The basics of the deduction game

Andrea Burgess ${ }^{2}$, Danny Dyer ${ }^{1}$, Mozhgan Farahani ${ }^{1}$

${ }^{1}$ Department of Mathematics and Statistics Memorial University of Newfoundland and Labrador
${ }^{2}$ Department of Mathematics and Statistics University of New Brunswick Saint John

Atlantic Graph Theory Seminar October 13, 2021

The chaser and runner model

The chasers. . .

- ... have complete knowledge of the graph.
- ... move slowly, from vertex to vertex.
- ... can see the runner.
- ...can all simultaneously move.
- ...can remain in their position.

The runner...

- ... has complete knowledge of the graph.
- ... moves slowly, from vertex to vertex.
- ... can see the chasers.
- ...can remain in its position.

In a graph G, the minimum number of chasers needed to guarantee capture of the runner in a finite number of turns is the chase number $c(G)$.

A chaser and runner example

So, $c(Y) \leq 2$.

A chaser and runner example

So, $c(Y) \leq 2$.

A chaser and runner example

So, $c(Y) \leq 2$.

A chaser and runner example

So, $c(Y) \leq 2$.

A chaser and runner example

So, $c(Y) \leq 2$. In fact, $c(Y)=2$.

The zero-visibility chaser and runner model

The chasers. . .

- ... have complete knowledge of the graph.
- ... move slowly, from vertex to vertex.
- ... CANNOT see the runner.
- ...can all simultaneously move.
- ...can remain in their position.

The runner...

- ... has complete knowledge of the graph.
- ... moves slowly, from vertex to vertex.
- ... can see the chasers.
- ...can remain in its position.

In a graph G, the minimum number of chasers needed to guarantee
capture of the runner in a finite number of turns is the zero visibility chase number $c_{0}(G)$.

Basic differences

$c\left(K_{2}\right)=1 \quad c\left(K_{3}\right)=1$
$c\left(C_{4}\right)=2$

$$
c_{0}\left(K_{2}\right)=1 \quad c_{0}\left(K_{3}\right)=2
$$

$c_{0}\left(C_{4}\right)=2$

Basic differences

So, $c\left(K_{n}\right)=1$.

Basic differences

So, $c\left(K_{n}\right)=1$. But $c_{0}\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil-$ that is, $\frac{c_{0}(G)}{c(G)}$ can be arbitrarily large. (Tošić 1985, Tang 2004)

What if you wanted to capture the runner quickly?

In a graph G with $k \geq c(G)$ chasers, the length of a game is the number of moves it takes to capture the runner. The capture time is the minimum length of a game.

C

What if you wanted to capture the runner quickly?

In a graph G with $k \geq c(G)$ chasers, the length of a game is the number of moves it takes to capture the runner. The capture time is the minimum length of a game.

c

What if you wanted to capture the runner quickly?

In a graph G with $k \geq c(G)$ chasers, the length of a game is the number of moves it takes to capture the runner. The capture time is the minimum length of a game.

So, the capture time for P_{5} is 2 , with only a single chaser.

What if you wanted to capture the runner very quickly?

Problem swap!

In a graph G, with a fixed length t, what is the minimum number of chasers needed such that the capture time is t ?

We define the 1-tick chase number of a graph G, denoted 1-c(G), to be the minimum number of chasers needed to capture a runner in only 1 move. Similarly, $1-c_{0}(G)$ is the minimum number of chasers needs to capture an invisible runner in only 1 move.

An example

An example

So, $1-c\left(K_{6}\right)=1$.

An example

So, $1-c\left(K_{6}\right)=1$. But $1-c_{0}\left(K_{6}\right)=3$.

Time constraints

Recall that $\gamma(G)$ is the domination number of G.
Theorem (Alspach, Dyer, Hanson, Yang 2008)
If G is a graph, then $1-c(G)=\gamma(G)$.
Recall that a minimum edge cover of a graph G is a set $E^{\prime} \subseteq E(G)$ with the fewest edges for which every vertex of G is an end of at least one edge. We denote size of such a set as $\beta^{\prime}(G)$.

Theorem (ADHY 2008)
If G is a graph, then $1-c_{0}(G)=\beta^{\prime}(G)$.

