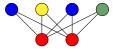


Extremal questions for vertex colorings of graphs

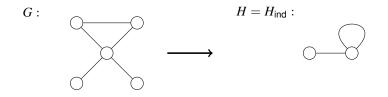
John Engbers

Department of Mathematical and Statistical Sciences Marquette University

Atlantic Graph Theory Seminar, April 2022

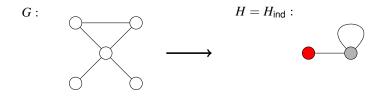


Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that preserves edge adjacency.



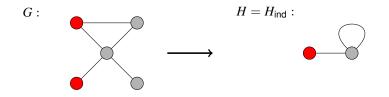
< 3 >

Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that preserves edge adjacency.



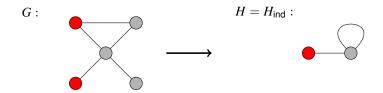
< 3 >

Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that preserves edge adjacency.



< 3 > <

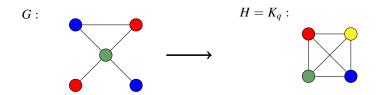
Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that preserves edge adjacency.



Examples: independent sets,

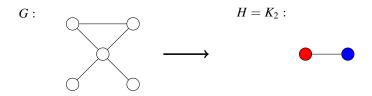
• □ ▶ • □ ▶ • □ ▶

Graph homomorphism (H**-coloring):** A map from V(G) to V(H) that preserves edge adjacency.



Examples: independent sets, proper *q*-colorings,

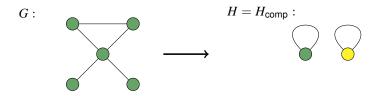
Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency.



Examples: independent sets, proper *q*-colorings, bipartite,

John	Eng	bers ((Marq	uette)
------	-----	--------	-------	--------

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

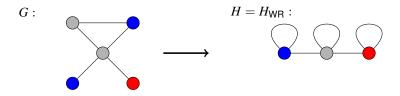


Examples: independent sets, proper *q*-colorings, bipartite, components,

John	Engt	oers (Marc	uette)	
------	------	--------	------	--------	--

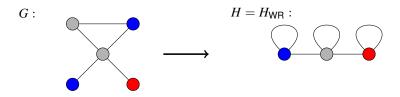
• □ ▶ • □ ▶ • □ ▶

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency.



Examples: independent sets, proper *q*-colorings, bipartite, components, Widom-Rowlinson

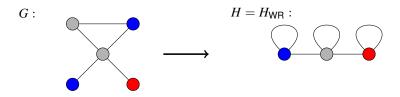
Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency.



Examples: independent sets, proper *q*-colorings, bipartite, components, Widom-Rowlinson

• Terminology: map/color the vertices of G

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency.

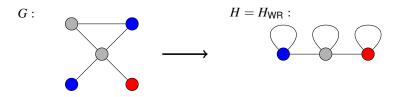


Examples: independent sets, proper *q*-colorings, bipartite, components, Widom-Rowlinson

- Terminology: map/color the vertices of G
- *H* is a 'blueprint'; encoding the coloring scheme (edge restrictions)

John Engbers (M	arquette)
-----------------	-----------

Graph homomorphism (*H***-coloring):** A map from V(G) to V(H) that preserves edge adjacency.



Examples: independent sets, proper *q*-colorings, bipartite, components, Widom-Rowlinson

- Terminology: map/color the vertices of G
- *H* is a 'blueprint'; encoding the coloring scheme (edge restrictions)
- Natural for *H* to have loops

イロト イポト イヨト イヨト

Notations:

 $Hom(G, H) = \{H \text{-colorings of } G\}$

æ

3/21

Notations:

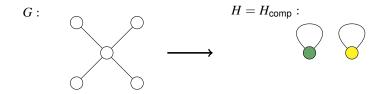
 $\begin{aligned} &\mathsf{Hom}(G,H) = \{H\text{-colorings of } G\} \\ &\mathsf{hom}(G,H) = |\mathsf{Hom}(G,H)| = \# \text{ } H\text{-colorings of } G \end{aligned}$

3

イロト イポト イヨト イヨト

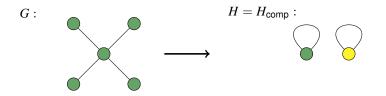
Notations:

 $\begin{aligned} &\mathsf{Hom}(G,H) = \{H\text{-colorings of } G\} \\ &\mathsf{hom}(G,H) = |\mathsf{Hom}(G,H)| = \# \text{ } H\text{-colorings of } G \end{aligned}$



Notations:

 $\begin{aligned} &\mathsf{Hom}(G,H) = \{H\text{-colorings of } G\} \\ &\mathsf{hom}(G,H) = |\mathsf{Hom}(G,H)| = \# \text{ } H\text{-colorings of } G \end{aligned}$

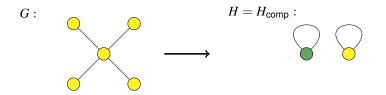


John Engbers	(Marquette)
--------------	-------------

April 2022

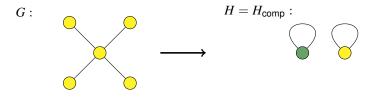
Notations:

 $\begin{aligned} &\mathsf{Hom}(G,H) = \{H\text{-colorings of } G\} \\ &\mathsf{hom}(G,H) = |\mathsf{Hom}(G,H)| = \# \text{ } H\text{-colorings of } G \end{aligned}$



Notations:

 $\begin{aligned} \mathsf{Hom}(G,H) &= \{H\text{-colorings of } G\} \\ \mathsf{hom}(G,H) &= |\mathsf{Hom}(G,H)| = \# \text{ } H\text{-colorings of } G \end{aligned}$

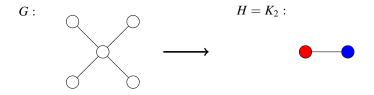


Note:

• $\hom(G, H_{\mathsf{comp}}) = 2^{\# \mathsf{components} \mathsf{ of } G}$

Notations:

 $\begin{aligned} &\mathsf{Hom}(G,H) = \{H\text{-colorings of } G\} \\ &\mathsf{hom}(G,H) = |\mathsf{Hom}(G,H)| = \# \text{ } H\text{-colorings of } G \end{aligned}$

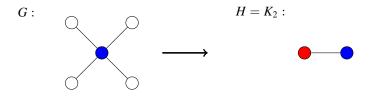


Note:

• $\hom(G, H_{\mathsf{comp}}) = 2^{\# \mathsf{components} \mathsf{ of } G}$

Notations:

 $\begin{aligned} &\mathsf{Hom}(G,H) = \{H\text{-colorings of } G\} \\ &\mathsf{hom}(G,H) = |\mathsf{Hom}(G,H)| = \# \text{ } H\text{-colorings of } G \end{aligned}$



Note:

• $\hom(G, H_{\mathsf{comp}}) = 2^{\# \mathsf{components} \mathsf{ of } G}$

Notations:

 $\begin{aligned} \mathsf{Hom}(G,H) &= \{H\text{-colorings of } G\} \\ \mathsf{hom}(G,H) &= |\mathsf{Hom}(G,H)| = \# \text{ } H\text{-colorings of } G \end{aligned}$



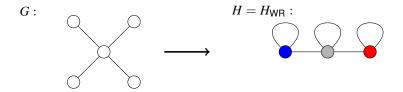
Note:

