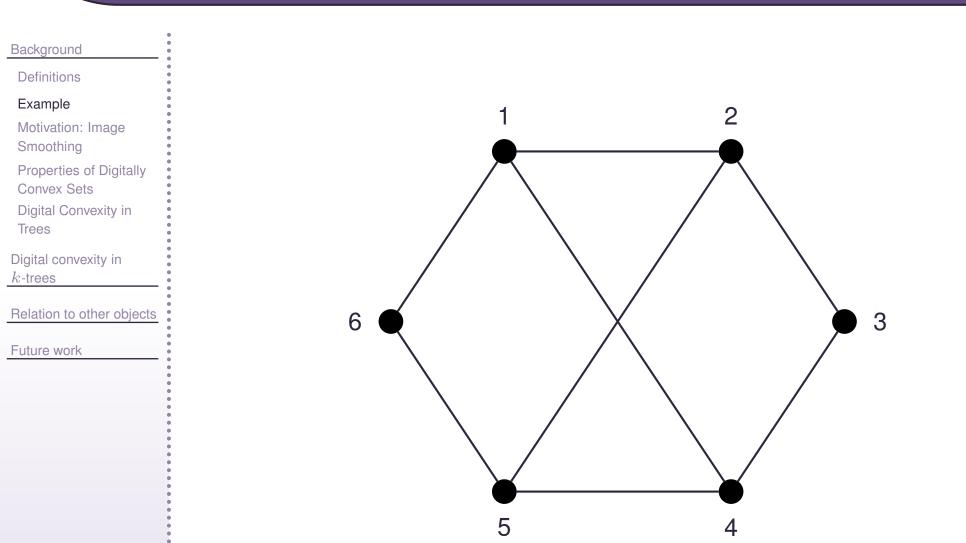
- Example
- Motivation: Image Smoothing
- Properties of Digitally
- Convex Sets
- Digital Convexity in Trees
- Digital convexity in k-trees
- Relation to other objects

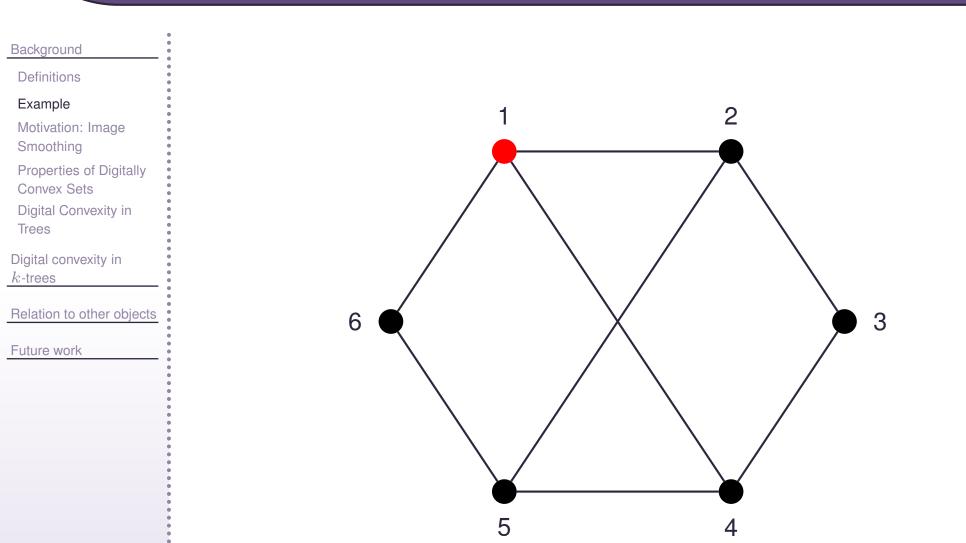
Future work

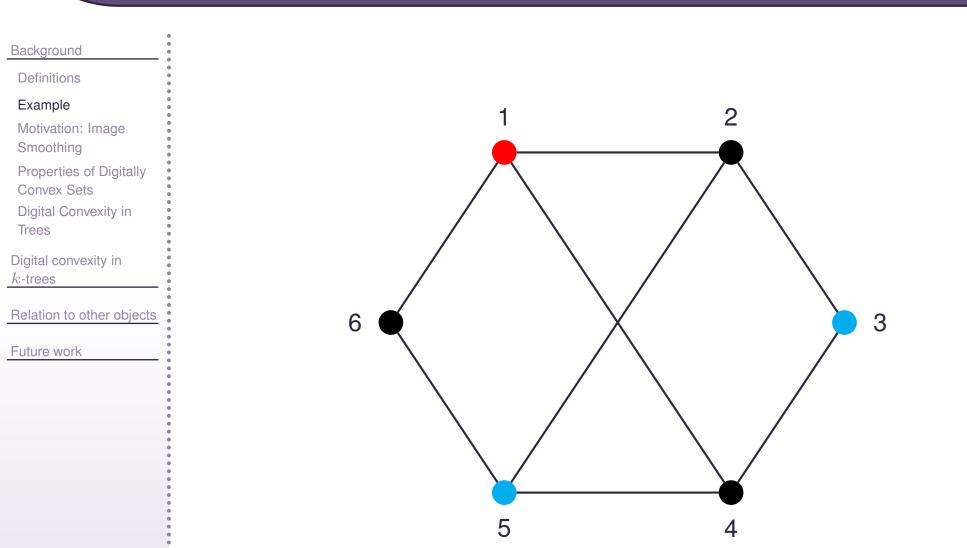
Definition: Let V be a finite set. A *convexity*, \mathscr{C} , is a collection of subsets of V that includes \emptyset and V and is closed under taking intersections.

