Families of graphs containing only finitely many vertex-critical graphs.

Ben Cameron

University of Guelph

ben.cameron@uoguelph.ca

(Joint work with Chính Hoàng and Joe Sawada)

Atlantic Graph Theory Seminar

October 21, 2020

Introduction	k-Coloring &	Critical	Gra
0000			

Figure: Asher Benjamin Cameron, the catalyst for this research.

Introduction 0000	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free 0000	Conclusion 00
Outline				

- Brief definitions.
- Background on complexity of k-COLORING.
- Vertex-critical graphs for solving *k*-COLORING.
- Bound order of k-vertex-critical $(P_2 + \ell P_1)$ -free graphs.
- Give exact number of k-vertex-critical $(P_3 + P_1)$ -free graphs for $k \leq 7$.
- Open Problems.

Introduction 000	k-Coloring & Critical Graphs 000000000	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free 0000	Conclusion 00
Definition	ns			

• P_n is the path on n vertices $(P_3: \bullet \bullet \bullet \bullet)$.

Introduction 000	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free 0000	Conclusion 00
Definition	ns			

- P_n is the path on n vertices $(P_3: \bullet \bullet \bullet \bullet)$.
- G + H denotes the disjoint union of graphs G and H.

Introduction 000	k-Coloring & Critical Graphs 000000000	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free 0000	Conclusion 00
Definition	ns			

- P_n is the path on n vertices $(P_3: \bullet \bullet \bullet)$.
- G + H denotes the disjoint union of graphs G and H.

•
$$\ell G = \underbrace{G + G + \dots + G}_{\ell} (P_2 + 2P_1: \bullet \bullet).$$

Introduction 000	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free 0000	Conclusion 00
Definition	ns			

- P_n is the path on n vertices $(P_3: \bullet \bullet \bullet \bullet)$.
- G + H denotes the disjoint union of graphs G and H.

•
$$\ell G = \underbrace{G + G + \dots + G}_{\ell} (P_2 + 2P_1: \bullet \bullet).$$

• Coloring here means proper coloring (adjacent vertices get different colors).

Introduction 000	k-Coloring & Critical Graphs 000000000	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free 0000	Conclusion 00
Definition	ns			

- P_n is the path on n vertices $(P_3: \bullet \bullet \bullet \bullet)$.
- G + H denotes the disjoint union of graphs G and H.

•
$$\ell G = \underbrace{G + G + \dots + G}_{\ell} (P_2 + 2P_1; \bullet).$$

- Coloring here means proper coloring (adjacent vertices get different colors).
- A graph is *H*-free if it does not contain *H* as an induced subgraph. is P_5 -free but not P_4 -free.

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000000			

• k-COLORING is NP-complete for all $k \ge 3$ (Karp 1972).

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000000			

- k-COLORING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000000			

- k-COLORING is NP-complete for all $k \ge 3$ (Karp 1972).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a cycle (Kamiński-Lozin 2007).
- It remains NP-complete when restricted to *H*-free graphs if *H* contains a claw (Hoyler 1981; Leven-Gail 1983).

	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	0000000	000	0000	

- *P*₂-free *P*₃-free *P*₄-free

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000000			

- P_2 -free \rightarrow 1-colorable \rightarrow efficient coloring
- P_3 -free
- P_4 -free

	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	0000000	000	0000	

- P_2 -free \rightarrow 1-colorable \rightarrow efficient coloring
- P_3 -free \rightarrow disjoint union of cliques
- P_4 -free

	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	0000000	000	0000	

- P_2 -free \rightarrow 1-colorable \rightarrow efficient coloring
- P_3 -free \rightarrow disjoint union of cliques \rightarrow efficient coloring
- P_4 -free

	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	0000000	000	0000	

- P_2 -free \rightarrow 1-colorable \rightarrow efficient coloring
- P_3 -free \rightarrow disjoint union of cliques \rightarrow efficient coloring
- P_4 -free \rightarrow cograph