• $\hom(G, H_{\mathsf{comp}}) = 2^{\# \mathsf{components} \mathsf{ of } G}$

• $\hom(G, K_2) = \mathbf{1}_{\{G \text{ bipartite}\}} 2^{\# \text{ bipartite components of } G}$

Notations:

 $\begin{aligned} &\mathsf{Hom}(G,H) = \{H\text{-colorings of } G\} \\ &\mathsf{hom}(G,H) = |\mathsf{Hom}(G,H)| = \# \text{ } H\text{-colorings of } G \end{aligned}$



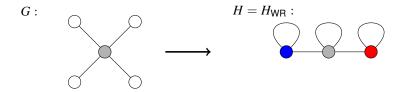
Note:

- $\hom(G, H_{\text{comp}}) = 2^{\# \text{ components of } G}$
- $\hom(G, K_2) = \mathbf{1}_{\{G \text{ bipartite}\}} 2^{\# \text{ bipartite components of } G}$
- $\hom(G, H_{\mathsf{WR}}) =$

向下 イヨト イヨト

Notations:

 $\begin{aligned} &\mathsf{Hom}(G,H) = \{H\text{-colorings of } G\} \\ &\mathsf{hom}(G,H) = |\mathsf{Hom}(G,H)| = \# \text{ } H\text{-colorings of } G \end{aligned}$



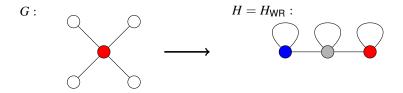
Note:

- $\hom(G, H_{\text{comp}}) = 2^{\# \text{ components of } G}$
- $\hom(G, K_2) = \mathbf{1}_{\{G \text{ bipartite}\}} 2^{\# \text{ bipartite components of } G}$
- $\hom(G, H_{WR}) = 3^4 +$

向下 イヨト イヨト

Notations:

 $\begin{aligned} &\mathsf{Hom}(G,H) = \{H\text{-colorings of } G\} \\ &\mathsf{hom}(G,H) = |\mathsf{Hom}(G,H)| = \# \text{ } H\text{-colorings of } G \end{aligned}$



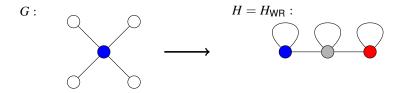
Note:

- $\hom(G, H_{\text{comp}}) = 2^{\# \text{ components of } G}$
- $\hom(G, K_2) = \mathbf{1}_{\{G \text{ bipartite}\}} 2^{\# \text{ bipartite components of } G}$
- $\hom(G, H_{\mathsf{WR}}) = 3^4 + 2^4 +$

伺 ト イ ヨ ト イ ヨ ト

Notations:

 $\begin{aligned} &\mathsf{Hom}(G,H) = \{H\text{-colorings of } G\} \\ &\mathsf{hom}(G,H) = |\mathsf{Hom}(G,H)| = \# \text{ } H\text{-colorings of } G \end{aligned}$



Note:

- $\hom(G, H_{\mathsf{comp}}) = 2^{\# \mathsf{components} \mathsf{ of } G}$
- $\hom(G, K_2) = \mathbf{1}_{\{G \text{ bipartite}\}} 2^{\#}$ bipartite components of G
- $\hom(G, H_{\mathsf{WR}}) = 3^4 + 2^4 + 2^4$

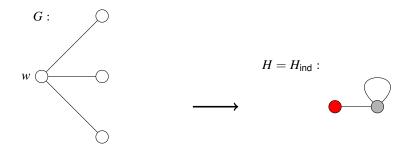
伺 ト イ ヨ ト イ ヨ ト

Also: d(v) is the degree of v (where loops count *once*) **Why?**

æ

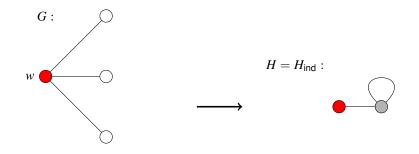
4/21

Also: d(v) is the degree of v (where loops count *once*) **Why?**



東下

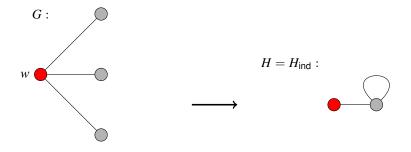
Also: d(v) is the degree of v (where loops count *once*) **Why?**



• w is red

John Engbers (Man	quette)
-------------------	--------	---

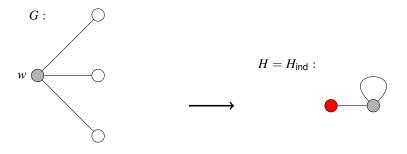
Also: d(v) is the degree of v (where loops count *once*) **Why?**



• w is red \implies each neighbor of w has 1 choice (d(red) = 1)

John	Engbers	(Marquette)

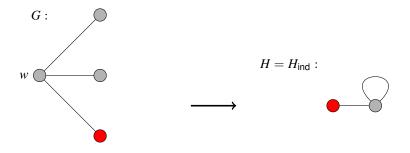
Also: d(v) is the degree of v (where loops count *once*) **Why?**



w is red ⇒ each neighbor of *w* has 1 choice (*d*(red) = 1) *w* is gray

John Engbers (N	larquette)
-----------------	------------

Also: d(v) is the degree of v (where loops count *once*) **Why?**

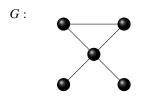


• w is red \implies each neighbor of w has 1 choice (d(red) = 1)

• w is gray \implies each neighbor of w has 2 choices (d(gray) = 2)

Hard constraint spin systems:

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

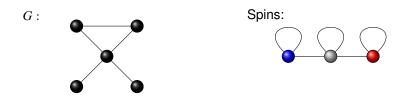


• • • • • • • • • • •

Hard constraint spin systems:

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

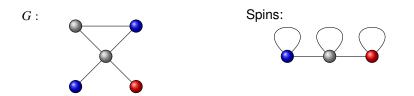
Place spins on those particles so that adjacent particles receive 'compatible' spins



Hard constraint spin systems:

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

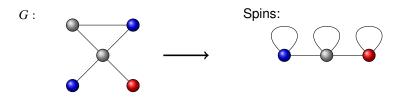
Place spins on those particles so that adjacent particles receive 'compatible' spins



Hard constraint spin systems:

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

Place spins on those particles so that adjacent particles receive 'compatible' spins

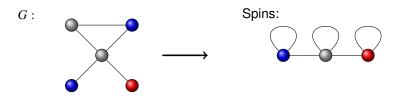


Spins = colors; a spin configuration is an H-coloring

Hard constraint spin systems:

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

Place spins on those particles so that adjacent particles receive 'compatible' spins



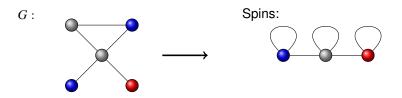
- Spins = colors; a spin configuration is an H-coloring
- Can put weights on the spins

Statistical physics interpretation

Hard constraint spin systems:

Imagine V(G) = particles, E(G) = adjacency (e.g. spatial proximity)

Place spins on those particles so that adjacent particles receive 'compatible' spins



- Spins = colors; a spin configuration is an H-coloring
- Can put weights on the spins
- This idea generalizes to putting objects (with relationships) into classes with hard rules

Question

Fix *H*. Given a family \mathcal{G} , which $G \in \mathcal{G}$ maximizes/minimizes hom(G, H)?

$$H = H_{\text{ind}}$$
:

John Engbers	(Marquette)
--------------	-------------

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

E

6/21

Question

Fix *H*. Given a family \mathcal{G} , which $G \in \mathcal{G}$ maximizes/minimizes hom(G, H)?

$$H = H_{\text{ind}}$$
:

Remarks:

• Pick *G* and *H*

э

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Question

Fix *H*. Given a family \mathcal{G} , which $G \in \mathcal{G}$ maximizes/minimizes hom(G, H)?

$$H = H_{\text{ind}}$$
:

Remarks:

- Pick *G* and *H*
- Often: Consider *H* (e.g. H_{ind}), answer for G_1 , then G_2 , ...