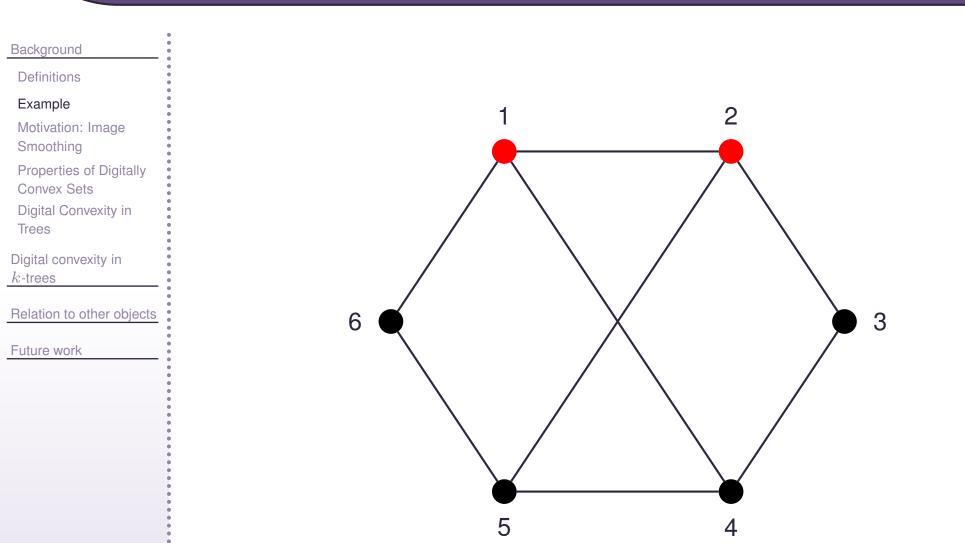
Definition: A set $S \subseteq V(G)$ is *digitally convex* if, for every $v \in V(G)$, we have $N[v] \subseteq N[S] \Rightarrow v \in S$.

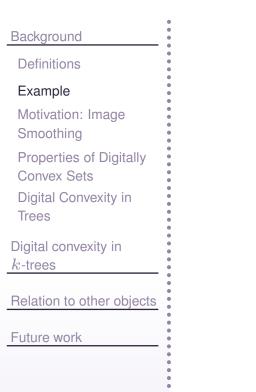
- \rightarrow Every vertex $v \notin S$ must have private neighbour with respect to S.
- \rightarrow Collection of digitally convex sets in a graph *G* is the *digital convexity* of *G*: $\mathscr{D}(G)$
- \rightarrow Number of digitally convex sets in $G: n_{\mathscr{D}}(G)$

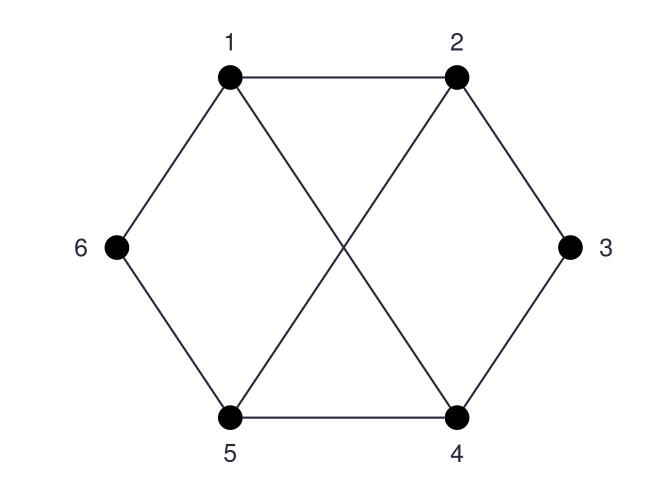










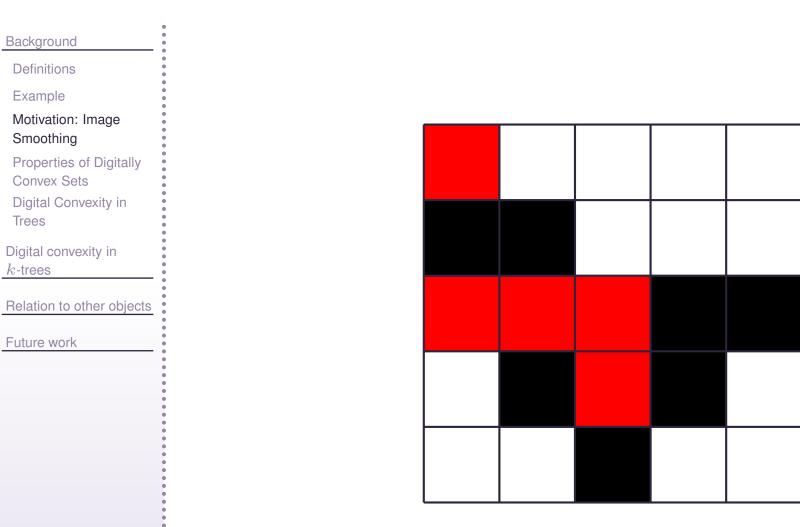


 $n_{\mathscr{D}}(G) = 14$

Motivation: Image Smoothing

Definitions Example Motivation: Image Smoothing Properties of Digitally Convex Sets Digital Convexity in Trees Digital convexity in k-trees Relation to other objects Future work	Background			
Motivation: Image Smoothing Properties of Digitally Convex Sets Digital Convexity in Trees Digital convexity in k-trees Relation to other objects	Definitions			
Smoothing Properties of Digitally Convex Sets Digital Convexity in Trees Digital convexity in k-trees Relation to other objects	Example			
Convex Sets Digital Convexity in Trees Digital convexity in k-trees Relation to other objects Relation to other objects				
Trees Image: Second s				
k-trees Image: Constraint of the state o				
Future work Image: Sector	Relation to other objects			
	Future work			
	•			
	•			
	•			

Motivation: Image Smoothing



Background

Definitions

Example

Smoothing

Convex Sets

Trees

k-trees

Future work

Motivation: Image Smoothing

Background			
Definitions			
Example			
Motivation: Image Smoothing			
Properties of Digitally Convex Sets			
Digital Convexity in Trees			
Digital convexity in k -trees			
Relation to other objects			
Future work			
•			
0 0 0			
•			
•			

