Enumerating Digitally Convex Sets in Graphs

MacKenzie Carr
Simon Fraser University

March 31, 2021

Definitions

Background

Definition: Let V be a finite set. A convexity, \mathscr{C}, is a collection of subsets of V that includes \emptyset and V and is closed under taking intersections.

Definition: A set $S \subseteq V(G)$ is digitally convex if, for every $v \in V(G)$, we have $N[v] \subseteq N[S] \Rightarrow v \in S$.
$\rightarrow \quad$ Every vertex $v \notin S$ must have private neighbour with respect to S.
\rightarrow Collection of digitally convex sets in a graph G is the digital convexity of G : $\mathscr{D}(G)$
$\rightarrow \quad$ Number of digitally convex sets in $G: n_{\mathscr{D}}(G)$

Example

Example

Example

Example

Example

Definitions

Example

Motivation: Image
Smoothing
Properties of Digitally
Convex Sets
Digital Convexity in
Trees
Digital convexity in
k-trees

$$
n_{\mathscr{D}}(G)=14
$$

Motivation: Image Smoothing

Background

Definitions
Example
Motivation: Image
Smoothing
Properties of Digitally
Convex Sets
Digital Convexity in Trees

Digital convexity in k-trees

Motivation: Image Smoothing

Motivation: Image Smoothing

Background

Definitions
Example
Motivation: Image
Smoothing
Properties of Digitally
Convex Sets
Digital Convexity in Trees

Digital convexity in k-trees

Properties of Digitally Convex Sets

Background

Definitions
Example
Motivation: Image
Smoothing
Properties of Digitally Convex Sets
Digital Convexity in Trees

Theorem. (Lafrance, Oellermann, Pressey, 2016) Let G be a graph. If S is a digitally convex set, then $\varphi(S)=V(G)-N[S]$ is also a digitally convex set.
\rightarrow This function φ is a bijection from $\mathscr{D}(G)$ to itself.
\rightarrow Every graph must have an even number of digitally convex sets.

Properties of Digitally Convex Sets

Definitions

Example
Motivation: Image
Smoothing
Properties of Digitally Convex Sets
Digital Convexity in

Theorem. (Lafrance, Oellermann, Pressey, 2016) Let G be a graph. If S is a digitally convex set, then $\varphi(S)=V(G)-N[S]$ is also a digitally convex set.

Digital Convexity in Trees

Background

Definitions
Example
Motivation: Image
Smoothing
Properties of Digitally
Convex Sets
Digital Convexity in Trees

Theorem: (Lafrance, Oellermann, Pressey, 2016) Let T be a tree of order n. Then

$$
\left.\begin{array}{lr}
\text { for } n \text { even } & 2 \cdot 2^{n / 2}-2 \\
\text { for } n \text { odd } & 3 \cdot 2^{(n-1) / 2}-2
\end{array}\right\} \leq n_{\mathscr{D}}(T) \leq 2^{n-1}
$$

The lower bound is attained by the spiderstar S_{n} and the upper bound by the star $K_{1, n-1}$.

Digital Convexity in Trees

Background

Definitions
Example
Motivation: Image
Smoothing
Properties of Digitally
Convex Sets
Digital Convexity in Trees

Theorem: (Lafrance, Oellermann, Pressey, 2016) Let T be a tree of order n. Then

$$
\left.\begin{array}{lr}
\text { for } n \text { even } & 2 \cdot 2^{n / 2}-2 \\
\text { for } n \text { odd } & 3 \cdot 2^{(n-1) / 2}-2
\end{array}\right\} \leq n_{\mathscr{D}}(T) \leq 2^{n-1}
$$

The lower bound is attained by the spiderstar S_{n} and the upper bound by the star $K_{1, n-1}$.

Digital Convexity in Trees

Background

Definitions
Example
Motivation: Image
Smoothing
Properties of Digitally
Convex Sets
Digital Convexity in Trees

Theorem: (Lafrance, Oellermann, Pressey, 2016) Let T be a tree of order n. Then

$$
\left.\begin{array}{lr}
\text { for n even } & 2 \cdot 2^{n / 2}-2 \\
\text { for } n \text { odd } & 3 \cdot 2^{(n-1) / 2}-2
\end{array}\right\} \leq n_{\mathscr{D}}(T) \leq 2^{n-1}
$$

The lower bound is attained by the spiderstar S_{n} and the upper bound by the star $K_{1, n-1}$.