A (1) A (2) A (2) A

Question

Fix *H*. Given a family \mathcal{G} , which $G \in \mathcal{G}$ maximizes/minimizes hom(G, H)?

$$H = H_{\text{ind}}$$
:

Remarks:

- Pick *G* and *H*
- Often: Consider *H* (e.g. H_{ind}), answer for G_1 , then G_2 , ...

1

• Perspective switch: Consider \mathcal{G} , answer for H_1 , then H_2 , ...

Question

Fix *H*. Given a family \mathcal{G} , which $G \in \mathcal{G}$ maximizes/minimizes hom(G, H)?

$$H = H_{\text{ind}}$$
:

Remarks:

- Pick *G* and *H*
- Often: Consider *H* (e.g. H_{ind}), answer for G_1 , then G_2 , ...

- Perspective switch: Consider \mathcal{G} , answer for H_1 , then H_2 , ...
- Hope: A small list of graphs G maximize hom(G, H) for every H.

John Engbers	(Marquette)
--------------	-------------

Question

Fix *H*. Given a family \mathcal{G} , which $G \in \mathcal{G}$ maximizes/minimizes hom(G, H)?

$$H = H_{\text{ind}}$$
:

Remarks:

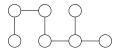
- Pick *G* and *H*
- Often: Consider *H* (e.g. H_{ind}), answer for G_1 , then G_2 , ...
- Perspective switch: Consider \mathcal{G} , answer for H_1 , then H_2 , ...
- Hope: A small list of graphs G maximize hom(G, H) for every H.
- Note: edges in *G* create coloring restrictions; interesting families force each graph *G* to have a large number of edges.

John Engbers	(Marquette)
--------------	-------------

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Question

 $\mathcal{G} = \{n \text{-vertex trees}\}$. Which $T \in \mathcal{G}$ maximizes/minimizes hom(T, H)?



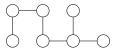
・ロト ・回ト ・ ヨト ・ ヨト

æ

Question

 $\mathcal{G} = \{n \text{-vertex trees}\}$. Which $T \in \mathcal{G}$ maximizes/minimizes hom(T, H)?

First: Proper colorings $H = K_q = \square$ (via greedy coloring):

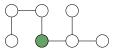


7/21

Question

 $\mathcal{G} = \{n \text{-vertex trees}\}$. Which $T \in \mathcal{G}$ maximizes/minimizes hom(T, H)?

First: Proper colorings $H = K_q = \square$ (via greedy coloring):

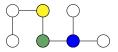


7/21

Question

 $\mathcal{G} = \{n \text{-vertex trees}\}$. Which $T \in \mathcal{G}$ maximizes/minimizes hom(T, H)?

First: Proper colorings $H = K_q = \square$ (via greedy coloring):

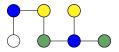


7/21

Question

 $\mathcal{G} = \{n \text{-vertex trees}\}$. Which $T \in \mathcal{G}$ maximizes/minimizes hom(T, H)?

First: Proper colorings $H = K_q = \square$ (via greedy coloring):

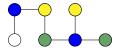


7/21

Question

 $\mathcal{G} = \{n \text{-vertex trees}\}.$ Which $T \in \mathcal{G}$ maximizes/minimizes hom(T, H)?

First: Proper colorings $H = K_q = \bigcup^{q}$ (via greedy coloring):



Note: For proper *q*-colorings $(H = K_q)$ and **any** *n*-vertex tree *T*:

 $\hom(T, K_q) =$

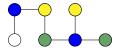
7/21

イロト イポト イヨト イヨト

Question

 $\mathcal{G} = \{n \text{-vertex trees}\}.$ Which $T \in \mathcal{G}$ maximizes/minimizes $\hom(T, H)$?

First: Proper colorings $H = K_q = \bigcup_{q=1}^{m}$ (via greedy coloring):



Note: For proper *q*-colorings $(H = K_q)$ and **any** *n*-vertex tree *T*:

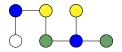
$$\hom(T, K_q) = q(q-1)^{n-1}$$

(Can also see this inductively by considering a leaf.)

Question

 $\mathcal{G} = \{n \text{-vertex trees}\}$. Which $T \in \mathcal{G}$ maximizes/minimizes $\hom(T, H)$?

First: Proper colorings $H = K_q = \bigotimes^{m}$ (via greedy coloring):



Note: For proper *q*-colorings ($H = K_q$) and **any** *n*-vertex tree *T*:

$$\hom(\boldsymbol{T},\boldsymbol{K}_q)=q(q-1)^{n-1}$$

(Can also see this inductively by considering a leaf.)

Also: This same argument shows hom(T, H) is constant on *n*-vertex trees *T* and any *regular H*.

Next: What about independent sets $H = H_{ind} = \bullet$?

Question: Which *n*-vertex trees have the maximum/minimum number of independent sets?

э

Next: What about independent sets $H = H_{ind} = \bullet$?

Question: Which *n*-vertex trees have the maximum/minimum number of independent sets?

Theorem (Prodinger-Tichy, 1982)

If *T* is an *n*-vertex tree, then with $P_n =$ and $S_n = V$

 $\hom(\mathbf{P}_n, H_{ind}) \leq \hom(T, H_{ind}) \leq \hom(\mathbf{S}_n, H_{ind}).$

イロン イヨン イヨン

Next: What about independent sets $H = H_{ind} = \bullet$?

Question: Which *n*-vertex trees have the maximum/minimum number of independent sets?

Theorem (Prodinger-Tichy, 1982)

If *T* is an *n*-vertex tree, then with $P_n =$ and $S_n =$

 $\operatorname{hom}(P_n, H_{ind}) \leq \operatorname{hom}(T, H_{ind}) \leq \operatorname{hom}(S_n, H_{ind}).$

Question: What about other H?

8/21

Next: What about independent sets $H = H_{ind} = \bullet$?

Question: Which *n*-vertex trees have the maximum/minimum number of independent sets?

Theorem (Prodinger-Tichy, 1982)

If *T* is an *n*-vertex tree, then with $P_n =$ and $S_n =$

 $\operatorname{hom}(P_n, H_{ind}) \leq \operatorname{hom}(T, H_{ind}) \leq \operatorname{hom}(S_n, H_{ind}).$

Question: What about other H?

Theorem (Hoffman-London, late 1960's)

For all *H* and $n \ge 1$,

 $\hom(P_n, H) \leq \hom(S_n, H).$

Thought: Star and path maximize/minimize hom(T, H) for all H?