Properties of Digitally Convex Sets

Digital convexity in k-trees

Relation to other objects

Future work

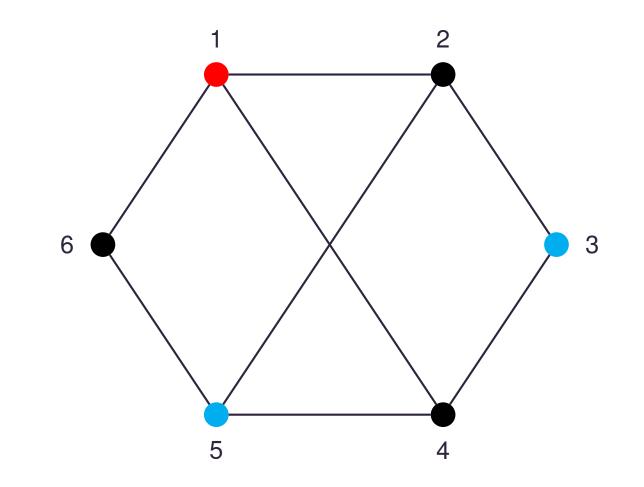
Theorem. (Lafrance, Oellermann, Pressey, 2016) Let G be a graph. If S is a digitally convex set, then $\varphi(S) = V(G) - N[S]$ is also a digitally convex set.

- \rightarrow This function φ is a bijection from $\mathscr{D}(G)$ to itself.
- $\rightarrow~$ Every graph must have an even number of digitally convex sets.

Properties of Digitally Convex Sets

Background Definitions Example Motivation: Image Smoothing Properties of Digitally Convex Sets Digital Convexity in Trees Digital convexity in k-trees Relation to other objects Future work

Theorem. (Lafrance, Oellermann, Pressey, 2016) Let G be a graph. If S is a digitally convex set, then $\varphi(S) = V(G) - N[S]$ is also a digitally convex set.



Digital Convexity in Trees

Background

Definitions

Example

Motivation: Image

Smoothing

Properties of Digitally Convex Sets

Digital Convexity in Trees

Digital convexity in k-trees

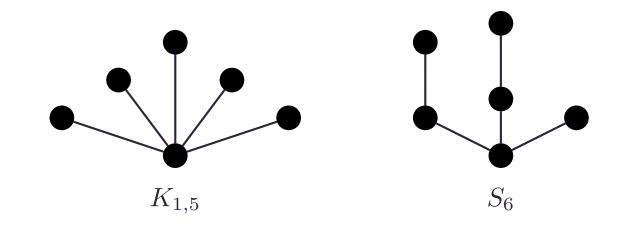
Relation to other objects

Future work

Theorem: (*Lafrance, Oellermann, Pressey, 2016*) Let T be a tree of order n. Then

$$\begin{cases} for \ n \ even & 2 \cdot 2^{n/2} - 2 \\ for \ n \ odd & 3 \cdot 2^{(n-1)/2} - 2 \end{cases} \leq n_{\mathscr{D}}(T) \leq 2^{n-1}$$

The lower bound is attained by the spiderstar S_n and the upper bound by the star $K_{1,n-1}$.



Digital Convexity in Trees

Background

Definitions

Example

Motivation: Image

Smoothing

Properties of Digitally Convex Sets

Digital Convexity in Trees

Digital convexity in k-trees

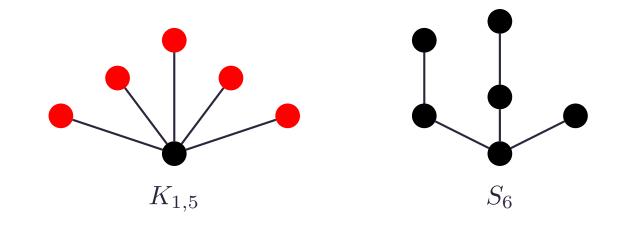
Relation to other objects

Future work

Theorem: (*Lafrance, Oellermann, Pressey, 2016*) Let T be a tree of order n. Then

$$\begin{cases} for \ n \ even & 2 \cdot 2^{n/2} - 2 \\ for \ n \ odd & 3 \cdot 2^{(n-1)/2} - 2 \end{cases} \leq n_{\mathscr{D}}(T) \leq 2^{n-1}$$

The lower bound is attained by the spiderstar S_n and the upper bound by the star $K_{1,n-1}$.



Digital Convexity in Trees

Background

Definitions

Example

Motivation: Image

Smoothing

Properties of Digitally Convex Sets

Digital Convexity in Trees

Digital convexity in k-trees

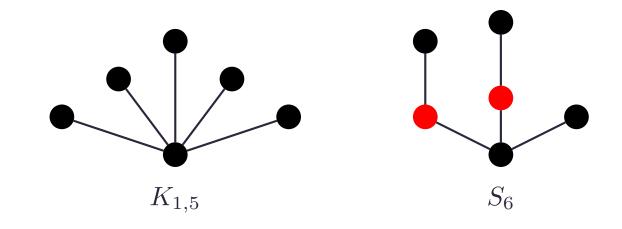
Relation to other objects

Future work

Theorem: (*Lafrance, Oellermann, Pressey, 2016*) Let T be a tree of order n. Then

$$\begin{cases} for \ n \ even & 2 \cdot 2^{n/2} - 2 \\ for \ n \ odd & 3 \cdot 2^{(n-1)/2} - 2 \end{cases} \leq n_{\mathscr{D}}(T) \leq 2^{n-1}$$

The lower bound is attained by the spiderstar S_n and the upper bound by the star $K_{1,n-1}$.



