The basics of the deduction game

Andrea Burgess², Danny Dyer¹, Mozhgan Farahani¹

¹Department of Mathematics and Statistics Memorial University of Newfoundland and Labrador

²Department of Mathematics and Statistics University of New Brunswick Saint John

Atlantic Graph Theory Seminar October 13, 2021

The chaser and runner model

The chasers...

- ... have complete knowledge of the graph.
- ... move slowly, from vertex to vertex.
- ... can see the runner.
- . . . can all simultaneously move.
- ... can remain in their position.

The runner...

- ... has complete knowledge of the graph.
- ... moves slowly, from vertex to vertex.
- ... can see the chasers.
- ... can remain in its position.

In a graph G, the minimum number of chasers needed to guarantee capture of the runner in a finite number of turns is the **chase number** c(G).

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

AGTS 3 / 27

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

AGTS 3 / 27

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

AGTS 3 / 27

- 4 @ > - 4 @ > - 4 @ >

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

AGTS 3 / 27

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

AGTS 3 / 27

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

AGTS 3 / 27

Danny Dyer dyer@mun.ca (MUNL)

AGTS 3 / 27

(人間) トイヨト イヨト

So, $c(Y) \leq 2$.

AGTS 3 / 27

- 4 回 ト - 4 回 ト

Danny Dyer dyer@mun.ca (MUNL)

AGTS 3 / 27

- 4 同 6 4 日 6 4 日 6

AGTS 3 / 27

So, $c(Y) \leq 2$. In fact, c(Y) = 2.

The zero-visibility chaser and runner model

The chasers. . .

- ... have complete knowledge of the graph.
- ... move slowly, from vertex to vertex.
- ... CANNOT see the runner.
- . . . can all simultaneously move.
- ... can remain in their position.

The runner. . .

- ... has complete knowledge of the graph.
- ... moves slowly, from vertex to vertex.
- ... can see the chasers.
- ... can remain in its position.

In a graph *G*, the minimum number of chasers needed to guarantee capture of the runner in a finite number of turns is the zero visibility chase number $c_0(G)$.

Basic differences

AGTS 5 / 27

(日) (四) (王) (王) (王)

Basic differences

So, $c(K_n) = 1$.

AGTS 6 / 27

イロト イヨト イヨト イヨト

Basic differences

So, $c(K_n) = 1$. But $c_0(K_n) = \lceil \frac{n}{2} \rceil$ – that is, $\frac{c_0(G)}{c(G)}$ can be arbitrarily large. (Tošić 1985, Tang 2004)

AGTS 6 / 27

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

What if you wanted to capture the runner quickly?

In a graph G with $k \ge c(G)$ chasers, the *length* of a game is the number of moves it takes to capture the runner. The capture time is the minimum length of a game.

What if you wanted to capture the runner quickly?

In a graph G with $k \ge c(G)$ chasers, the *length* of a game is the number of moves it takes to capture the runner. The capture time is the minimum length of a game.

What if you wanted to capture the runner quickly?

In a graph G with $k \ge c(G)$ chasers, the *length* of a game is the number of moves it takes to capture the runner. The capture time is the minimum length of a game.

So, the capture time for P_5 is 2, with only a single chaser.

What if you wanted to capture the runner very quickly?

Problem swap!

In a graph G, with a fixed length t, what is the minimum number of chasers needed such that the capture time is t?

We define the 1-tick chase number of a graph G, denoted 1-c(G), to be the minimum number of chasers needed to capture a runner in only 1 move. Similarly, $1-c_0(G)$ is the minimum number of chasers needs to capture an invisible runner in only 1 move.

An example

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

▶ ■ つへへ AGTS 9/27

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

An example

So,
$$1-c(K_6) = 1$$
.

Danny Dyer dyer@mun.ca (MUNL)

▶ ■ つへへ AGTS 9/27

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

An example

So, $1-c(K_6) = 1$. But $1-c_0(K_6) = 3$.

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

▶ ■ つへへ AGTS 9/27

<ロ> (日) (日) (日) (日) (日)

Recall that $\gamma(G)$ is the domination number of G.

Theorem (Alspach, Dyer, Hanson, Yang 2008) If G is a graph, then $1-c(G) = \gamma(G)$.

Recall that a minimum edge cover of a graph G is a set $E' \subseteq E(G)$ with the fewest edges for which every vertex of G is an end of at least one edge. We denote size of such a set as $\beta'(G)$.

Theorem (ADHY 2008)

If G is a graph, then $1-c_0(G) = \beta'(G)$.

Danny Dyer dyer@mun.ca (MUNL)

< 回 ト < 三 ト < 三 ト

No communication and an invisible runner

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

AGTS 11 / 27

< ロ > < 同 > < 三 > < 三

No communication and an invisible runner

Now we need 5 chasers!

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

AGTS 11 / 27

The deduction game

The chasers. . .

- ... have complete knowledge of the graph.
- ... move slowly, from vertex to vertex.
- ... CANNOT see the runner.
- . . . can all simultaneously move.
- ... can remain in their position.
- ... CANNOT communicate, unless they're on the same vertex.
- MUST capture the runner in at most one move.