Definitions

Background

Definition: A 2-tree is a graph defined as follows: a 3-clique is a 2-tree and a 2 -tree of order $n>3$ is constructed by adding a vertex v adjacent to 2 pairwise adjacent vertices in a 2 -tree of order $n-1$.

Definition: A k-tree is a graph defined as follows: a $k+1$-clique is a k-tree of order $n>k+1$ is constructed by adding a vertex v adjacent to k pairwise adjacent vertices in a k-tree of order $n-1$.

Definitions

Background

Digital convexity in

k-trees

Definitions
Upper Bound for
2-trees
Upper Bound for
k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

$$
n_{\mathscr{D}}\left(G_{2}\right)=8
$$

Upper Bound for 2-trees

Background

Digital convexity in k-trees

Definitions
Upper Bound for 2-trees
Upper Bound for
k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

Theorem: Let G be a 2 -tree of order n. Then $n_{\mathscr{D}}(G) \leq 2^{n-2}$. This bound is attained by the 2 -trees $K_{2}+\bar{K}_{n-2}$.

$$
n_{\mathscr{D}}\left(K_{2}+\bar{K}_{4}\right)=16
$$

Upper Bound for 2-trees

Background

Digital convexity in k-trees

Definitions
Upper Bound for 2 -trees
Upper Bound for
k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

Theorem: Let G be a 2 -tree of order n. Then $n_{\mathscr{D}}(G) \leq 2^{n-2}$. This bound is attained by the 2 -trees $K_{2}+\bar{K}_{n-2}$.

$$
n_{\mathscr{D}}\left(K_{2}+\bar{K}_{4}\right)=16
$$

Upper Bound for k-trees

Background

Digital convexity in k-trees

Definitions
Upper Bound for 2 -trees
Upper Bound for k-trees
Conjectured lower bound for 2 -trees

2-Spiderstars
Special Case: Powers of Paths

Relation to other objects

Theorem: Let G be a k-tree of order n. Then $n_{\mathscr{D}}(G) \leq 2^{n-k}$.
\rightarrow This bound is attained by the k-trees $K_{k}+\bar{K}_{n-k}$

Conjectured lower bound for 2-trees

Background

Digital convexity in k-trees

Definitions
Upper Bound for 2 -trees
Upper Bound for k-trees
Conjectured lower bound for 2-trees
2-Spiderstars
Special Case: Powers of Paths

Conjecture: Let G be a 2 -tree of order n. Then

$$
n_{\mathscr{D}}(G) \geq\left\{\begin{array}{lll}
3 \cdot 2^{n / 3}-4, & \text { for } n \equiv 0 & (\bmod 3) \\
4 \cdot 2^{(n-1) / 3}-4, & \text { for } n \equiv 1 & (\bmod 3) \\
5 \cdot 2^{(n-2) / 3}-4, & \text { for } n \equiv 2 & (\bmod 3)
\end{array}\right.
$$

\rightarrow Conjecture might be proven by induction on n and by dividing all 2 -trees into subclasses based on the structure of the neighbourhoods of vertices of degree 2 .

2-Spiderstars

Background

Digital convexity in k-trees

Definitions
Upper Bound for 2 -trees
Upper Bound for k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

The conjectured lower bound is attained by the 2-spiderstars, which are constructed as follows:
$\rightarrow \quad$ Begin with a K_{2} with vertices x and y
\rightarrow Repeat to add the remaining $n-2$ vertices:

- Add vertex w adjacent to x and y
- Add vertex u adjacent to x and w
- Add vertex v adjacent to w and u

2-Spiderstars

Background

Digital convexity in k-trees

Definitions
Upper Bound for 2 -trees
Upper Bound for k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

The conjectured lower bound is attained by the 2-spiderstars, which are constructed as follows:
\rightarrow Begin with a K_{2} with vertices x and y
\rightarrow Repeat to add the remaining $n-2$ vertices:

- Add vertex w adjacent to x and y
- Add vertex u adjacent to x and w
- Add vertex v adjacent to w and u

2-Spiderstars

Background

Digital convexity in k-trees

Definitions
Upper Bound for

Upper Bound for k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

The conjectured lower bound is attained by the 2-spiderstars, which are constructed as follows:
\rightarrow Begin with a K_{2} with vertices x and y
\rightarrow Repeat to add the remaining $n-2$ vertices:

- Add vertex w adjacent to x and y
- Add vertex u adjacent to x and w
- Add vertex v adjacent to w and u

2-Spiderstars

Background

Digital convexity in k-trees

Definitions
Upper Bound for 2 -trees
Upper Bound for k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

The conjectured lower bound is attained by the 2-spiderstars, which are constructed as follows:
\rightarrow Begin with a K_{2} with vertices x and y
\rightarrow Repeat to add the remaining $n-2$ vertices:

- Add vertex w adjacent to x and y
- Add vertex u adjacent to x and w
- Add vertex v adjacent to w and u

Special Case: Powers of Paths

Background

Digital convexity in k-trees

Definitions
Upper Bound for 2 -trees
Upper Bound for k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

Theorem: Let P_{n}^{2} be the square of the path P_{n}. Then the digitally convex sets of P_{n}^{2} satisfy the recurrence

$$
n_{\mathscr{D}}\left(P_{n}^{2}\right)=n_{\mathscr{D}}\left(P_{n-1}^{2}\right)+n_{\mathscr{D}}\left(P_{n-3}^{2}\right)
$$

with $n_{\mathscr{D}}\left(P_{3}^{2}\right)=2, n_{\mathscr{D}}\left(P_{4}^{2}\right)=4, n_{\mathscr{D}}\left(P_{5}^{2}\right)=6$. (OEIS sequence A000930, multiplied by 2.)

$$
n_{\mathscr{D}}\left(P_{6}^{2}\right)=n_{\mathscr{D}}\left(P_{5}^{2}\right)+n_{\mathscr{D}}\left(P_{3}^{2}\right)=6+2=8
$$

Special Case: Powers of Paths

Background

Digital convexity in k-trees

Definitions
Upper Bound for
2-trees
Upper Bound for
k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

$$
n_{\mathscr{D}}\left(P_{n}^{2}\right)=n_{\mathscr{D}}\left(P_{n-1}^{2}\right)+n_{\mathscr{D}}\left(P_{n-3}^{2}\right)
$$

Special Case: Powers of Paths

Background

Digital convexity in k-trees

Definitions
Upper Bound for
2-trees
Upper Bound for
k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

$$
n_{\mathscr{D}}\left(P_{n}^{2}\right)=n_{\mathscr{D}}\left(P_{n-1}^{2}\right)+\boldsymbol{n}_{\mathscr{D}}\left(\boldsymbol{P}_{\boldsymbol{n}-\mathbf{3}}^{\mathbf{2}}\right)
$$

Special Case: Powers of Paths

Background

Digital convexity in k-trees

Definitions
Upper Bound for
2-trees
Upper Bound for
k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths
Relation to other objects

$$
n_{\mathscr{D}}\left(P_{n}^{2}\right)=\boldsymbol{n}_{\mathscr{D}}\left(\boldsymbol{P}_{\boldsymbol{n - 1}}^{\mathbf{2}}\right)+n_{\mathscr{D}}\left(P_{n-3}^{2}\right)
$$

Special Case: Powers of Paths

Background

Digital convexity in k-trees

Definitions
Upper Bound for
2-trees
Upper Bound for
k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

$$
n_{\mathscr{D}}\left(P_{n}^{2}\right)=\boldsymbol{n}_{\mathscr{D}}\left(\boldsymbol{P}_{\boldsymbol{n}-\mathbf{1}}^{\mathbf{2}}\right)+n_{\mathscr{D}}\left(P_{n-3}^{2}\right)
$$