8/21

John Engbers (Marquette)	
----------------	------------	--

< □ > < □ > < □ > < □ >

E

9/21

Question: Fix *H*. Which *n*-vertex tree maximizes hom(T, H)?

Question: Fix *H*. Which *n*-vertex tree maximizes hom(T, H)?

Theorem (Sidorenko 1994, Csikvári-Lin 2014)

For any *H* and any *n*-vertex tree we have

 $\hom(T,H) \le \hom(\underline{S_n},H).$

John	Engt	oers (Marc	uette)	
------	------	--------	------	--------	--

Question: Fix *H*. Which *n*-vertex tree maximizes hom(T, H)?

Theorem (Sidorenko 1994, Csikvári-Lin 2014)

For any *H* and any *n*-vertex tree we have

 $\hom(T,H) \le \hom(\underline{S_n},H).$

Theorem (E.-Galvin 2017)

For any H and any n-vertex tree with n large enough we have

 $\hom(T,H) \le \hom(K_{1,n-1},H).$

9/21

Question: Fix *H*. Which *n*-vertex tree maximizes hom(T, H)?

Theorem (Sidorenko 1994, Csikvári-Lin 2014)

For any *H* and any *n*-vertex tree we have

 $\hom(T,H) \le \hom(\underline{S_n},H).$

Theorem (E.-Galvin 2017)

For any H and any n-vertex tree with n large enough we have

 $\hom(T,H) \le \hom(K_{1,n-1},H).$

Note: Ideas from the latter proof use stability; have extended to results on *n*-vertex ℓ -connected | *k*-chromatic | min-degree ℓ^1 graphs

- Joint work with Galvin, Erey, Keough, Short, Fox, He
- Maximizer: " $K_{\ell,n-\ell}$:"

¹More on this in a few minutes

・ロ・・ (日・・ 日・・ 日・・

John Engbers (Marquette)	John	Engbers	(Marquette)
--------------------------	------	---------	-------------

10/21

(ロ) (部) (E) (E) (E)

So Far: *H* regular (e.g. $H = K_q = \square$) and $H = H_{ind} = -\square$

Thought: The path P_n minimizes hom(T, H) for all H.

3

イロト イポト イヨト イヨト

So Far: *H* regular (e.g. $H = K_q = \square$) and $H = H_{ind} = -\square$

Thought: The path P_n minimizes hom(T, H) for all H.

Surprise: It doesn't!

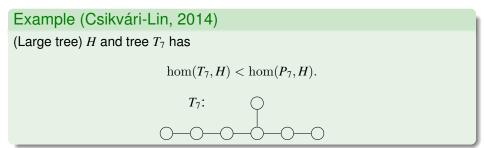
3

イロト イポト イヨト イヨト

So Far: *H* regular (e.g. $H = K_q = \bigotimes$) and $H = H_{ind} = \bullet$

Thought: The path P_n minimizes hom(T, H) for all H.

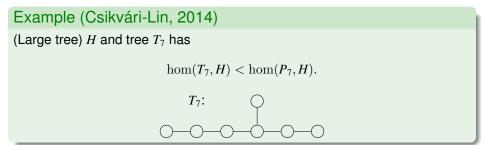
Surprise: It doesn't!



So Far: *H* regular (e.g. $H = K_q = \bigotimes$) and $H = H_{ind} = \bullet$

Thought: The path P_n minimizes hom(T, H) for all H.

Surprise: It doesn't!



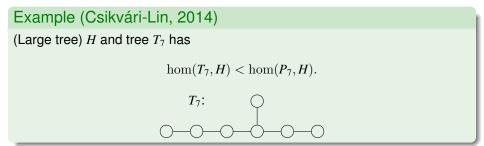
Open Question: Which H have P_n the minimizing tree?

Open Question: If *H* has $\leq n$ vertices, is $hom(P_n, H) \leq hom(T, H)$?

So Far: *H* regular (e.g. $H = K_q = \bigotimes$) and $H = H_{ind} = \bullet$

Thought: The path P_n minimizes hom(T, H) for all H.

Surprise: It doesn't!



Open Question: Which H have P_n the minimizing tree?

Open Question: If *H* has $\leq n$ vertices, is $hom(P_n, H) \leq hom(T, H)$?

Question: What happens with $H = H_{WR}$?

Note: *H*_{ind}: isolated vertex plus 1 looped dominating vertex.

æ

11/21

Note: *H*_{ind}: isolated vertex plus 1 looped dominating vertex.

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

æ

Note: H_{ind} : isolated vertex plus 1 looped dominating vertex.

Also: H_{WR} : two looped vertices plus 1 looped dominating vertex.

John Engbers	(Marquette)
--------------	-------------

Note: H_{ind} : isolated vertex plus 1 looped dominating vertex.

Also: H_{WR} : two looped vertices plus 1 looped dominating vertex.

John Engbers	(Marquette)
--------------	-------------

11/21

Note: H_{ind} : isolated vertex plus 1 looped dominating vertex.

Also: H_{WR} : two looped vertices plus 1 looped dominating vertex.

Theorem (E.-Galvin 2017)

Suppose *H* is constructed from a regular graph *H'* by adding $\ell \ge 1$ looped dominating vertices. Then for any *n*-vertex tree *T* we have

 $\hom(\mathbf{P}_n, H) \le \hom(T, H).$

 $\ell = 1$; *H'*-regular: *P_n* minimizes *partial H'*-colorings of *n*-vertex trees.

John Engbers	(Marquette)
--------------	-------------

Idea of Proof: Use $H_{WR} =$; proceed by induction

э

12/21

Idea of Proof: Use $H_{WR} = \bigvee_{V} \bigvee_{W}$; proceed by induction

First, for any tree *T*, compute (inductively) $hom(T, H_{WR})$:

 $\hom(T, H_{\mathsf{W}\mathsf{R}}) = \hom(T, H_{\mathsf{W}\mathsf{R}}|\nu) + \hom(T, H_{\mathsf{W}\mathsf{R}}|\nu) + \hom(T, H_{\mathsf{W}\mathsf{R}}|\nu)$

12/21

Idea of Proof: Use $H_{WR} = \bigvee_{V} \bigvee_{W}$; proceed by induction

First, for any tree *T*, compute (inductively) $hom(T, H_{WR})$:

$$\begin{aligned} \hom(T, H_{\mathsf{WR}}) &= \hom(T, H_{\mathsf{WR}}|v) + \hom(T, H_{\mathsf{WR}}|v) + \hom(T, H_{\mathsf{WR}}|v) \\ &= \hom(T - v, H_{\mathsf{WR}}) + \\ \mod(T - v, H_{\mathsf{WR}}|w) + \hom(T - v, H_{\mathsf{WR}}|w) + \\ \hom(T - v, H_{\mathsf{WR}}|w) + \hom(T - v, H_{\mathsf{WR}}|w) \end{aligned}$$

• • • • • • • • • • •

Idea of Proof: Use $H_{WR} = \bigvee_{V} \bigvee_{W}$; proceed by induction

First, for any tree *T*, compute (inductively) $hom(T, H_{WR})$:

$$\begin{aligned} \hom(T, H_{\mathsf{WR}}) &= \hom(T, H_{\mathsf{WR}}|v) + \hom(T, H_{\mathsf{WR}}|v) + \hom(T, H_{\mathsf{WR}}|v) \\ &= \hom(T - v, H_{\mathsf{WR}}) + \\ \hom(T - v, H_{\mathsf{WR}}|w) + \hom(T - v, H_{\mathsf{WR}}|w) + \\ \hom(T - v, H_{\mathsf{WR}}|w) + \hom(T - v, H_{\mathsf{WR}}|w) \\ &= 2\hom(T - v, H_{\mathsf{WR}}) + \hom(T - v - w, H_{\mathsf{WR}}) \end{aligned}$$