The runner...

- ... has complete knowledge of the graph.
- ... moves slowly, from vertex to vertex.
- ... can see the chasers.
- ... can remain in its position.

A **layout** is a chasers' arrangement on vertices of a graph G, denoted by L(G). A **successful layout** is one in which the chasers can deduce how to capture the runner, and the deduction number, d(G), is the minimum number of chasers possible in a successful layout.

イロト イポト イヨト イヨト

An unsuccessful layout

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

■ ► ■ つへの AGTS 14/27

イロト イヨト イヨト イヨト

Another unsuccessful layout

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

■ ► ■ つへの AGTS 15/27

イロト イ団ト イヨト イヨト

Another unsuccessful layout

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

AGTS 15 / 27

< ロ > < 同 > < 三 > < 三

A successful, but dull, layout

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

■ ► ■ つへの AGTS 16/27

イロト イ団ト イヨト イヨト

An optimal successful layout

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

■ ► ■ つへの AGTS 17/27

An optimal successful layout

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

■ ► ■ つへの AGTS 17/27

But where's the deduction?

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

AGTS 18 / 27

< ロ > < 同 > < 三 > < 三

But where's the deduction?

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

AGTS 18 / 27

(日) (同) (三) (三)

But where's the deduction?

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

AGTS 18 / 27

(日) (同) (三) (三)

Some bounds

Theorem (Burgess, Dyer, Farahani 2021+) If G is a graph, then $1-c(G) \le 1-c_0(G) \le d(G)$.

Theorem (BDF 2021+)

If G is a graph of order $n \ge 2$, then $\lceil \frac{n}{2} \rceil \le d(G) \le n-1$.

Theorems (BDF 2021+)

- **1** If P_n is a path of order n, then $d(P_n) = \lceil \frac{n}{2} \rceil$.
- 2 If C_n is a cycle of order $n \ge 3$, then $d(C_n) = \lceil \frac{n}{2} \rceil$.
- So If K_n is a complete graph of order $n \ge 2$, then $d(K_n) = n 1$.
- If S_n is a star of order $n \ge 2$, then $d(S_n) = n 1$.

イロト 不得下 イヨト イヨト 二日

With a little more work...

Theorem (BDF 2021+)

If $m \ge n \ge 2$, then $d(K_{m,n}) = m + n - 2$.

Theorem (BDF 2021+)

If G and H are graphs, then $d(G \Box H) \leq \min\{|V(G)| \cdot d(H), |V(H)| \cdot d(G)\}.$

Danny Dyer dyer@mun.ca (MUNL)

A basic question: If H is a subgraph of G, is $d(H) \le d(G)$? Tricky, since local changes in a layout can have far reaching effects.

Theorem (BDF 2021+)

If K_m is a subgraph of a graph G, then $d(K_m) \leq d(G)$.

Recall that $\omega(G)$ is the clique number of G.

Corollary (BDF 2021+)

If G is a graph, then $\omega(G) - 1 \leq d(G)$.

イロト 不得下 イヨト イヨト 二日

Reversability

The layout obtained from the movement of chasers in a successful layout L is the dual of L, denote L^* .

A basic question: If L is successful, is L^* successful?

We don't know, but it seems so.

Who cares?

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

■ ► ■ つへへ AGTS 23/27

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

■ ► ■ つへの AGTS 23/27

Who cares?

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

■ ► ■ つへの AGTS 23/27

Who cares?

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

■ ► ■ つへへ AGTS 23/27

This can take a long time.

Danny Dyer dyer@mun.ca (MUNL)

The basics of the deduction game

■ ► ■ つへの AGTS 24/27

Open questions

- What conditions do I need on a subgraph H of G to guarantee that d(H) ≤ d(G)?
- Is the dual of a successful layout successful?
 - What can we say about the metagraph of successful layouts?
- How good are our results on graph products?
 - (For hypercubes, solved.)
 - What about other kinds of products?
- This grew out of "1-tick" zero visibility. What about the 2-tick version?
 - Cops get to make a set of deductions, then a further set of deductions.
 - Does the robber move in between? Much closer to a two player game.

- 4 同 6 4 日 6 4 日 6

Graph Searching in Alantic Canada CRG

Speaker:Dr. Petr Golovach (University of Bergen)Title:Can Romeo and Juliet Meet? Or Rendezvous Games
with Adversaries on Graphs

https://sites.google.com/view/graphsearchingonline2020/home

AGTS 26 / 27

Questions? Comments?

Contact me:

Email: dyer@mun.ca Twitter: @lyingbast Facebook: danny.dyer.12 My theme: https://bit.ly/2XGQeZ9

Danny Dyer dyer@mun.ca (MUNL)

AGTS 27 / 27

イロト イヨト イヨト

Questions? Comments?

Contact me:

Email: dyer@mun.ca Twitter: @lyingbast Facebook: danny.dyer.12 My theme: https://bit.ly/2XGQeZ9 THANKS!

イロト 不得下 イヨト イヨト