	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	0000000	000	0000	

- P_2 -free \rightarrow 1-colorable \rightarrow efficient coloring
- P_3 -free \rightarrow disjoint union of cliques \rightarrow efficient coloring
- P_4 -free \rightarrow cograph \rightarrow perfect

Introduction k	c-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000 0	0000000			

- P_2 -free \rightarrow 1-colorable \rightarrow efficient coloring
- P_3 -free \rightarrow disjoint union of cliques \rightarrow efficient coloring
- P_4 -free \rightarrow cograph \rightarrow perfect \rightarrow efficient coloring (Grötschel-Lovász-Schrijver 1984)

Introduction k	c-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000 0	0000000			

- P_2 -free \rightarrow 1-colorable \rightarrow efficient coloring
- P_3 -free \rightarrow disjoint union of cliques \rightarrow efficient coloring
- P_4 -free \rightarrow cograph \rightarrow perfect \rightarrow efficient coloring (Grötschel-Lovász-Schrijver 1984)
- P_m -free for $m \ge 5 \rightarrow ???$

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000000			

• k-COLORING P_m -free graphs for is NP-complete $k \ge 4$ and $m \ge 7$ (Huang 2016).

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000000			

- k-COLORING P_m -free graphs for is NP-complete $k \ge 4$ and $m \ge 7$ (Huang 2016).
- k-COLORING P_m -free graphs for is NP-complete $k \ge 5$ and $m \ge 6$ (Huang 2016).

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000000			

- k-COLORING P_m -free graphs for is NP-complete $k \ge 4$ and $m \ge 7$ (Huang 2016).
- k-COLORING P_m -free graphs for is NP-complete $k \ge 5$ and $m \ge 6$ (Huang 2016).
- 4-COLORING *P*₆-free graphs is polynomial-time solvable (Chudnovsky-Spirkl-Zhong 2019).

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000000			

- k-COLORING P_m -free graphs for is NP-complete $k \ge 4$ and $m \ge 7$ (Huang 2016).
- k-COLORING P_m -free graphs for is NP-complete $k \ge 5$ and $m \ge 6$ (Huang 2016).
- 4-COLORING *P*₆-free graphs is polynomial-time solvable (Chudnovsky-Spirkl-Zhong 2019).
- 3-COLORING P_7 -free graphs is polynomial-time solvable (Bonomo et al. 2018).

0000 0000000 000 000 00	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
	00000000			

0000 0000000 000 000 00	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
	00000000			

0000 0000000 000 000 00	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
	00000000			

0000 0000000 000 000 00	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
	00000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
00000000			

• A k-coloring is a certificate to verify a "yes".

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
00000000			

• A k-coloring is a certificate to verify a "yes".

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
00000000			

• A k-coloring is a certificate to verify a "yes".

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
00000000			

- A k-coloring is a certificate to verify a "yes".
- How can we verify a "no"?

Introduction 0000	k-Coloring & Critical Graphs 000000000	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion 00

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
00000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
00000000			

0000 0000000 000 000 00	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
	00000000			

0000 0000000 000 000 00	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
	00000000			

Introduction	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	000000000		0000	00

Introduction	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	000000000		0000	00

• A graph G is k-vertex-critical if G is not (k-1)-colorable, but every induced subgraph of G is.

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
00000000			

- A graph G is k-vertex-critical if G is not (k-1)-colorable, but every induced subgraph of G is.
- Every graph that is not k-colorable has a (k + 1)-vertex-critical graph as an induced subgraph.

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
00000000			

- A graph G is k-vertex-critical if G is not (k-1)-colorable, but every induced subgraph of G is.
- Every graph that is not k-colorable has a (k + 1)-vertex-critical graph as an induced subgraph.

Issue 1: For $k \ge 3$ there are an infinite number of k-vertex-critical graphs.

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
00000000			

- A graph G is k-vertex-critical if G is not (k-1)-colorable, but every induced subgraph of G is.
- Every graph that is not k-colorable has a (k + 1)-vertex-critical graph as an induced subgraph.

Issue 1: For $k \ge 3$ there are an infinite number of k-vertex-critical graphs.

