Path decompositions of random directed graphs

Viresh Patel
University of Amsterdam

Dalhousie Graph Theory Seminar

Joint work with Alberto Espuny Díaz and Fabian Stroh

Decomposition problem - partition edges of G so that each part has some specified property.

Decomposition problem - partition edges of G so that each part has some specified property.

G could be a graph / directed graph / hypergraph
May wish to partition $E(G)$ into e.g.

- cliques (of fixed size)
- (perfect) matchings
- paths (of fixed length)
- (Hamilton) cycles
- trees

Decomposition problem - partition edges of G so that each part has some specified property.

G could be a graph / directed graph / hypergraph
May wish to partition $E(G)$ into e.g.

- cliques (of fixed size)
- (perfect) matchings
- paths (of fixed length)
- (Hamilton) cycles
- trees
$\chi^{\prime}(G)=\min \#$ matchings needed to decompose $E(G)$

Decomposition problem - partition edges of G so that each part has some specified property.

G could be a graph / directed graph / hypergraph
May wish to partition $E(G)$ into e.g.

- cliques (of fixed size)
- (perfect) matchings
- paths (of fixed length)
- (Hamilton) cycles
- trees
$\chi^{\prime}(G)=\min \#$ matchings needed to decompose $E(G)$
- $\chi^{\prime}(G) \geq \Delta(G)$
- $\chi^{\prime}(G) \in\{\Delta(G), \Delta(G)+1\}$
- Almost all G satisfy $\chi^{\prime}(G)=\Delta(G)$

Problem: Given a directed graph D, decompose D into as few paths as possible.

Problem: Given a directed graph D, decompose D into as few paths as possible.

Definition

Path decomposition \mathcal{P} of D : set of edge-disjoint paths in D that cover $E(D)$.

$$
\operatorname{pn}(D):=\min \{|\mathcal{P}|: \mathcal{P} \text { a path decomposition of } D\}
$$

Problem: Given a directed graph D, decompose D into as few paths as possible.

Definition

Path decomposition \mathcal{P} of D : set of edge-disjoint paths in D that cover $E(D)$.

$$
\operatorname{pn}(D):=\min \{|\mathcal{P}|: \mathcal{P} \text { a path decomposition of } D\}
$$

Problem: Given a directed graph D, decompose D into as few paths as possible.

Definition

Path decomposition \mathcal{P} of D : set of edge-disjoint paths in D that cover $E(D)$.

$$
\operatorname{pn}(D):=\min \{|\mathcal{P}|: \mathcal{P} \text { a path decomposition of } D\}
$$

Upper bound

- $\operatorname{pn}(D) \leq|E(D)|$ (equality if D bipartite)

Upper bound

- $\operatorname{pn}(D) \leq|E(D)|$ (equality if D bipartite)

Lower bound

- Any path decomposition of D has at least
- $d^{+}(v)-d^{-}(v)$ paths starting at vertex v
- $d^{-}(v)-d^{+}(v)$ paths ending at vertex v Hence

$$
\operatorname{pn}(D) \geq \frac{1}{2} \sum_{v \in V(D)}\left|d^{+}(v)-d^{-}(v)\right|
$$

Upper bound

- $\operatorname{pn}(D) \leq|E(D)|$ (equality if D bipartite)

Lower bound

- Any path decomposition of D has at least
- $d^{+}(v)-d^{-}(v)$ paths starting at vertex v
- $d^{-}(v)-d^{+}(v)$ paths ending at vertex v Hence

$$
\operatorname{pn}(D) \geq \frac{1}{2} \sum_{v \in V(D)}\left|d^{+}(v)-d^{-}(v)\right|
$$

Definition
Given directed graph D, and $v \in V(D)$,

$$
\operatorname{ex}(v):=d^{+}(v)-d^{-}(v)
$$

and

$$
e x(D):=\frac{1}{2} \sum_{v \in V(G)}|e x(v)| .
$$

Definition
Given directed graph D, and $v \in V(D)$,

$$
\operatorname{ex}(v):=d^{+}(v)-d^{-}(v)
$$

and

$$
e x(D):=\frac{1}{2} \sum_{v \in V(G)}|e x(v)| .
$$

Lower bound

- $\mathrm{pn}(D) \geq \operatorname{ex}(D)$.
- When do we have equality? (not if D Eulerian)

Definition

Given directed graph D, and $v \in V(D)$,

$$
\operatorname{ex}(v):=d^{+}(v)-d^{-}(v)
$$

and

$$
e x(D):=\frac{1}{2} \sum_{v \in V(G)}|e x(v)| .
$$

Lower bound

- $\mathrm{pn}(D) \geq \operatorname{ex}(D)$.
- When do we have equality? (not if D Eulerian)

Conjecture (Alspach, Mason, Pullman, 1976)

$\mathrm{pn}(T)=\mathrm{ex}(T)$ for every even tournament T.

Theorem (Patel-Lo-Skokan-Talbot (2020) + Girão-Granet-Künh-Lo-Osthus (2021+))

The conjecture holds (asymptotically).

Question: For which D is $\operatorname{pn}(D)=\operatorname{ex}(D)$?

Question: For which D is $\mathrm{pn}(D)=\operatorname{ex}(D)$?
$N P$-complete to determine if $\mathrm{pn}(D)=\operatorname{ex}(D)$ (De Vos)

Question: For which D is $\mathrm{pn}(D)=\operatorname{ex}(D)$?
$N P$-complete to determine if $\mathrm{pn}(D)=\operatorname{ex}(D)$ (De Vos)
Erdős-Renyi random graph $D_{n, p}$

- Start with n isolated vertices.
- Add each directed edge independently with probability p.

Question: For which D is $\mathrm{pn}(D)=\operatorname{ex}(D)$?
$N P$-complete to determine if $\mathrm{pn}(D)=\operatorname{ex}(D)$ (De Vos)

Erdős-Renyi random graph $D_{n, p}$

- Start with n isolated vertices.
- Add each directed edge independently with probability p.

Theorem (Espuny Díaz, Patel, Stroh (2021+))

Suppose

$$
n^{-1 / 3} \log ^{4} n \leq p \leq 1-n^{-1 / 5} \log ^{3} n
$$

and let $D \sim D_{n, p}$. Then

$$
\mathbb{P}(\operatorname{pn}(D)=\operatorname{ex}(D)) \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty .
$$

Question: For which D is $\mathrm{pn}(D)=\operatorname{ex}(D)$?
$N P$-complete to determine if $\mathrm{pn}(D)=\operatorname{ex}(D)$ (De Vos)

Erdős-Renyi random graph $D_{n, p}$

- Start with n isolated vertices.
- Add each directed edge independently with probability p.

Theorem (Espuny Díaz, Patel, Stroh (2021+))

Suppose

$$
n^{-1 / 3} \log ^{4} n \leq p \leq 1-n^{-1 / 5} \log ^{3} n
$$

and let $D \sim D_{n, p}$. Then

$$
\mathbb{P}(\operatorname{pn}(D)=\operatorname{ex}(D)) \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty .
$$

- $p=1 / 2$: almost all D satisfy $\operatorname{pn}(D)=\operatorname{ex}(D)$.
- Some upper bound on p necessary.
- Show $\mathrm{pn}(D)=\operatorname{ex}(D)$ for many "nonrandom-like" D.