Background

Digital convexity in k-trees

Definitions

Upper Bound for 2-trees Upper Bound for

k-trees

Conjectured lower bound for 2-trees

2-Spiderstars

Special Case: Powers of Paths

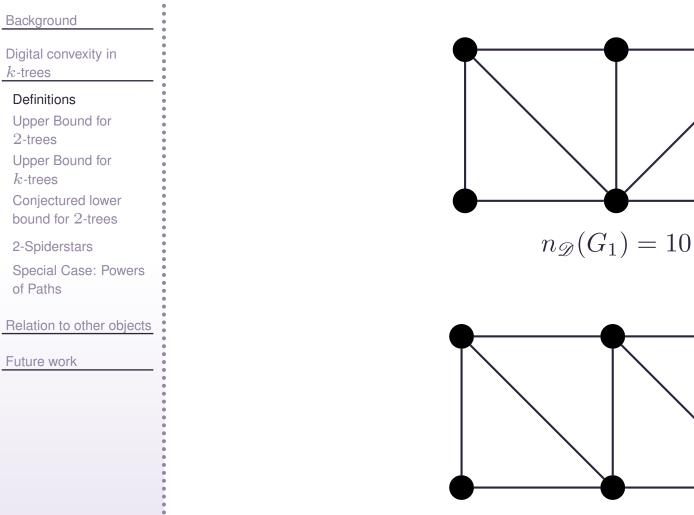
Relation to other objects

Future work

Definition: A 2-tree is a graph defined as follows: a 3-clique is a 2-tree and a 2-tree of order n > 3 is constructed by adding a vertex v adjacent to 2 pairwise adjacent vertices in a 2-tree of order n - 1.

Definition: A *k*-tree is a graph defined as follows: a k + 1-clique is a *k*-tree of order n > k + 1 is constructed by adding a vertex *v* adjacent to *k* pairwise adjacent vertices in a *k*-tree of order n - 1.

Definitions



 $n_{\mathscr{D}}(G_2) = 8$

Upper Bound for 2-trees

Background

Digital convexity in k-trees

Definitions

Upper Bound for 2-trees

Upper Bound for k-trees

Conjectured lower bound for 2-trees

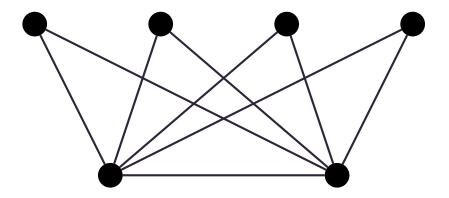
2-Spiderstars

Special Case: Powers of Paths

Relation to other objects

Future work

Theorem: Let *G* be a 2-tree of order *n*. Then $n_{\mathscr{D}}(G) \leq 2^{n-2}$. This bound is attained by the 2-trees $K_2 + \overline{K}_{n-2}$.



 $n_{\mathscr{D}}(K_2 + \overline{K}_4) = 16$

Upper Bound for 2-trees

Background

Digital convexity in k-trees

Definitions

Upper Bound for 2-trees

Upper Bound for k-trees

Conjectured lower bound for 2-trees

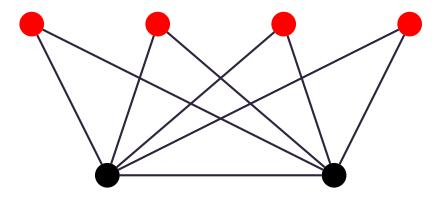
2-Spiderstars

Special Case: Powers of Paths

Relation to other objects

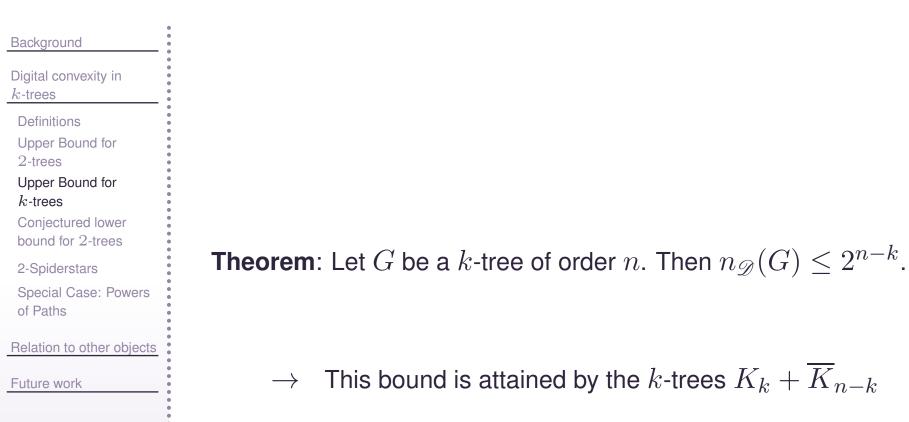
Future work

Theorem: Let *G* be a 2-tree of order *n*. Then $n_{\mathscr{D}}(G) \leq 2^{n-2}$. This bound is attained by the 2-trees $K_2 + \overline{K}_{n-2}$.



 $n_{\mathscr{D}}(K_2 + \overline{K}_4) = 16$

Upper Bound for *k***-trees**



Background

Digital convexity in k-trees

Definitions

Upper Bound for

2-trees

Upper Bound for k-trees

n-11005

Conjectured lower bound for 2-trees

2-Spiderstars

Special Case: Powers of Paths

Relation to other objects

Future work

Conjecture: Let G be a 2-tree of order n. Then

$$n_{\mathscr{D}}(G) \ge \begin{cases} 3 \cdot 2^{n/3} - 4, & \text{for } n \equiv 0 \pmod{3} \\ 4 \cdot 2^{(n-1)/3} - 4, & \text{for } n \equiv 1 \pmod{3} \\ 5 \cdot 2^{(n-2)/3} - 4, & \text{for } n \equiv 2 \pmod{3} \end{cases}$$

 \rightarrow Conjecture might be proven by induction on n and by dividing all 2-trees into subclasses based on the structure of the neighbourhoods of vertices of degree 2.