No communication and an invisible runner

No communication and an invisible runner

Now we need 5 chasers!

The deduction game

The chasers. . .

- ... have complete knowledge of the graph.
- ... move slowly, from vertex to vertex.
- ... CANNOT see the runner.
- ...can all simultaneously move.
- ...can remain in their position.
- ... CANNOT communicate, unless they're on the same vertex.
- ... MUST capture the runner in at most one move.

The runner...

- ... has complete knowledge of the graph.
- ... moves slowly, from vertex to vertex.
- ... can see the chasers.
- ...can remain in its position.

More terminology

A layout is a chasers' arrangement on vertices of a graph G, denoted by $L(G)$. A successful layout is one in which the chasers can deduce how to capture the runner, and the deduction number, $d(G)$, is the minimum number of chasers possible in a successful layout.

An unsuccessful layout

C

Another unsuccessful layout

C

Another unsuccessful layout

This chaser is flummoxed.

A successful, but dull, layout

An optimal successful layout

An optimal successful layout

C

So, $d\left(P_{3}\right)=2$.

But where's the deduction?

But where's the deduction?

But where's the deduction?

Some bounds

Theorem (Burgess, Dyer, Farahani 2021+)
If G is a graph, then $1-c(G) \leq 1-c_{0}(G) \leq d(G)$.

Theorem (BDF 2021+)
If G is a graph of order $n \geq 2$, then $\left\lceil\frac{n}{2}\right\rceil \leq d(G) \leq n-1$.

Theorems (BDF 2021+)
(1) If P_{n} is a path of order n, then $d\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
(2) If C_{n} is a cycle of order $n \geq 3$, then $d\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.
(3) If K_{n} is a complete graph of order $n \geq 2$, then $d\left(K_{n}\right)=n-1$.
(9) If S_{n} is a star of order $n \geq 2$, then $d\left(S_{n}\right)=n-1$.

With a little more work...

Theorem (BDF 2021+)
If $m \geq n \geq 2$, then $d\left(K_{m, n}\right)=m+n-2$.

Theorem (BDF 2021+)
If G and H are graphs, then $d(G \square H) \leq \min \{|V(G)| \cdot d(H),|V(H)| \cdot d(G)\}$.

Subgraphs

A basic question: If H is a subgraph of G, is $d(H) \leq d(G)$? Tricky, since local changes in a layout can have far reaching effects.

Theorem (BDF 2021+)
If K_{m} is a subgraph of a graph G, then $d\left(K_{m}\right) \leq d(G)$.
Recall that $\omega(G)$ is the clique number of G.
Corollary (BDF 2021+)
If G is a graph, then $\omega(G)-1 \leq d(G)$.

Reversability

The layout obtained from the movement of chasers in a successful layout L is the dual of L, denote L^{\star}.
A basic question: If L is successful, is L^{\star} successful?
We don't know, but it seems so.

Who cares?

Who cares?

Who cares?

Who cares?

This can take a long time.

Open questions

- What conditions do I need on a subgraph H of G to guarantee that $d(H) \leq d(G) ?$
- Is the dual of a successful layout successful?
- What can we say about the metagraph of successful layouts?
- How good are our results on graph products?
- (For hypercubes, solved.)
- What about other kinds of products?
- This grew out of "1-tick" zero visibility. What about the 2-tick version?
- Cops get to make a set of deductions, then a further set of deductions.
- Does the robber move in between? Much closer to a two player game.

Graph Searching in Alantic Canada CRG

Speaker: Dr. Petr Golovach (University of Bergen)
Title: Can Romeo and Juliet Meet? Or Rendezvous Games with Adversaries on Graphs
https://sites.google.com/view/graphsearchingonline2020/home

Questions? Comments?

Contact me:

Email: dyer@mun.ca

Twitter: @lyingbast
Facebook: danny.dyer. 12
My theme: https://bit.ly/2XGQeZ9

Questions? Comments?

Contact me:

Email: dyer@mun.ca

Twitter: @lyingbast
Facebook: danny.dyer. 12
My theme: https://bit.ly/2XGQeZ9
THANKS!