Special Case: Powers of Paths

Background

Digital convexity in k-trees

Definitions
Upper Bound for
2-trees
Upper Bound for
k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

$$
n_{\mathscr{D}}\left(P_{n}^{2}\right)=\boldsymbol{n}_{\mathscr{D}}\left(\boldsymbol{P}_{\boldsymbol{n}-\mathbf{1}}^{\mathbf{2}}\right)+n_{\mathscr{D}}\left(P_{n-3}^{2}\right)
$$

Special Case: Powers of Paths

Background

Digital convexity in k-trees

Definitions
Upper Bound for
2-trees
Upper Bound for
k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths

$$
n_{\mathscr{D}}\left(P_{n}^{2}\right)=\boldsymbol{n}_{\mathscr{D}}\left(\boldsymbol{P}_{\boldsymbol{n}-\mathbf{1}}^{\mathbf{2}}\right)+n_{\mathscr{D}}\left(P_{n-3}^{2}\right)
$$

Special Case: Powers of Paths

Background

Digital convexity in k-trees

Definitions
Upper Bound for 2 -trees
Upper Bound for k-trees
Conjectured lower bound for 2-trees

2-Spiderstars
Special Case: Powers of Paths
$\underline{\text { Relation to other objects }}$

Theorem: Let P_{n}^{k} be the $k^{t h}$ power of the path P_{n}. Then the digitally convex sets of P_{n}^{k} satisfy the recurrence

$$
n_{\mathscr{D}}\left(P_{n}^{k}\right)=n_{\mathscr{D}}\left(P_{n-1}^{k}\right)+n_{\mathscr{D}}\left(P_{n-k-1}^{k}\right)
$$

Digital Convexity in Cycles

Background

Digital convexity in

 k-treesTheorem: Let C_{n} be the cycle of order n. Then, $n_{\mathscr{D}}\left(C_{3}\right)=2$, $n_{\mathscr{D}}\left(C_{4}\right)=6, n_{\mathscr{D}}\left(C_{5}\right)=12, n_{\mathscr{D}}\left(C_{6}\right)=20$ and, for $n \geq 7$,

$$
n_{\mathscr{D}}\left(C_{n}\right)=2 n_{\mathscr{D}}\left(C_{n-1}\right)-n_{\mathscr{D}}\left(C_{n-2}\right)+n_{\mathscr{D}}\left(C_{n-4}\right) .
$$

This is equivalent to the number of cyclic binary n-bit strings with no alternating substring of length greater than 2. (OEIS sequence A007039)

Outline of proof

Background

Digital convexity in $\underline{k \text {-trees }}$

Relation to other objects
Digital Convexity in Cycles

Outline of proof
Generalization to
powers of cycles
Cartesian Products
Binary $n \times m$ Arrays
Digital Convexity in Cartesian Product of Paths

Bijection between $\mathscr{D}\left(C_{n}\right)$ and cyclic binary n-bit strings without 010 or 101:
\rightarrow Label edges of C_{n} from 1 to n
\rightarrow Given a digitally convex set S, construct a cyclic binary string S^{*} such that bit i is 1 if edge i is incident with a vertex in S, and 0 otherwise

Outline of proof

Background

Digital convexity in

 $\underline{k \text {-trees }}$Relation to other objects
Digital Convexity in
Cycles
Outline of proof
Generalization to powers of cycles
Cartesian Products
Binary $n \times m$ Arrays
Digital Convexity in
Cartesian Product of
Paths

Bijection between $\mathscr{D}\left(C_{n}\right)$ and cyclic binary n-bit strings without 010 or 101:
\rightarrow Label edges of C_{n} from 1 to n
\rightarrow Given a digitally convex set S, construct a cyclic binary string S^{*} such that bit i is 1 if edge i is incident with a vertex in S, and 0 otherwise

Outline of proof

Background

Digital convexity in

 $\underline{k \text {-trees }}$Relation to other objects
Digital Convexity in
Cycles
Outline of proof
Generalization to powers of cycles
Cartesian Products
Binary $n \times m$ Arrays
Digital Convexity in
Cartesian Product of
Paths