Background Digital convexity in k-trees Definitions Upper Bound for 2-trees Upper Bound for k-trees Conjectured lower bound for 2-trees 2-Spiderstars Special Case: Powers of Paths

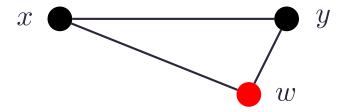
Future work

- \rightarrow Begin with a K_2 with vertices x and y
- \rightarrow Repeat to add the remaining n-2 vertices:
 - Add vertex w adjacent to x and y
 - Add vertex u adjacent to x and w
 - Add vertex v adjacent to w and u

Background Digital convexity in k-trees Definitions Upper Bound for 2-trees Upper Bound for k-trees Conjectured lower bound for 2-trees 2-Spiderstars Special Case: Powers of Paths

Future work

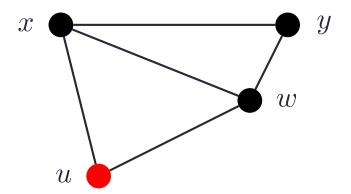
- \rightarrow Begin with a K_2 with vertices x and y
- \rightarrow Repeat to add the remaining n-2 vertices:
 - Add vertex w adjacent to x and y
 - Add vertex u adjacent to x and w
 - Add vertex v adjacent to w and u



Background Digital convexity in k-trees Definitions Upper Bound for 2-trees Upper Bound for k-trees Conjectured lower bound for 2-trees 2-Spiderstars Special Case: Powers of Paths

Future work

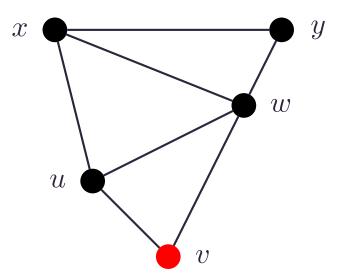
- \rightarrow Begin with a K_2 with vertices x and y
- \rightarrow Repeat to add the remaining n-2 vertices:
 - Add vertex \boldsymbol{w} adjacent to \boldsymbol{x} and \boldsymbol{y}
 - Add vertex u adjacent to x and w
 - Add vertex v adjacent to w and u



Background Digital convexity in k-trees Definitions Upper Bound for 2-trees Upper Bound for k-trees Conjectured lower bound for 2-trees 2-Spiderstars Special Case: Powers of Paths

Future work

- \rightarrow Begin with a K_2 with vertices x and y
- \rightarrow Repeat to add the remaining n-2 vertices:
 - Add vertex \boldsymbol{w} adjacent to \boldsymbol{x} and \boldsymbol{y}
 - Add vertex \boldsymbol{u} adjacent to \boldsymbol{x} and \boldsymbol{w}
 - Add vertex v adjacent to w and u



Background

Digital convexity in k-trees

Definitions

Upper Bound for

 $2 extrm{-trees}$

Upper Bound for

k-trees

Conjectured lower bound for 2-trees

2-Spiderstars

Special Case: Powers of Paths

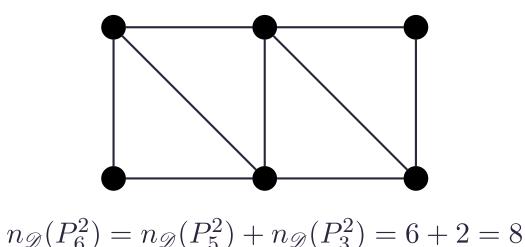
Relation to other objects

Future work

Theorem: Let P_n^2 be the square of the path P_n . Then the digitally convex sets of P_n^2 satisfy the recurrence

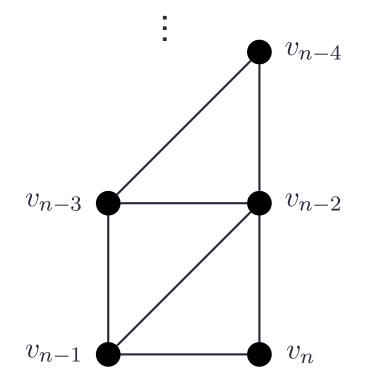
$$n_{\mathscr{D}}(P_n^2) = n_{\mathscr{D}}(P_{n-1}^2) + n_{\mathscr{D}}(P_{n-3}^2)$$

with $n_{\mathscr{D}}(P_3^2)=2, n_{\mathscr{D}}(P_4^2)=4, n_{\mathscr{D}}(P_5^2)=6.$ (OEIS sequence A000930, multiplied by 2.)



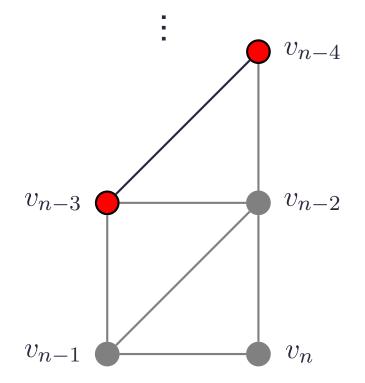
Background	•
Digital convexity in k -trees	•
Definitions Upper Bound for 2-trees Upper Bound for k-trees Conjectured lower	
bound for 2-trees 2-Spiderstars Special Case: Powers of Paths	0 0 0 0 0 0 0 0 0
Relation to other objects	•
Future work	

$$n_{\mathscr{D}}(P_{n}^{2}) = n_{\mathscr{D}}(P_{n-1}^{2}) + n_{\mathscr{D}}(P_{n-3}^{2})$$



Background
Digital convexity in <i>k</i> -trees
Definitions Upper Bound for 2-trees Upper Bound for k-trees Conjectured lower bound for 2 -trees
2-Spiderstars
Special Case: Powers of Paths
Relation to other objects
Future work

 $n_{\mathscr{D}}(P_n^2) = n_{\mathscr{D}}(P_{n-1}^2) + n_{\mathscr{D}}(P_{n-3}^2)$

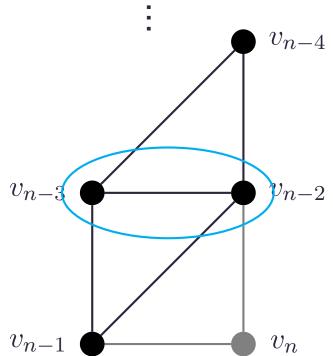


Background	
Digital convexity in k -trees	$n_{\mathscr{D}}(P_n^2) = n_{\mathscr{D}}(P_{n-1}^2) + n_{\mathscr{D}}(P_{n-3}^2)$
Definitions Upper Bound for 2-trees Upper Bound for k-trees Conjectured lower bound for 2-trees	\vdots v_{n-4}
2-Spiderstars Special Case: Powers of Paths Relation to other objects	
Future work	v_{n-3}
	v_{n-1}