Issue 2: k-vertex-critical is a mouthful, so simply k-critical from now on.

0000 0000000 000 000 000 00	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
	000000000			

0000 0000000 000 000 00	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
	000000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

Q: What about finitely many k-critical graphs for $k \ge 5$?

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

Q: What about finitely many k-critical graphs for $k \ge 5$?

Forbidden	Finitely many	Reference
Subgraph(s)	k-critical for	
P_{5}, C_{5}	k = 5	(Hoàng et al. 2015)
$P_5, banner$	k = 6	(Cai et al. 2019)
$P_5, \overline{P_5}$	all k	(Dhaliwal et al. 2017)
$P_6, banner$	k = 4, 5	(Huang et al. 2019)
$P_t, K_{s,s}$	all k	(Kamiński-Pstrucha 2019)
P_{7}, C_{5}	k = 4	(Goedgebeur-Schaudt 2018)
$P_3 + P_1$	all k	(K. Cameron et al. 2020)

0000 00000000 000 000 00	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
	000000000			

Q: What about finitely many k-critical graphs for $k \ge 5$?

Forbidden	Finitely many	Reference
Subgraph(s)	k-critical for	
P_{5}, C_{5}	k = 5	(Hoàng et al. 2015)
$P_5, banner$	k = 6	(Cai et al. 2019)
$P_5, \overline{P_5}$	all k	(Dhaliwal et al. 2017)
$P_6, banner$	k = 4, 5	(Huang et al. 2019)
$P_t, K_{s,s}$	all k	(Kamiński-Pstrucha 2019)
P_{7}, C_{5}	k = 4	(Goedgebeur-Schaudt 2018)
$P_3 + P_1$	all k	(K. Cameron et al. 2020)

In each case, a polynomial-time algorithm exists to solve (k-1)-COLORING that can also return a no-certificate.

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

Theorem (e.g. Erdős 1959): If H contains a cycle as an induced subgraph, then there is an infinite number of k-critical H-free graphs for all $k \geq 3$.

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

Theorem (e.g. Erdős 1959): If H contains a cycle as an induced subgraph, then there is an infinite number of k-critical H-free graphs for all $k \geq 3$.

Theorem (e.g. Lazebnik-Ustimenko 1995): If H contains a claw as an induced subgraph, then there is an infinite number of k-critical H-free graphs for all $k \geq 3$.

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
000000000			

Theorem (e.g. Erdős 1959): If H contains a cycle as an induced subgraph, then there is an infinite number of k-critical H-free graphs for all $k \geq 3$.

Theorem (e.g. Lazebnik-Ustimenko 1995): If H contains a claw as an induced subgraph, then there is an infinite number of k-critical H-free graphs for all $k \geq 3$.

Theorem (Hoàng et al. 2015): If H contains $2P_2$ as an induced subgraph, then there is an infinite number of k-critical H-free graphs for all $k \geq 5$.

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
00000000			

Theorem (Chudnovsky et al. 2020): There is a finite number of 4-critical *H*-free graphs if and only if *H* is an induced subgraph of P_6 , $2P_3$, or $P_4 + \ell P_1$ for some $\ell \ge 0$.

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
00000000			

Theorem (Chudnovsky et al. 2020): There is a finite number of 4-critical *H*-free graphs if and only if *H* is an induced subgraph of P_6 , $2P_3$, or $P_4 + \ell P_1$ for some $\ell \ge 0$.

Open Problem: For which graphs H are there only finitely many k-critical H-free graphs for all k?

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
00000000			

Theorem (Chudnovsky et al. 2020): There is a finite number of 4-critical *H*-free graphs if and only if *H* is an induced subgraph of P_6 , $2P_3$, or $P_4 + \ell P_1$ for some $\ell \ge 0$.

Open Problem: For which graphs H are there only finitely many k-critical H-free graphs for all k?