Bijection between $\mathscr{D}\left(C_{n}\right)$ and cyclic binary n-bit strings without 010 or 101:
\rightarrow Label edges of C_{n} from 1 to n
\rightarrow Given a digitally convex set S, construct a cyclic binary string S^{*} such that bit i is 1 if edge i is incident with a vertex in S, and 0 otherwise

Outline of proof

Background

Digital convexity in

 $\underline{k \text {-trees }}$Relation to other objects
Digital Convexity in Cycles

Outline of proof
Generalization to powers of cycles
Cartesian Products
Binary $n \times m$ Arrays
Digital Convexity in Cartesian Product of Paths

Bijection between $\mathscr{D}\left(C_{n}\right)$ and cyclic binary n-bit strings without 010 or 101:
\rightarrow Label edges of C_{n} from 1 to n
\rightarrow Given a digitally convex set S, construct a cyclic binary string S^{*} such that bit i is 1 if edge i is incident with a vertex in S, and 0 otherwise

Outline of proof

Background

Digital convexity in

 k-treesRelation to other objects
Digital Convexity in Cycles
Outline of proof
Generalization to powers of cycles
Cartesian Products
Binary $n \times m$ Arrays
Digital Convexity in Cartesian Product of Paths

Bijection between $\mathscr{D}\left(C_{n}\right)$ and cyclic binary n-bit strings without 010 or 101:
\rightarrow Label edges of C_{n} from 1 to n
\rightarrow Given a digitally convex set S, construct a cyclic binary string S^{*} such that bit i is 1 if edge i is incident with a vertex in S, and 0 otherwise
\rightarrow No substring 010:

Outline of proof

Background

Digital convexity in

 k-treesRelation to other objects
Digital Convexity in Cycles
Outline of proof
Generalization to powers of cycles
Cartesian Products
Binary $n \times m$ Arrays
Digital Convexity in Cartesian Product of Paths

Bijection between $\mathscr{D}\left(C_{n}\right)$ and cyclic binary n-bit strings without 010 or 101:
\rightarrow Label edges of C_{n} from 1 to n
\rightarrow Given a digitally convex set S, construct a cyclic binary string S^{*} such that bit i is 1 if edge i is incident with a vertex in S, and 0 otherwise
$\rightarrow \quad$ No substring 101:

Generalization to powers of cycles

Background

Theorem: Let C_{n} be the cycle of order n and let $k \geq 1$. Then,

$$
\begin{aligned}
& n_{\mathscr{D}}\left(C_{i}^{k}\right)=2 \text { for } 3 \leq i \leq 2 k+1, n_{\mathscr{D}}\left(C_{j}^{k}\right)=2+j(j-2 k-1) \text { for } \\
& 2 k+2 \leq j \leq 2 k+4 \text { and, for } n \geq 2 k+5, \\
& \quad n_{\mathscr{D}}\left(C_{n}^{k}\right)=2 n_{\mathscr{D}}\left(C_{n-1}^{k}\right)-n_{\mathscr{D}}\left(C_{n-2}^{k}\right)+n_{\mathscr{D}}\left(C_{n-2 k-2}^{k}\right) .
\end{aligned}
$$

\rightarrow Proof uses a bijection between the sets in $\mathscr{D}\left(C_{n}^{k}\right)$ and the cyclic binary strings whose blocks (maximal runs of 0's or 1's) each have length at least $k+1$

Cartesian Products

Background

Digital convexity in k-trees

Relation to other objects
Digital Convexity in Cycles

Outline of proof
Generalization to
powers of cycles
Cartesian Products
Binary $n \times m$ Arrays
Digital Convexity in
Cartesian Product of
Paths

Definition: The Cartesian product of graphs G and H, denoted by $G \square H$ is the graph with vertex set $V(G \square H)=V(G) \times V(H)$ and such that two vertices (x, y) and (u, v) are adjacent in $G \square H$ if and only if $x=u$ in G and $y v \in E(H)$ or $y=v$ in H and $x u \in E(G)$.