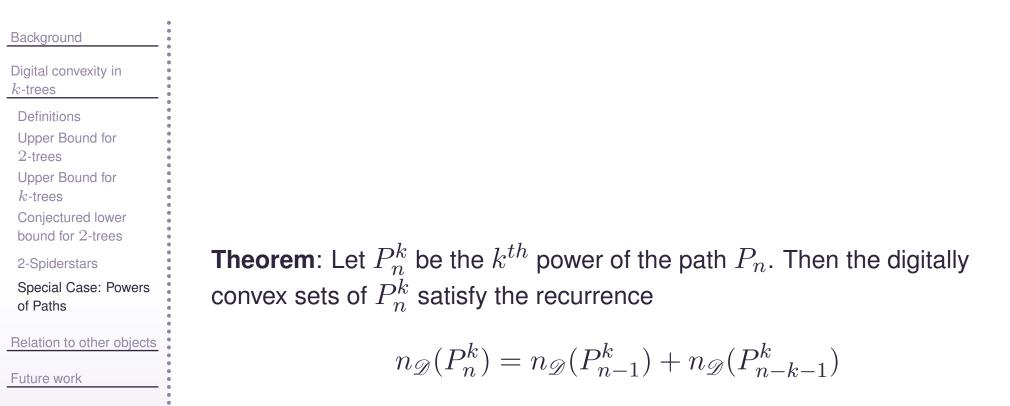
Background	
Digital convexity in k -trees	$n_{\mathscr{D}}(P_n^2) = \boldsymbol{n}_{\mathscr{D}}(\boldsymbol{P_{n-1}^2}) + n_{\mathscr{D}}(P_{n-3}^2)$
Definitions Upper Bound for 2-trees Upper Bound for k-trees Conjectured lower bound for 2-trees	: \mathbf{v}_{n-4}
2-Spiderstars Special Case: Powers of Paths Relation to other objects	
Future work	v_{n-3}
	$v_{n-1} \bullet v_n$

Background
Digital convexity in <i>k</i> -trees
Definitions Upper Bound for 2-trees Upper Bound for <i>k</i> -trees Conjectured lower bound for 2-trees
2-Spiderstars Special Case: Powers of Paths
Relation to other objects Future work

$$n_{\mathscr{D}}(P_n^2) = \boldsymbol{n}_{\mathscr{D}}(\boldsymbol{P_{n-1}^2}) + n_{\mathscr{D}}(P_{n-3}^2)$$



Background	
Digital convexity in k -trees	$n_{\mathscr{D}}(P_n^2) = \boldsymbol{n}_{\mathscr{D}}(\boldsymbol{P_{n-1}^2}) + n_{\mathscr{D}}(P_{n-3}^2)$
Definitions Upper Bound for 2-trees Upper Bound for k-trees Conjectured lower bound for 2-trees	: \mathbf{v}_{n-4}
2-Spiderstars Special Case: Powers of Paths Relation to other objects	
Future work	v_{n-3}
	$v_{n-1} \bullet v_n$



Digital Convexity in Cycles

Background

Digital convexity in *k*-trees

Relation to other objects

Digital Convexity in Cycles

Outline of proof

Generalization to powers of cycles

Cartesian Products

Binary $n \times m$ Arrays Digital Convexity in Cartesian Product of Paths

Future work

Theorem: Let C_n be the cycle of order n. Then, $n_{\mathscr{D}}(C_3) = 2$, $n_{\mathscr{D}}(C_4) = 6$, $n_{\mathscr{D}}(C_5) = 12$, $n_{\mathscr{D}}(C_6) = 20$ and, for $n \ge 7$,

$$n_{\mathscr{D}}(C_n) = 2n_{\mathscr{D}}(C_{n-1}) - n_{\mathscr{D}}(C_{n-2}) + n_{\mathscr{D}}(C_{n-4}).$$

This is equivalent to the number of cyclic binary *n*-bit strings with no alternating substring of length greater than 2. (OEIS sequence A007039)

Outline of proof

Background Digital convexity in *k*-trees

Relation to other objects Digital Convexity in Cycles

Outline of proof

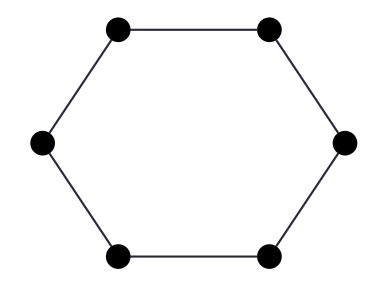
Generalization to powers of cycles

Future work

Cartesian Products

Binary $n \times m$ Arrays Digital Convexity in Cartesian Product of Paths Bijection between $\mathscr{D}(C_n)$ and cyclic binary *n*-bit strings without 010 or 101:

- \rightarrow Label edges of C_n from 1 to n
- \rightarrow Given a digitally convex set S, construct a cyclic binary string S^* such that bit i is 1 if edge i is incident with a vertex in S, and 0 otherwise



Outline of proof

Background Digital convexity in

k-trees

Relation to other objects Digital Convexity in Cycles

Outline of proof

Generalization to powers of cycles

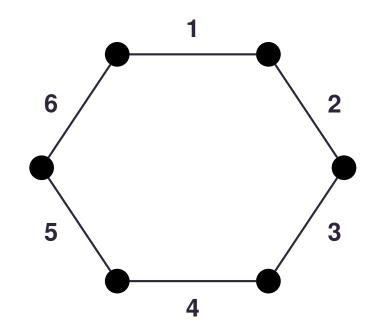
Cartesian Products

Binary $n \times m$ Arrays Digital Convexity in Cartesian Product of Paths

Future work

Bijection between $\mathscr{D}(C_n)$ and cyclic binary *n*-bit strings without 010 or 101:

- \rightarrow Label edges of C_n from 1 to n
- \rightarrow Given a digitally convex set S, construct a cyclic binary string S^* such that bit i is 1 if edge i is incident with a vertex in S, and 0 otherwise