• • • • • • • • • • •

Idea of Proof: Use $H_{WR} = \bigvee_{V} \bigvee_{W}$; proceed by induction

First, for any tree *T*, compute (inductively) $hom(T, H_{WR})$:

$$\begin{aligned} \operatorname{hom}(T, H_{\mathsf{WR}}) &= \operatorname{hom}(T, H_{\mathsf{WR}}|v) + \operatorname{hom}(T, H_{\mathsf{WR}}|v) + \operatorname{hom}(T, H_{\mathsf{WR}}|v) \\ &= \operatorname{hom}(T - v, H_{\mathsf{WR}}) + \\ \operatorname{hom}(T - v, H_{\mathsf{WR}}|w) + \operatorname{hom}(T - v, H_{\mathsf{WR}}|w) + \\ \operatorname{hom}(T - v, H_{\mathsf{WR}}|w) + \operatorname{hom}(T - v, H_{\mathsf{WR}}|w) \\ &= 2\operatorname{hom}(T - v, H_{\mathsf{WR}}) + \operatorname{hom}(T - v - w, H_{\mathsf{WR}}) \end{aligned}$$

so in particular

$$\hom(P_n, H_{\mathsf{WR}}) = 2 \hom(P_{n-1}, H_{\mathsf{WR}}) + \hom(P_{n-2}, H_{\mathsf{WR}})$$

Note: We minimize over *n*-vertex *forests* to deal with T - v - w

John Engbers	

Math pause

Engbers family on/off paths; saw trees and night stars; kids colored in restaurants

Zion NP, Utah, USA, March 2022.

John Engbers (N	larquette)
-----------------	------------

Image: A math a math

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

John Engbers (Marquette)	
----------------	------------	--

イロト イヨト イヨト イヨト

æ

14/21

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

 $\mathcal{G} = n$ -vertex, *m*-edge graphs

æ

14/21

< ロ > < 同 > < 臣 > < 臣 > -

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

 \mathcal{G} = *n*-vertex, *m*-edge graphs **A**: Some results, not one maximizer *G*

14/21

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

 $\mathcal{G} = n$ -vertex, *m*-edge graphs **A**: Some results, not one maximizer *G*

Theorem (Kahn

 $\mathcal{G} = n$ -vertex d-regular bipartite graphs

• (Independent Sets) $hom(G, H_{ind})$ maximized by $\frac{n}{2d}K_{d,d}$ (divisibility?)

$$\frac{n}{2d}K_{d,d}$$

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

 $\mathcal{G} = n$ -vertex, *m*-edge graphs **A**: Some results, not one maximizer *G*

Theorem (Kahn, Galvin-Tetali)

- $\mathcal{G} = n$ -vertex d-regular bipartite graphs
 - (Independent Sets) $hom(G, H_{ind})$ maximized by $\frac{n}{2d}K_{d,d}$ (divisibility?)

• (All H) hom(G, H) maximized by $\frac{n}{2d}K_{d,d}$

Question

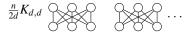
Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

 $\mathcal{G} = n$ -vertex, *m*-edge graphs **A**: Some results, not one maximizer *G*

Theorem (Kahn, Galvin-Tetali)

- $\mathcal{G} = n$ -vertex d-regular bipartite graphs
 - (Independent Sets) $hom(G, H_{ind})$ maximized by $\frac{n}{2d}K_{d,d}$ (divisibility?)

• (All H) hom(G, H) maximized by $\frac{n}{2d}K_{d,d}$



Q: Can we remove the bipartite condition for all H?

John Engbers	(Marquette)
--------------	-------------

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

 $\mathcal{G} = n$ -vertex, *m*-edge graphs **A**: Some results, not one maximizer *G*

Theorem (Kahn, Galvin-Tetali)

 $\mathcal{G} = n$ -vertex d-regular bipartite graphs

• (Independent Sets) $hom(G, H_{ind})$ maximized by $\frac{n}{2d}K_{d,d}$ (divisibility?)

• (All H) hom(G, H) maximized by $\frac{n}{2d}K_{d,d}$

$$\frac{n}{2d}K_{d,d}$$

Q: Can we remove the bipartite condition for all *H*? **A**: No, $H_{comp} = \bigcirc \bigcirc$

John	Enabers	(Marquette)

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

 $\mathcal{G} = n$ -vertex, *m*-edge graphs **A**: Some results, not one maximizer *G*

Theorem (Kahn, Galvin-Tetali)

 $\mathcal{G} = n$ -vertex d-regular bipartite graphs

• (Independent Sets) $hom(G, H_{ind})$ maximized by $\frac{n}{2d}K_{d,d}$ (divisibility?)

• (All H) $\hom(G, H)$ maximized by $\frac{n}{2d}K_{d,d}$

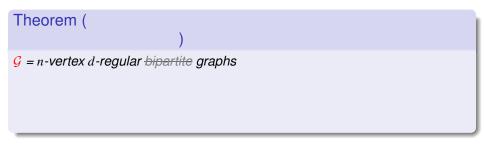
$$\frac{n}{2d}K_{d,d}$$

Q: Can we remove the bipartite condition for all *H*? **A**: No, $H_{comp} = \bigcirc \bigcirc$ **A**: (Sah-Sawhney-Stoner-Zhao, 2020) Holds for bipartite triangle-free graphs in *G* for all *H*. (Best possible)

・ロン ・回 と ・ ヨ と ・

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

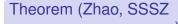


イロト イポト イヨト イヨト

3

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?



 $\mathcal{G} = n$ -vertex d-regular bipartite graphs

• (independent sets, K_q , some H) hom(G, H) maximized by $\frac{n}{2d}K_{d,d}$

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

Theorem (Zhao, SSSZ, Galvin, Cohen-Perkins-Tetali, Csikvári-C-P-T, Sernau)

 $\mathcal{G} = n$ -vertex d-regular bipartite graphs

- (independent sets, K_q , some H) hom(G, H) maximized by $\frac{n}{2d}K_{d,d}$
- (*H*_{WR}, other *H*) hom(*G*, *H*) maximized by $\frac{n}{d+1}K_{d+1}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

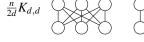
Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

Theorem (Zhao, SSSZ, Galvin, Cohen-Perkins-Tetali, Csikvári-C-P-T, Sernau)

 $\mathcal{G} = n$ -vertex d-regular bipartite graphs

- (independent sets, K_q , some H) hom(G, H) maximized by $\frac{n}{2d}K_{d,d}$
- (*H*_{WR}, other *H*) hom(*G*, *H*) maximized by $\frac{n}{d+1}K_{d+1}$
- (still other H) copies of other small graphs beat the two below





(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

. . .