H must be one of:

• ℓP_1

- $P_2 + \ell P_1$
- $P_3 + \ell P_1$
- $P_4 + \ell P_1$

• G:k-critical $(P_2 + \ell P_1)$ -free

- G:k-critical $(P_2 + \ell P_1)$ -free
- $\bullet~S{:}{\rm maximum}$ independent set

- G:k-critical $(P_2 + \ell P_1)$ -free
- $\bullet~S{:}{\rm maximum}$ independent set
- G':(k-1)-critical

- G:k-critical $(P_2 + \ell P_1)$ -free
- $\bullet~S{:}{\rm maximum}$ independent set
- G':(k-1)-critical
- S too small \Rightarrow done by Ramsey

- G:k-critical $(P_2 + \ell P_1)$ -free
- $\bullet~S{:}{\rm maximum}$ independent set
- G':(k-1)-critical
- S too small \Rightarrow done by Ramsey
- S too big \Rightarrow either:
- (1) G has induced $P_2 + \ell P_1$ or

- G:k-critical $(P_2 + \ell P_1)$ -free
- $\bullet~S{:}{\rm maximum}$ independent set
- G':(k-1)-critical
- S too small \Rightarrow done by Ramsey
- S too big \Rightarrow either:
- (1) G has induced $P_2 + \ell P_1$ or
- (2) $\exists s \in S$ adjacent to all $v \in G'$

- G:k-critical $(P_2 + \ell P_1)$ -free
- $\bullet~S{:}{\rm maximum}$ independent set
- G':(k-1)-critical
- S too small \Rightarrow done by Ramsey
- S too big \Rightarrow either:
- (1) G has induced $P_2 + \ell P_1$ or
- (2) $\exists s \in S$ adjacent to all $v \in G'$
- $G' \cup \{s\}$ k-critical

- G:k-critical $(P_2 + \ell P_1)$ -free
- S:maximum independent set
- G':(k-1)-critical
- S too small \Rightarrow done by Ramsey
- S too big \Rightarrow either:
- (1) G has induced $P_2 + \ell P_1$ or
- (2) $\exists s \in S$ adjacent to all $v \in G'$
- $G' \cup \{s\}$ k-critical

Contradiction!

Reduction for Open Problem: Only remaining forbidden subgraphs are $P_3 + \ell P_1$ and $P_4 + m P_1$ for $\ell > 1$, m > 0.

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
	000		

Bounded Order Open Problem: For which graphs H of order 4 are there only finitely many k-critical H-free graphs for all k?

are there only finitely many k-critical H-free graphs for all k?

k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
	000		

Theorem (C-Hoàng-Sawada 2020+): Let H be a graph containing at most four vertices. There is a finite number of k-critical H-free graphs for all k if and only if H is an induced subgraph of $\overline{K_4}$, P_4 , $P_2 + 2P_1$, or $P_3 + P_1$.

Figure: All 4-critical graphs $(P_2 + 2P_1)$ -free graphs.

Introduction	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	000000000	000	• 000	00

Introduction	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	000000000		•••••	00

• For this, they showed there is a finite number of k-critical $(P_3 + P_1)$ -free graphs for all k.

Introduction	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	000000000		•••••	00

- For this, they showed there is a finite number of k-critical $(P_3 + P_1)$ -free graphs for all k.
- But no complete list of k-critical $(P_3 + P_1)$ -free graph for $k \ge 5$.

Introduction	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	000000000		• 000	00

- For this, they showed there is a finite number of k-critical $(P_3 + P_1)$ -free graphs for all k.
- But no complete list of k-critical $(P_3 + P_1)$ -free graph for $k \ge 5$.
- Thus certifying algorithm for k-COLORING $(P_3 + P_1)$ -free graphs for $k \ge 4$ cannot be implemented.

Introduction	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	000000000		$0 \bullet 00$	00

Introduction	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	000000000		0000	00

"This result will never be of interest to anyone"- Chính in 1988

"This result will never be of interest to anyone"- Chính in 1988

Figure: $paw = \overline{P_3 + P_1}$

"This result will never be of interest to anyone"- Chính in 1988

Figure: $paw = \overline{P_3 + P_1}$

Theorem (C-Hoàng-Sawada 2020+): Let $k \ge 1$. If G is a k-critical $(P_3 + P_1)$ -free graph, then $\alpha(G) \le 2$ and $|V(G)| \le 2k - 1$.