Background Digital convexity in

k-trees

Relation to other objects Digital Convexity in Cycles

Outline of proof

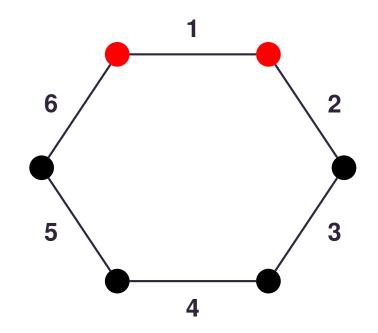
Generalization to powers of cycles

Cartesian Products

Binary $n \times m$ Arrays Digital Convexity in Cartesian Product of Paths

Future work

- \rightarrow Label edges of C_n from 1 to n
- \rightarrow Given a digitally convex set S, construct a cyclic binary string S^* such that bit i is 1 if edge i is incident with a vertex in S, and 0 otherwise



Background Digital convexity in

k-trees

Relation to other objects Digital Convexity in Cycles

Outline of proof

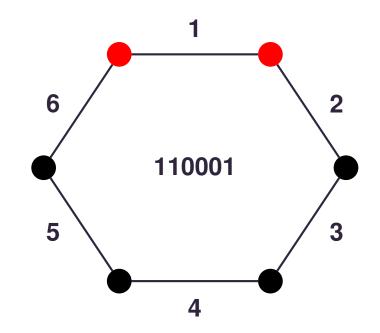
Generalization to powers of cycles

Cartesian Products

Binary $n \times m$ Arrays Digital Convexity in Cartesian Product of Paths

Future work

- \rightarrow Label edges of C_n from 1 to n
- \rightarrow Given a digitally convex set S, construct a cyclic binary string S^* such that bit i is 1 if edge i is incident with a vertex in S, and 0 otherwise



Background Digital convexity in <u>k</u>-trees Relation to other objects Digital Convexity in Cycles Outline of proof

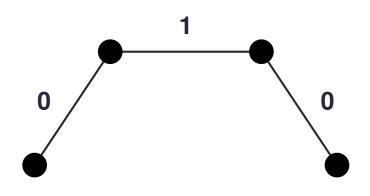
Generalization to powers of cycles

Cartesian Products

Binary $n \times m$ Arrays Digital Convexity in Cartesian Product of Paths

Future work

- \rightarrow Label edges of C_n from 1 to n
- \rightarrow Given a digitally convex set S, construct a cyclic binary string S^* such that bit i is 1 if edge i is incident with a vertex in S, and 0 otherwise
- \rightarrow No substring 010:



Background Digital convexity in <u>k-trees</u> Relation to other objects Digital Convexity in Cycles Outline of proof

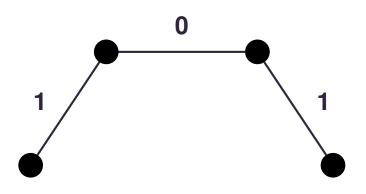
Generalization to powers of cycles

Cartesian Products

Binary $n \times m$ Arrays Digital Convexity in Cartesian Product of Paths

Future work

- \rightarrow Label edges of C_n from 1 to n
- \rightarrow Given a digitally convex set S, construct a cyclic binary string S^* such that bit i is 1 if edge i is incident with a vertex in S, and 0 otherwise
- \rightarrow No substring 101:



Background

Digital convexity in *k*-trees

Relation to other objects Digital Convexity in Cycles

Outline of proof

Generalization to powers of cycles

Cartesian Products

Binary $n \times m$ Arrays Digital Convexity in Cartesian Product of Paths

Future work

Theorem: Let C_n be the cycle of order n and let $k \ge 1$. Then, $n_{\mathscr{D}}(C_i^k) = 2$ for $3 \le i \le 2k + 1$, $n_{\mathscr{D}}(C_j^k) = 2 + j(j - 2k - 1)$ for $2k + 2 \le j \le 2k + 4$ and, for $n \ge 2k + 5$,

$$n_{\mathscr{D}}(C_{n}^{k}) = 2n_{\mathscr{D}}(C_{n-1}^{k}) - n_{\mathscr{D}}(C_{n-2}^{k}) + n_{\mathscr{D}}(C_{n-2k-2}^{k}).$$

 \rightarrow Proof uses a bijection between the sets in $\mathscr{D}(C_n^k)$ and the cyclic binary strings whose blocks (maximal runs of 0's or 1's) each have length at least k + 1

Cartesian Products

Background

Digital convexity in k-trees

Relation to other objects Digital Convexity in Cycles

Outline of proof

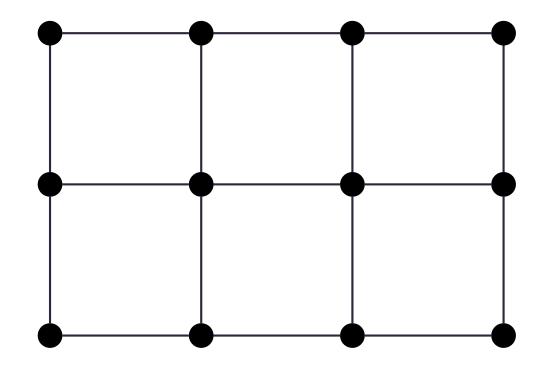
Generalization to powers of cycles

Cartesian Products

Binary $n \times m$ Arrays Digital Convexity in Cartesian Product of Paths

Future work

Definition: The *Cartesian product* of graphs G and H, denoted by $G \Box H$ is the graph with vertex set $V(G \Box H) = V(G) \times V(H)$ and such that two vertices (x, y) and (u, v) are adjacent in $G \Box H$ if and only if x = u in G and $yv \in E(H)$ or y = v in H and $xu \in E(G)$.