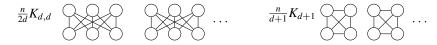
Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

Theorem (Zhao, SSSZ, Galvin, Cohen-Perkins-Tetali, Csikvári-C-P-T, Sernau)

 $\mathcal{G} = n$ -vertex d-regular bipartite graphs

- (independent sets, K_q , some H) hom(G, H) maximized by $\frac{n}{2d}K_{d,d}$
- (*H*_{WR}, other *H*) hom(*G*, *H*) maximized by $\frac{n}{d+1}K_{d+1}$
- (still other H) copies of other small graphs beat the two below



Conjecture: Maximizer: copies of graph with $d + 1 \le |V| \le c(d)$? (c(d) = 2d?) (Note: True for d = 1 (trivial), d = 2 (E.))

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

Theorem (

 $\mathcal{G}(n) = n$ -vertex graphs with minimum degree δ (δ fixed, small)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

Theorem (Cutler-Radcliffe

 $\mathcal{G}(n) = n$ -vertex graphs with minimum degree δ (δ fixed, small)

• (independent sets) $hom(G, H_{ind})$ maximized by $K_{\delta, n-\delta}$

$$K_{\delta,n-\delta}$$
: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

Theorem (Cutler-Radcliffe, E.

 $\mathcal{G}(n) = n$ -vertex graphs with minimum degree δ (δ fixed, small)

- (independent sets) $hom(G, H_{ind})$ maximized by $K_{\delta, n-\delta}$
- (all $H, \delta = 1, 2$) hom(G, H) maximized by $\frac{n}{\delta+1}K_{\delta+1}, \frac{n}{2\delta}K_{\delta,\delta}$, or $K_{\delta,n-\delta}$

$$K_{\delta,n-\delta}$$
:

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

Theorem (Cutler-Radcliffe, E., Guggiari-Scott)

 $\mathcal{G}(n) = n$ -vertex graphs with minimum degree δ (δ fixed, small)

- (independent sets) $hom(G, H_{ind})$ maximized by $K_{\delta, n-\delta}$
- (all $H, \delta = 1, 2$) hom(G, H) maximized by $\frac{n}{\delta+1}K_{\delta+1}$, $\frac{n}{2\delta}K_{\delta,\delta}$, or $K_{\delta,n-\delta}$
- (δ > 2) There are H where copies of a small graph beats the above three graphs

$$K_{\delta,n-\delta}$$
: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Question

Fix *H*. Given a family of graphs \mathcal{G} , which $G \in \mathcal{G}$ maximizes hom(G, H)?

Theorem (Cutler-Radcliffe, E., Guggiari-Scott)

 $\mathcal{G}(n) = n$ -vertex graphs with minimum degree δ (δ fixed, small)

- (independent sets) $hom(G, H_{ind})$ maximized by $K_{\delta, n-\delta}$
- (all $H, \delta = 1, 2$) hom(G, H) maximized by $\frac{n}{\delta+1}K_{\delta+1}, \frac{n}{2\delta}K_{\delta,\delta}$, or $K_{\delta,n-\delta}$
- (δ > 2) There are H where copies of a small graph beats the above three graphs

$$K_{\delta,n-\delta}$$
: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Conjecture: Max: copies of graph $(\delta + 1 \le |V| \le c(\delta))$ or $K_{\delta,n-\delta}$?

・ロット (母) ・ ヨ) ・ ヨ)

 $\mathcal{G}(n) = n$ -vertex graphs with minimum degree δ (δ fixed, small).

Conjecture: Max of hom(*G*, *H*) for any *H*: copies of graph ($\delta + 1 \le |V| \le c(\delta)$) or $K_{\delta,n-\delta}$

```
Theorem (E., 2022+)
```

Fix δ and H. Max of hom(G, H): copies of graph ($\delta + 1 \le |V| \le c(\delta, H)$) or $K_{\delta, n-\delta}$

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶

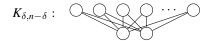
 $\mathcal{G}(n) = n$ -vertex graphs with minimum degree δ (δ fixed, small).

Conjecture: Max of hom(*G*, *H*) for any *H*: copies of graph ($\delta + 1 \le |V| \le c(\delta)$) or $K_{\delta,n-\delta}$

Theorem (E., 2022+)

Fix δ and H. Max of hom(G, H): copies of graph ($\delta + 1 \le |V| \le c(\delta, H)$) or $K_{\delta, n-\delta}$

Next: Find conditions on *H* to make $K_{\delta,n-\delta}$ maximizer



Ideally: Condition on *H* so all "small" *G* have hom(G, H) "small". **Partial Progress...**

John	Engbers	(Marc	uette)

Theorem (E., 2022+)

Fix *H* with hom $(K_{1,\delta}, H) < (\Delta_H)^{1+\delta}$. For *n* large and *G n*-vertex with min degree δ ,

 $\hom(G, H) \leq \hom(K_{\delta, n-\delta}, H).$

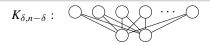
3

18/21

Theorem (E., 2022+)

Fix *H* with $hom(K_{1,\delta}, H) < (\Delta_H)^{1+\delta}$. For *n* large and *G n*-vertex with min degree δ ,

 $\hom(G,H) \leq \hom(K_{\delta,n-\delta},H).$

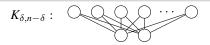


Ex: $H_{WR} = \bigcirc \bigcirc \bigcirc \bigcirc : \hom(K_{1,\delta}, H_{WR}) = 3^{\delta} + 2^{\delta+1} < 3^{\delta+1} \checkmark$ **Ex:** $H = P_3 = \bullet \bullet \bullet : \hom(K_{1,\delta}, P_3) = 2^{\delta} + 2 < 2^{\delta+1} (\delta > 1) \checkmark$ **Ex:** $H = K_3 = \bullet \bullet \circ : \hom(K_{1,\delta}, K_3) = 3 \cdot 2^{\delta} \text{ vs } 2^{\delta+1} \checkmark$

Theorem (E., 2022+)

Fix *H* with $hom(K_{1,\delta}, H) < (\Delta_H)^{1+\delta}$. For *n* large and *G n*-vertex with min degree δ ,

 $\hom(G, H) \leq \hom(K_{\delta, n-\delta}, H).$



Ex: $H_{WR} = \bigcirc \bigcirc \bigcirc \bigcirc : \hom(K_{1,\delta}, H_{WR}) = 3^{\delta} + 2^{\delta+1} < 3^{\delta+1} \checkmark$ **Ex:** $H = P_3 = \bullet - \bullet : \hom(K_{1,\delta}, P_3) = 2^{\delta} + 2 < 2^{\delta+1} (\delta > 1) \checkmark$ **Ex:** $H = K_3 = \bullet - \bullet : \hom(K_{1,\delta}, K_3) = 3 \cdot 2^{\delta} \text{ vs } 2^{\delta+1} \checkmark$

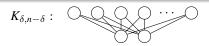
Idea: Use greedy coloring (on an ordering of vertices) Stability technique:

・ロ・・ (日・・ 日・・ 日・・

Theorem (E., 2022+)

Fix *H* with $hom(K_{1,\delta}, H) < (\Delta_H)^{1+\delta}$. For *n* large and *G n*-vertex with min degree δ ,