"This result will never be of interest to anyone"- Chính in 1988

Figure: $paw = \overline{P_3 + P_1}$

Theorem (C-Hoàng-Sawada 2020+): Let $k \ge 1$. If G is a k-critical $(P_3 + P_1)$ -free graph, then $\alpha(G) \le 2$ and $|V(G)| \le 2k - 1$.

Further |V(G)| = 2k - 1 if and only if \overline{G} is connected

Introduction	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	000000000	000	0000	00

• Use geng in nauty to generate all connected graphs triangle-free graphs of order at most 13.

Introduction 0000	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free $00 \bullet 0$	Conclusion 00

- Use geng in nauty to generate all connected graphs triangle-free graphs of order at most 13.
- Filter the output for graphs with connected complements (not graph joins).

Introduction	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free	Conclusion
0000	000000000		0000	00

- Use geng in nauty to generate all connected graphs triangle-free graphs of order at most 13.
- Filter the output for graphs with connected complements (not graph joins).
- Use Sage to filter this output for all k-critical graphs for k ≤ 7. (This took about 12 days on my desktop)

Introduction	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free 0000	Conclusion
0000	000000000	000		00

- Use geng in nauty to generate all connected graphs triangle-free graphs of order at most 13.
- Filter the output for graphs with connected complements (not graph joins).
- Use Sage to filter this output for all k-critical graphs for k ≤ 7. (This took about 12 days on my desktop)
- Construct the *k*-critical graphs for smaller orders by joining these graphs together.

Introduction 0000	n k-COLORING & Critical Graphs 000000000		$(P_2 + 000)$	ℓP_1)-free	$(P_3 + P_1)$ -free 000•	Conclusion 00
	n/#k-critical	k = 4	k = 5	k = 6	k = 7	
	4	1	0	0	0	
	5	0	1	0	0	
	6	1	0	1	0	
	7	6	1	0	1	
	8	0	6	1	0	
	9	0	170	6	2	
	10	0	0	171	6	
	11	0	0	17,828	171	
	12	0	0	0	17,834	
	13	0	0	0	6,349,629	
	total	8	178	18,007	6,367,642	

Table: Number of k-critical $(P_3 + P_1)$ -free graphs of order n for $k \leq 7$.

Introduction 0000	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free 0000	Conclusion •0

Problem 1. For which values of $k \ge 5$ and $r \ge 2$ is there a finite number of k-critical $P_3 + rP_1$ -free graphs?

Problem 2. For which values of $k \ge 5$ and $s \ge 1$ is there a finite number of k-critical $P_4 + sP_1$ -free graphs?

Introduction 0000	k-Coloring & Critical Graphs 000000000	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free 0000	\bigcirc Conclusion

Problem 1. For which values of $k \ge 5$ and $r \ge 2$ is there a finite number of k-critical $P_3 + rP_1$ -free graphs?

Problem 2. For which values of $k \ge 5$ and $s \ge 1$ is there a finite number of k-critical $P_4 + sP_1$ -free graphs?

Problem 3. Is there a structural characterization for all k-critical $(P_3 + P_1)$ -free graphs for $k \ge 8$?

Introduction 0000	k-Coloring & Critical Graphs	$(P_2 + \ell P_1)$ -free	$(P_3 + P_1)$ -free 0000	\bigcirc 0

Problem 1. For which values of $k \ge 5$ and $r \ge 2$ is there a finite number of k-critical $P_3 + rP_1$ -free graphs?

Problem 2. For which values of $k \ge 5$ and $s \ge 1$ is there a finite number of k-critical $P_4 + sP_1$ -free graphs?

Problem 3. Is there a structural characterization for all k-critical $(P_3 + P_1)$ -free graphs for $k \ge 8$?

Problem 4. Can a tight upper bound on the order of k-critical $(P_2 + \ell P_1)$ -free graphs be found for all k?

THANK YOU!

Figure: Mark Holmes of Platinum Blonde singing "Situation Critical".