Binary $n \times m$ Arrays

BackgroundDigital convexity in k-treesRelation to other objectsDigital Convexity in CyclesOutline of proof Generalization to powers of cyclesCartesian Products	Let A be an $n\times m$ binary array. Then A^* is the $n\times m$ binary array whose entries are the minimum over the closed neighbourhood of the corresponding entry in A
Binary $n imes m$ Arrays	
Digital Convexity in Cartesian Product of Paths	
Future work	

 $A = 1 \ 1 \ 1 \ 1 \qquad A^* = 0 \ 1 \ 0$

 $0 \ 1 \ 1 \ 0 \ 0 \ 1$

Background

Digital convexity in *k*-trees

Relation to other objects Digital Convexity in Cycles

Outline of proof

Generalization to powers of cycles

Cartesian Products

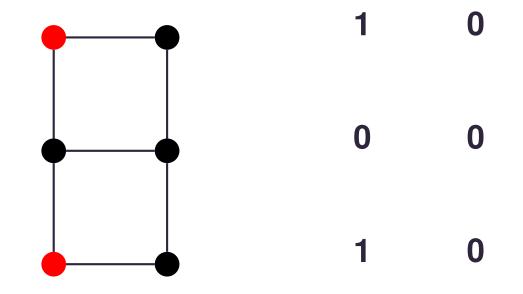
Binary n imes m Arrays

Digital Convexity in Cartesian Product of Paths

Future work

Theorem: Let $\mathscr{A}_{n,m}$ be the set of all $n \times m$ binary arrays. Then $n_{\mathscr{D}}(P_n \Box P_m) = |\mathscr{A}_{n,m}^*|.$

Outline of proof:



Background

Digital convexity in *k*-trees

Relation to other objects Digital Convexity in Cycles

Outline of proof

Generalization to powers of cycles

Cartesian Products

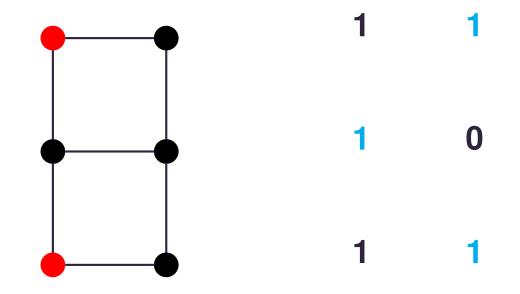
Binary n imes m Arrays

Digital Convexity in Cartesian Product of Paths

Future work

Theorem: Let $\mathscr{A}_{n,m}$ be the set of all $n \times m$ binary arrays. Then $n_{\mathscr{D}}(P_n \Box P_m) = |\mathscr{A}_{n,m}^*|.$

Outline of proof:



Background

Digital convexity in *k*-trees

Relation to other objects Digital Convexity in Cycles

Outline of proof

Generalization to powers of cycles

Cartesian Products

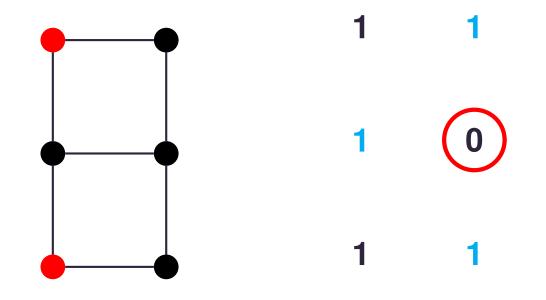
Binary n imes m Arrays

Digital Convexity in Cartesian Product of Paths

Future work

Theorem: Let $\mathscr{A}_{n,m}$ be the set of all $n \times m$ binary arrays. Then $n_{\mathscr{D}}(P_n \Box P_m) = |\mathscr{A}_{n,m}^*|.$

Outline of proof:



Background

Digital convexity in *k*-trees

- Relation to other objects Digital Convexity in
- Cycles
- Outline of proof
- Generalization to powers of cycles
- Cartesian Products

Binary n imes m Arrays

Digital Convexity in Cartesian Product of Paths

Future work

Theorem: Let $\mathscr{A}_{n,m}$ be the set of all $n \times m$ binary arrays. Then $n_{\mathscr{D}}(P_n \Box P_m) = |\mathscr{A}_{n,m}^*|.$

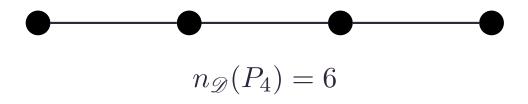
 \rightarrow OEIS sequence A217637 — also equal to the number of maximal independence sets in $P_n \Box P_m \Box P_2$

Background	
Digital convexity in k -trees	
Relation to other objects	
Future work	
Open Problems	

- $\rightarrow \text{ Is there a formula or upper/lower bounds on } n_{\mathscr{D}}(G \Box H) \text{ in terms of } n_{\mathscr{D}}(G) \text{ and } n_{\mathscr{D}}(H)?$
- \rightarrow What do the digitally convex sets look like in other graph products?
- \rightarrow What happens to the number of digitally convex sets in a graph when an edge is added or removed?

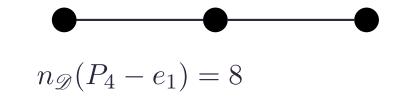
Background
Digital convexity in <i>k</i> -trees
Relation to other objects
Future work

- → Is there a formula or upper/lower bounds on $n_{\mathscr{D}}(G\Box H)$ in terms of $n_{\mathscr{D}}(G)$ and $n_{\mathscr{D}}(H)$?
- \rightarrow What do the digitally convex sets look like in other graph products?
- \rightarrow What happens to the number of digitally convex sets in a graph when an edge is added or removed?



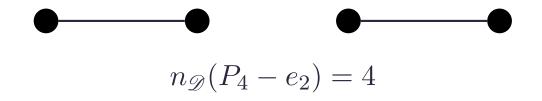
Background
Digital convexity in k-trees
Relation to other objects
Future work

- → Is there a formula or upper/lower bounds on $n_{\mathscr{D}}(G\Box H)$ in terms of $n_{\mathscr{D}}(G)$ and $n_{\mathscr{D}}(H)$?
- \rightarrow What do the digitally convex sets look like in other graph products?
- \rightarrow What happens to the number of digitally convex sets in a graph when an edge is added or removed?



Background
Digital convexity in <i>k</i> -trees
Relation to other objects
Future work

- → Is there a formula or upper/lower bounds on $n_{\mathscr{D}}(G\Box H)$ in terms of $n_{\mathscr{D}}(G)$ and $n_{\mathscr{D}}(H)$?
- \rightarrow What do the digitally convex sets look like in other graph products?
- \rightarrow What happens to the number of digitally convex sets in a graph when an edge is added or removed?



Background	
------------	--

Digital convexity in k-trees

Relation to other objects

Future work

Open Problems

THANK YOU!