 $\hom(G, H) \leq \hom(K_{\delta, n-\delta}, H).$



Ex: $H_{WR} = \bigcirc \bigcirc \bigcirc \bigcirc : \hom(K_{1,\delta}, H_{WR}) = 3^{\delta} + 2^{\delta+1} < 3^{\delta+1} \checkmark$ **Ex:** $H = P_3 = \bullet \bullet \bullet : \hom(K_{1,\delta}, P_3) = 2^{\delta} + 2 < 2^{\delta+1} (\delta > 1) \checkmark$ **Ex:** $H = K_3 = \bullet \bullet \circ : \hom(K_{1,\delta}, K_3) = 3 \cdot 2^{\delta} \text{ vs } 2^{\delta+1} \checkmark$

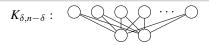
Idea: Use greedy coloring (on an ordering of vertices) Stability technique:

• Step 0: $\hom(K_{\delta,n-\delta},H) \ge (\Delta_H)^{n-\delta}$ (color δ -class with vertex of max degree Δ_H)

Theorem (E., 2022+)

Fix *H* with $hom(K_{1,\delta}, H) < (\Delta_H)^{1+\delta}$. For *n* large and *G n*-vertex with min degree δ ,

 $\hom(G, H) \le \hom(K_{\delta, n-\delta}, H).$



Ex: $H_{WR} = \bigcirc \bigcirc \bigcirc \bigcirc : \hom(K_{1,\delta}, H_{WR}) = 3^{\delta} + 2^{\delta+1} < 3^{\delta+1} \checkmark$ **Ex:** $H = P_3 = \bullet \bullet \circ : \hom(K_{1,\delta}, P_3) = 2^{\delta} + 2 < 2^{\delta+1} (\delta > 1) \checkmark$

Ex: $H = K_3 = 4$: hom $(K_{1,\delta}, K_3) = 3 \cdot 2^{\delta}$ vs $2^{\delta+1}$

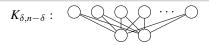
Idea: Use greedy coloring (on an ordering of vertices) Stability technique:

- Step 0: hom(K_{δ,n-δ}, H) ≥ (Δ_H)^{n-δ} (color δ-class with vertex of max degree Δ_H)
- Step 1: Extremal graph: structurally close to K_{δ,n-δ} (has K_{δ,εn})

Theorem (E., 2022+)

Fix *H* with $hom(K_{1,\delta}, H) < (\Delta_H)^{1+\delta}$. For *n* large and *G n*-vertex with min degree δ ,

 $\hom(G, H) \le \hom(K_{\delta, n-\delta}, H).$



- **EX:** $H_{WR} = \bigcirc \bigcirc \bigcirc \bigcirc$: hom $(K_{1,\delta}, H_{WR}) = 3^{\delta} + 2^{\delta+1} < 3^{\delta+1} \checkmark$
- **Ex:** $H = P_3 = \bullet \bullet \bullet$: hom $(K_{1,\delta}, P_3) = 2^{\delta} + 2 < 2^{\delta+1}$ ($\delta > 1$) \checkmark

Ex: $H = K_3 = 4$: hom $(K_{1,\delta}, K_3) = 3 \cdot 2^{\delta}$ vs $2^{\delta+1}$

Idea: Use greedy coloring (on an ordering of vertices) Stability technique:

- Step 0: hom(K_{δ,n-δ}, H) ≥ (Δ_H)^{n-δ} (color δ-class with vertex of max degree Δ_H)
- Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$ (has $K_{\delta,\varepsilon n}$)
- Step 2: Small blemishes added to $K_{\delta,n-\delta}$ can't be extremal

John Engbers (Marquette)

Step 0: hom $(K_{\delta,n-\delta},H) \ge (\Delta_H)^{n-\delta} = (1/\Delta_H)^{\delta} (\Delta_H)^n$

Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

э

19/21

Step 0: hom $(K_{\delta,n-\delta},H) \ge (\Delta_H)^{n-\delta} = (1/\Delta_H)^{\delta} (\Delta_H)^n$

Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

• Extremal \implies not many disjoint $K_{1,\delta}$'s

(Each copy has $\leq \Delta_{H}^{\delta+1} - 1$ colorings $\implies \leq e^{\frac{-\#\kappa_{1,\delta}}{(\Delta_{H})^{\delta+1}}} (\Delta_{H})^{n}$ col's)

Step 0: hom $(K_{\delta,n-\delta},H) \ge (\Delta_H)^{n-\delta} = (1/\Delta_H)^{\delta} (\Delta_H)^n$

Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

• Extremal \implies not many disjoint $K_{1,\delta}$'s

(Each copy has $\leq \Delta_{H}^{\delta+1} - 1$ colorings $\implies \leq e^{\frac{-\#\kappa_{1,\delta}}{(\Delta_{H})^{\delta+1}}} (\Delta_{H})^{n}$ col's)

- Fix a maximum set S; Color S
- Look at $v \in V(G) \setminus S$; has neighbor in *S*.

(日)

Step 0: hom $(K_{\delta,n-\delta},H) \ge (\Delta_H)^{n-\delta} = (1/\Delta_H)^{\delta} (\Delta_H)^n$

Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

• Extremal \implies not many disjoint $K_{1,\delta}$'s

(Each copy has $\leq \Delta_{H}^{\delta+1} - 1$ colorings $\implies \leq e^{\frac{-\#\kappa_{1,\delta}}{(\Delta_{H})^{\delta+1}}} (\Delta_{H})^{n}$ col's)

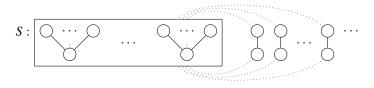
- Fix a maximum set S; Color S
- Look at $v \in V(G) \setminus S$; has neighbor in *S*.
 - Key lemma: $\langle (\Delta_H)^2$ ways to color adjacent vertices in $V(G) \setminus S$

Step 0: hom $(K_{\delta,n-\delta},H) \ge (\Delta_H)^{n-\delta} = (1/\Delta_H)^{\delta} (\Delta_H)^n$

Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

• Extremal \implies not many disjoint $K_{1,\delta}$'s

(Each copy has $\leq \Delta_{H}^{\delta+1} - 1$ colorings $\implies \leq e^{\frac{-\#\kappa_{1,\delta}}{(\Delta_{H})^{\delta+1}}} (\Delta_{H})^{n}$ col's)



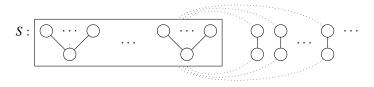
- Fix a maximum set S; Color S
- Look at $v \in V(G) \setminus S$; has neighbor in *S*.
 - Key lemma: < (∆_H)² ways to color adjacent vertices in V(G) \ S
- Can't have large matching not in S

Step 0: hom $(K_{\delta,n-\delta},H) \ge (\Delta_H)^{n-\delta} = (1/\Delta_H)^{\delta} (\Delta_H)^n$

Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

• Extremal \implies not many disjoint $K_{1,\delta}$'s

(Each copy has $\leq \Delta_H^{\delta+1} - 1$ colorings $\implies \leq e^{\frac{-\#\kappa_{1,\delta}}{(\Delta_H)^{\delta+1}}} (\Delta_H)^n$ col's)



- Fix a maximum set S; Color S
- Look at $v \in V(G) \setminus S$; has neighbor in *S*.
 - Key lemma: $< (\Delta_H)^2$ ways to color adjacent vertices in $V(G) \setminus S$
- Can't have large matching not in S
- Say *S* and endpoints of maximal matching outside *S* have *c* total vertices.