Binary $n \times m$ Arrays

Background

Digital convexity in

Let A be an $n \times m$ binary array. Then A^{*} is the $n \times m$ binary array whose entries are the minimum over the closed neighbourhood of the corresponding entry in A

$$
A=\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array} \quad A^{*}=\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
$$

Digital Convexity in Cartesian Product of Paths

Background

Digital convexity in k-trees

Relation to other objects
Digital Convexity in Cycles

Outline of proof
Generalization to powers of cycles
Cartesian Products
Binary $n \times m$ Arrays
Digital Convexity in Cartesian Product of Paths

Theorem: Let $\mathscr{A}_{n, m}$ be the set of all $n \times m$ binary arrays. Then $n_{\mathscr{D}}\left(P_{n} \square P_{m}\right)=\left|\mathscr{A}_{n, m}^{*}\right|$.

Outline of proof:

Digital Convexity in Cartesian Product of Paths

Background

Digital convexity in k-trees

Relation to other objects
Digital Convexity in Cycles

Outline of proof
Generalization to powers of cycles

Cartesian Products
Binary $n \times m$ Arrays
Digital Convexity in Cartesian Product of Paths

Theorem: Let $\mathscr{A}_{n, m}$ be the set of all $n \times m$ binary arrays. Then $n_{\mathscr{D}}\left(P_{n} \square P_{m}\right)=\left|\mathscr{A}_{n, m}^{*}\right|$.

Outline of proof:

Digital Convexity in Cartesian Product of Paths

Background

Digital convexity in k-trees

Relation to other objects
Digital Convexity in
Cycles
Outline of proof
Generalization to powers of cycles
Cartesian Products
Binary $n \times m$ Arrays
Digital Convexity in Cartesian Product of Paths

Theorem: Let $\mathscr{A}_{n, m}$ be the set of all $n \times m$ binary arrays. Then $n_{\mathscr{D}}\left(P_{n} \square P_{m}\right)=\left|\mathscr{A}_{n, m}^{*}\right|$.

Outline of proof:

11

Digital Convexity in Cartesian Product of Paths

Background

Digital convexity in k-trees

Theorem: Let $\mathscr{A}_{n, m}$ be the set of all $n \times m$ binary arrays. Then $n_{\mathscr{D}}\left(P_{n} \square P_{m}\right)=\left|\mathscr{A}_{n, m}^{*}\right|$.
\rightarrow OEIS sequence A217637 - also equal to the number of maximal independence sets in $P_{n} \square P_{m} \square P_{2}$

Open Problems

Background

\rightarrow Is there a formula or upper/lower bounds on $n_{\mathscr{D}}(G \square H)$ in terms of $n_{\mathscr{D}}(G)$ and $n_{\mathscr{D}}(H)$?
\rightarrow What do the digitally convex sets look like in other graph products?
\rightarrow What happens to the number of digitally convex sets in a graph when an edge is added or removed?

Open Problems

\rightarrow Is there a formula or upper/lower bounds on $n_{\mathscr{D}}(G \square H)$ in terms of $n_{\mathscr{D}}(G)$ and $n_{\mathscr{D}}(H)$?
\rightarrow What do the digitally convex sets look like in other graph products?
\rightarrow What happens to the number of digitally convex sets in a graph when an edge is added or removed?

$$
n_{\mathscr{D}}\left(P_{4}\right)=6
$$

Open Problems

\rightarrow Is there a formula or upper/lower bounds on $n_{\mathscr{D}}(G \square H)$ in terms of $n_{\mathscr{D}}(G)$ and $n_{\mathscr{D}}(H)$?
\rightarrow What do the digitally convex sets look like in other graph products?
\rightarrow What happens to the number of digitally convex sets in a graph when an edge is added or removed?

$$
n_{\mathscr{D}}\left(P_{4}-e_{1}\right)=8
$$

Open Problems

\rightarrow Is there a formula or upper/lower bounds on $n_{\mathscr{D}}(G \square H)$ in terms of $n_{\mathscr{D}}(G)$ and $n_{\mathscr{D}}(H)$?
\rightarrow What do the digitally convex sets look like in other graph products?
\rightarrow What happens to the number of digitally convex sets in a graph when an edge is added or removed?

$$
n_{\mathscr{D}}\left(P_{4}-e_{2}\right)=4
$$

THANK YOU!

