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Introduction: The chromatic polynomial
For a graph G = (V, E),

FCE

x60) = X (~1)IFIxkP),
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For a graph G = (V, E),

x6() = L (~1)IFIxk®),

FCE

v

For positive integer k, x¢ (k) equals the number of proper k-colorings
of G.

Introduced by Birkhoff in 1912.

e X¢ is a monic polynomial of degree |V(G)|.

Ko (x) = x(x = 1)+ (x = n+1).
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For a graph G = (V, E),

x6() = L (~1)IFIxk®),

FCE

v

For positive integer k, x¢ (k) equals the number of proper k-colorings
of G.

Introduced by Birkhoff in 1912.

e X¢ is a monic polynomial of degree |V(G)|.

Ko (x) = x(x = 1)+ (x = n+1).
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This talk: location of complex zeros of x¢ for bounded degree graphs G. J
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Why care about complex zeros?
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e Statistical physics: relation with phase transitions of the
zero-temperature limit of the anti-ferromagnetic Potts model.
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e Statistical physics: relation with phase transitions of the
zero-temperature limit of the anti-ferromagnetic Potts model.

e Algorithms: Absence of complex zeros implies efficient approximation
algorithms for computing evaluations of x ¢ via Barvinok's
interpolation method.
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What is known?
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e The zeros of the chromatic polynomial are dense in the complex plane
(Sokal 2004).
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e The zeros of the chromatic polynomial are dense in the complex plane
(Sokal 2004).

e There exists a constant C < 7.97 such that all zeros of x¢ are
contained in the disk centered at 0 of radius CA(G). (Sokal, 2001).

e The constant C is at most 6.91 (Fernandéz and Procacci 2008).
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e The zeros of the chromatic polynomial are dense in the complex plane
(Sokal 2004).

e There exists a constant C < 7.97 such that all zeros of x¢ are
contained in the disk centered at 0 of radius CA(G). (Sokal, 2001).

e The constant C is at most 6.91 (Fernandéz and Procacci 2008).

Theorem (Moreschi, Patel, R. Stam, 2021+)
The constant C is at most 5.02.
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@ Reuvisit Sokal’s approach
(a) Expres the chromatic polynomial as a multivariate independence
polynomial.
(b) Use known conditions that guarantee zero-freeness of multivariate
independence polynomials.
(c) Verify these conditions.
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@ Reuvisit Sokal’s approach
(a) Expres the chromatic polynomial as a multivariate independence
polynomial.
(b) Use known conditions that guarantee zero-freeness of multivariate
independence polynomials.
(c) Verify these conditions.

@ Improving on Sokal's approach

(a') Expressing the chromatic polynomial as a multivariate block
polynomial.

(b") Prove conditions that guarantee zero-freeness of multivariate block
polynomials.

(c') Verify these conditions.

@ Concluding remarks and questions
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Look at

Re(x) = Z (—1)IFIxIV(G)I=k(F) — X\V(G)IXG(l/X)
FCE(G)

Define for S C V(G) such that |S| > 2.

w(S) = ) (—1)IFlxISI=2
FCE(S)
(S,F) connected

and set w(S) = 0 otherwise. Then
k
XG(X) = Z Z HW(S,)

k2051 ..... SkgV(G) i=1
SiNS;=Q if i#j
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(b) Applying known conditions for zero-freeness
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(Kotecky-Preiss condition)

Suppose there exists a > 0 such that for all v € V(G): (.J('S\
Y w(S $)|e?®l < a, dape 4

S|lves (L}
\g\22 <

then xg(1/x) # 0. —) 797 bwnd
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(Kotecky-Preiss condition)

Suppose there exists a > 0 such that for all v € V(G):

Y (w(S)|e?®l < 4,

S|ves
|5]>2

—3
then xg(1/x) #0

(Gruber-Kunz condition)

Suppose there exists a > 0 such that for all v € V(G):

Y w(S)]e?*l < e? -1,
S|ves
|5[>2
—)
then x¢(1/x) # 0.

é@/ ound.
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(c) Verifying the condition(s) |

(x) X [w(S)le
S|veSs
[S|>2

Guus Regts (University of Amsterdam)

DEE

8/15



(%) Y [w(S)|e?!
S|ves
|S|>2
Lemma /—3” TI(ir,0) £ _(Zl,l)“
Iw(S)] :‘ Yy (—1)lFisi
FCE(S)
(S,F) connected
< #spanning trees on S |x|I°I71,
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(+) Y Iw(S)|e
S|ves
|S|>2

Lemma

lw(S)| :‘ y (—1)IFlxIsI-1
FCE(S)
(S,F) connected

< #spanning trees on S |x|I°I71,

So (*) can be bounded by

Z Z ‘X’kfleak_

k>2 T tree rooted at v
[V(T)|=k
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So (*) can be bounded by

Z Z |X|k—leak_

k>2 T tree rooted at v
[V(T)|=k

Now use that underlying graph has maximum degree A.
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So (*) can be bounded by

Z 2 |X|k—leak_

k>2 T tree rooted at v
[V(T)|=k

Now use that underlying graph has maximum degree A.

- Number of trees in G of size k containing v is bounded by the number
of trees of size k containing v in the infinite A-regular tree Ty.
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So (*) can be bounded by

Y, X I

k>2 T tree rooted at v
[V(T)|=k

|k—leak_

Now use that underlying graph has maximum degree A.
- Number of trees in G of size k containing v is bounded by the number

of trees of size k containing v in the infinite A-regular tree Ty.