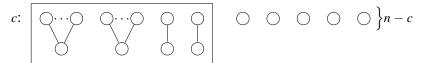
Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

- Say *S* and endpoints of maximal matching outside *S* have *c* total vertices.
- n-c vertices have all neighbors among c vertices

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

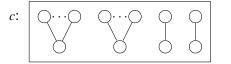
- Say *S* and endpoints of maximal matching outside *S* have *c* total vertices.
- n − c vertices have all neighbors among c vertices



20/21

Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

- Say *S* and endpoints of maximal matching outside *S* have *c* total vertices.
- n − c vertices have all neighbors among c vertices

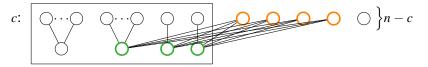


Facts:

• n-c vertices form an independent set

Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

- Say *S* and endpoints of maximal matching outside *S* have *c* total vertices.
- n − c vertices have all neighbors among c vertices



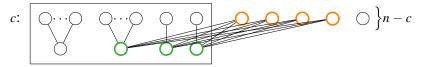
Facts:

- n-c vertices form an independent set
 - (PHP) Some set of δ vertices has $\approx \frac{n-c}{\binom{c}{c}} = \varepsilon n$ neighbors.

20/21

Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

- Say *S* and endpoints of maximal matching outside *S* have *c* total vertices.
- n − c vertices have all neighbors among c vertices



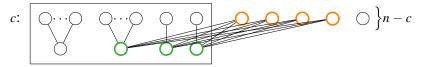
Facts:

- n-c vertices form an independent set
 - (PHP) Some set of δ vertices has $\approx \frac{n-c}{c} = \varepsilon n$ neighbors.
 - $K_{\delta,\varepsilon n}$ is a subgraph (structurally close)

20/21

Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

- Say *S* and endpoints of maximal matching outside *S* have *c* total vertices.
- *n* − *c* vertices have all neighbors among *c* vertices



Facts:

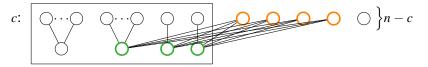
- *n* − *c* vertices form an independent set
 - (PHP) Some set of δ vertices has $\approx \frac{n-c}{c} = \varepsilon n$ neighbors.
 - $K_{\delta,\varepsilon n}$ is a subgraph (structurally close)
- Step 2: Structurally close graphs
 - *K*_{δ,εn} present count driven by colors on δ-class having Δ_H common neighbors.

Any vertices not adjacent to δ dampens count in leading term

イロト イポト イヨト イヨト

Step 1: Extremal graph: structurally close to $K_{\delta,n-\delta}$

- Say *S* and endpoints of maximal matching outside *S* have *c* total vertices.
- *n c* vertices have all neighbors among *c* vertices



Facts:

- *n* − *c* vertices form an independent set
 - (PHP) Some set of δ vertices has $\approx \frac{n-c}{c} = \varepsilon n$ neighbors.
 - $K_{\delta,\varepsilon n}$ is a subgraph (structurally close)
- Step 2: Structurally close graphs
 - *K*_{δ,εn} present count driven by colors on δ-class having Δ_H common neighbors.

Any vertices not adjacent to δ dampens count in leading term $\implies K_{\delta,n-\delta}$

Shown: P_n minimizes over regular plus looped dominating H (eg H_{WR} , H_{ind})

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Shown: P_n minimizes over regular plus looped dominating H (eg H_{WR} , H_{ind})

Open Question: Which *H* have P_n as the minimizing tree?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Shown: P_n minimizes over regular plus looped dominating H (eg H_{WR} , H_{ind})

Open Question: Which *H* have P_n as the minimizing tree?

Open Question: Is P_n the minimizing tree over *H* with $\leq n$ vertices?

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Shown: P_n minimizes over regular plus looped dominating H (eg H_{WR} , H_{ind})

Open Question: Which *H* have P_n as the minimizing tree?

Open Question: Is P_n the minimizing tree over *H* with $\leq n$ vertices?

Open Question: Which *n*-vertex trees T^* can be (non-trivial) minimizers $(\hom(T^*, H) \le \hom(T, H))$?

Shown: P_n minimizes over regular plus looped dominating H (eg H_{WR} , H_{ind})

Open Question: Which *H* have P_n as the minimizing tree?

Open Question: Is P_n the minimizing tree over *H* with $\leq n$ vertices?

Open Question: Which *n*-vertex trees T^* can be (non-trivial) minimizers $(\hom(T^*, H) \le \hom(T, H))$?

Open Question: For any *H* and $\mathcal{G}(n) = n$ -vertex graphs with min degree δ , is hom(G, H) maximized by copies of graph ($\delta + 1 \leq |V| \leq c(\delta)$) or $K_{\delta,n-\delta}$?

イロン イボン イヨン 一日

Shown: P_n minimizes over regular plus looped dominating H (eg H_{WR} , H_{ind})

Open Question: Which *H* have P_n as the minimizing tree?

Open Question: Is P_n the minimizing tree over *H* with $\leq n$ vertices?

Open Question: Which *n*-vertex trees T^* can be (non-trivial) minimizers $(\hom(T^*, H) \le \hom(T, H))$?

Open Question: For any *H* and $\mathcal{G}(n) = n$ -vertex graphs with min degree δ , is hom(G, H) maximized by copies of graph ($\delta + 1 \leq |V| \leq c(\delta)$) or $K_{\delta,n-\delta}$?

Open Question: Larger class of *H* for which $K_{\delta,n-\delta}$ maximizes hom(*G*, *H*) for all *G* with *n*-vertices, min degree δ ?

Shown: P_n minimizes over regular plus looped dominating H (eg H_{WR} , H_{ind})

Open Question: Which *H* have P_n as the minimizing tree?

Open Question: Is P_n the minimizing tree over *H* with $\leq n$ vertices?

Open Question: Which *n*-vertex trees T^* can be (non-trivial) minimizers $(\hom(T^*, H) \le \hom(T, H))$?

Open Question: For any *H* and $\mathcal{G}(n) = n$ -vertex graphs with min degree δ , is $\hom(G, H)$ maximized by copies of graph $(\delta + 1 \le |V| \le c(\delta))$ or $K_{\delta,n-\delta}$?

Open Question: Larger class of *H* for which $K_{\delta,n-\delta}$ maximizes hom(*G*,*H*) for all *G* with *n*-vertices, min degree δ ?

Open Question: Repeat for min degree δ and max degree *D*? ($\delta = 1$ known)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

Shown: P_n minimizes over regular plus looped dominating H (eg H_{WR} , H_{ind})

Open Question: Which *H* have P_n as the minimizing tree?

Open Question: Is P_n the minimizing tree over *H* with $\leq n$ vertices?

Open Question: Which *n*-vertex trees T^* can be (non-trivial) minimizers $(\hom(T^*, H) \le \hom(T, H))$?

Open Question: For any *H* and $\mathcal{G}(n) = n$ -vertex graphs with min degree δ , is hom(G, H) maximized by copies of graph ($\delta + 1 \leq |V| \leq c(\delta)$) or $K_{\delta,n-\delta}$?

Open Question: Larger class of *H* for which $K_{\delta,n-\delta}$ maximizes hom(*G*,*H*) for all *G* with *n*-vertices, min degree δ ?

Open Question: Repeat for min degree δ and max degree *D*? ($\delta = 1$ known)

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●