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Introduction

Decomposition problem - partition edges of G so that each
part has some specified property.

G could be a graph / directed graph / hypergraph

May wish to partition E(G) into e.g.
cliques (of fixed size)
(perfect) matchings
paths (of fixed length)
(Hamilton) cycles
trees

χ′(G) = min # matchings needed to decompose E(G)

χ′(G) ≥ ∆(G)

χ′(G) ∈ {∆(G),∆(G) + 1} (Vizing)
Almost all G satisfy χ′(G) = ∆(G) (Erdős-Wilson).
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Problem: Given a directed graph D, decompose D into as few
paths as possible.

Definition
Path decomposition P of D: set of edge-disjoint paths in D that
cover E(D).

pn(D) := min{|P| : P a path decomposition of D}
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Upper bound
pn(D) ≤ |E(D)| (equality if D bipartite)

Lower bound
Any path decomposition of D has at least

d+(v)− d−(v) paths starting at vertex v
d−(v)− d+(v) paths ending at vertex v

Hence
pn(D) ≥ 1

2

∑
v∈V (D)

|d+(v)− d−(v)|.



Upper bound
pn(D) ≤ |E(D)| (equality if D bipartite)

Lower bound
Any path decomposition of D has at least

d+(v)− d−(v) paths starting at vertex v
d−(v)− d+(v) paths ending at vertex v

Hence
pn(D) ≥ 1

2

∑
v∈V (D)

|d+(v)− d−(v)|.



Upper bound
pn(D) ≤ |E(D)| (equality if D bipartite)

Lower bound
Any path decomposition of D has at least

d+(v)− d−(v) paths starting at vertex v
d−(v)− d+(v) paths ending at vertex v

Hence
pn(D) ≥ 1

2

∑
v∈V (D)

|d+(v)− d−(v)|.



Definition
Given directed graph D, and v ∈ V (D),

ex(v) := d+(v)− d−(v)

and
ex(D) :=

1
2

∑
v∈V (G)

|ex(v)|.

Lower bound
pn(D) ≥ ex(D).
When do we have equality? (not if D Eulerian)

Conjecture (Alspach, Mason, Pullman, 1976)

pn(T ) = ex(T ) for every even tournament T .

Theorem (Patel-Lo-Skokan-Talbot (2020) +
Girão-Granet-Künh-Lo-Osthus (2021+) )
The conjecture holds (asymptotically).
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Question: For which D is pn(D) = ex(D)?

NP-complete to determine if pn(D) = ex(D) (De Vos)

Erdős-Renyi random graph Dn,p

Start with n isolated vertices.
Add each directed edge independently with probability p.

Theorem (Espuny Díaz, Patel, Stroh (2021+))
Suppose

n−1/3 log4 n ≤ p ≤ 1− n−1/5 log3 n

and let D ∼ Dn,p. Then

P ( pn(D) = ex(D) )→ 1 as n→∞.

p = 1/2: almost all D satisfy pn(D) = ex(D).
Some upper bound on p necessary.
Show pn(D) = ex(D) for many “nonrandom-like” D.
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