- These numbers can be obtained from the generating function:

Z tk(TA)Xk_l.

k>2

9/15
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So (*) can be bounded by
_ S b
|k=1gak. £ 2 C iy

Y, X I

k>2 T tree rooted at v
[V(T)|=k

£L7/

Now use that underlying graph has maximum degree A.
- Number of trees in G of size k containing v is bounded by the number

of trees of size k containing v in the infinite A-regular tree Ty.

- These numbers can be obtained from the generating function:

Z tk(TA)Xk_l.

k>2

- tk(TA> < (eA)k_l.
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(@)

Define for S C V(G) such that |S| > 2.

w(S) = ) (—1)IFlxlSI=1
FCE(S)
(S,F) connected

and set w(S) = 0 otherwise.
Observation: w is multiplicative over the blocks of G[S].

S L~ S A
S 2 X = %
) X&le—)
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(@)

Define for S C V(G) such that |S| > 2.

w(S) = ) (—1)IFlxlSI=1
FCE(S)
(S,F) connected

and set w(S) = 0 otherwise.
Observation: w is multiplicative over the blocks of G[S].

ke)=Y ¥
k>05;,...S.CV(G) i
5,‘05j2® if i)

k
3 I w(B).

B block of G[S]
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Zero-freeness of block polynomials
(Block path)
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Zero-freeness of block polynomials
(Block path)

For a vertex v and aset U C V(G) \ {v}.
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(b’)

(Block path)

For a vertex v and a set U C V(G) \ {v}. Denote by B(v, U) the
collection of block paths from ¥to U.

DOy W
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(b’)

(Block path)

For a vertex v and a set U C V(G) \ {v}. Denote by B(v, U) the
collection of block paths from fe to U.

Theorem (Moreschi, Patel, R. Stam, 2021+)

Suppose there exists a > 0 such that for all v € V(G) and connected sets
UCV(G)\{v}:

) lw(B)|e?BI=1) < o2 1,
BeB(v,U)

then xc(1/x) # 0.
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Verifying the condition
() Y, [w(B)le®Y
BeB(v,U)

J
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Lemma

D

FCE(B)
(B,F) connected

(_1)|F|X|B\—1‘

< #spanning trees on B |x|

|B]-1
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Lemma

wB)l=| ¥ (-nFixE
FCE(B)
(B,F) connected

< #spanning trees on B - |x||B|_1.

So (*) can be bounded by

Z Z |X|kflea(k71)-

k>2 T tree rooted at v
[V(T)|=k.|V(T)NU|=1

v
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- Currently working on inductive approach for (c') to improve the
bound of 5.02. (Joint with Jeroen Huijben)
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- Currently working on inductive approach for (c') to improve the
bound of 5.02. (Joint with Jeroen Huijben)

- Method not optimal: for complete bipartite graph of degree A, K a,
it gives a bound of C = 3.13 as A — co. (Joint with Jeroen Huijben)
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- Currently working on inductive approach for (c') to improve the
bound of 5.02. (Joint with Jeroen Huijben)

- Method not optimal: for complete bipartite graph of degree A, K a,
it gives a bound of C = 3.13 as A — co. (Joint with Jeroen Huijben)

- A heuristic approach due to Alan Sokal gives that chromatic roots of
Ka a are bounded by 1.6A in absolute value.
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- Currently working on inductive approach for (c') to improve the
bound of 5.02. (Joint with Jeroen Huijben)

Method not optimal: for complete bipartite graph of degree A, K a,
it gives a bound of C = 3.13 as A — co. (Joint with Jeroen Huijben)

A heuristic approach due to Alan Sokal gives that chromatic roots of
Ka a are bounded by 1.6A in absolute value.

Gordon Royle has conjectured that Kj A is the extremal graph.
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- Currently working on inductive approach for (c') to improve the
bound of 5.02. (Joint with Jeroen Huijben)

- Method not optimal: for complete bipartite graph of degree A, K a,
it gives a bound of C = 3.13 as A — co. (Joint with Jeroen Huijben)

- A heuristic approach due to Alan Sokal gives that chromatic roots of
Ka a are bounded by 1.6A in absolute value.

- Gordon Royle has conjectured that Ky a is the extremal graph.

- What is the optimal constant C?
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- As the girth g — oo the constant C = C(g) tends to 1 + e = 3.72.
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- As the girth g — oo the constant C = C(g) tends to 1 + e = 3.72.

- The method also applies to other polynomials. In particular to the
partition function of the Ising model.
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- As the girth g — oo the constant C = C(g) tends to 1 + e = 3.72.

- The method also applies to other polynomials. In particular to the
partition function of the Ising model.

- Plan to look at applications to the partition function of the Potts
model.
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- As the girth g — oo the constant C = C(g) tends to 1 + e = 3.72.

- The method also applies to other polynomials. In particular to the
partition function of the Ising model.

- Plan to look at applications to the partition function of the Potts
model.

- Block polynomials can be extended to matroids and a similar zero-free
result can be proved in that setting. (Joint with Vincent Schmeits)

v
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Thank you for your attention!

Guus Regts (University of Amsterdam) 15/15



