Improved bounds for zeros of the chromatic polynomial on bounded degree graphs

Guus Regts

University of Amsterdam

Atlantic Graph Theory Seminar

27 October, 2021

Based on joint work with Maurizio Moreschi, Viresh Patel and Ayla Stam

Introduction: The chromatic polynomial

For a graph G = (V, E), $\chi_G(x) = \sum_{F \subseteq E} (-1)^{|F|} x^{k(F)}.$ $(V_I \models)$

イロト イポト イヨト イヨト 二日

Introduction: The chromatic polynomial

For a graph G = (V, E),

$$\chi_G(x) = \sum_{F \subseteq E} (-1)^{|F|} x^{k(F)}.$$

- For positive integer k, χ_G(k) equals the number of proper k-colorings of G.
- Introduced by Birkhoff in 1912.
- χ_G is a monic polynomial of degree |V(G)|.

•
$$\chi_{K_n}(x) = x(x-1)\cdots(x-n+1).$$

Introduction: The chromatic polynomial

For a graph G = (V, E),

$$\chi_G(x) = \sum_{F \subseteq E} (-1)^{|F|} x^{k(F)}.$$

- For positive integer k, χ_G(k) equals the number of proper k-colorings of G.
- Introduced by Birkhoff in 1912.
- χ_G is a monic polynomial of degree |V(G)|.
- $\chi_{\kappa_n}(x) = x(x-1)\cdots(x-n+1).$

This talk: location of complex zeros of χ_G for bounded degree graphs G.

Guus Regts (University of Amsterdam)

Why care about complex zeros?

• Statistical physics: relation with phase transitions of the zero-temperature limit of the anti-ferromagnetic Potts model.

- Statistical physics: relation with phase transitions of the zero-temperature limit of the anti-ferromagnetic Potts model.
- Algorithms: Absence of complex zeros implies efficient approximation algorithms for computing evaluations of χ_G via Barvinok's interpolation method.

・ロト・日本・ 山田・ 山田・ 山田・ うんの

Guus Regts (University of Amsterdam)

• The zeros of the chromatic polynomial are dense in the complex plane (Sokal 2004).

- E > - E >

- The zeros of the chromatic polynomial are dense in the complex plane (Sokal 2004).
- There exists a constant C ≤ 7.97 such that all zeros of χ_G are contained in the disk centered at 0 of radius CΔ(G). (Sokal, 2001).
- The constant C is at most 6.91 (Fernandéz and Procacci 2008).

- The zeros of the chromatic polynomial are dense in the complex plane (Sokal 2004).
- There exists a constant C ≤ 7.97 such that all zeros of χ_G are contained in the disk centered at 0 of radius CΔ(G). (Sokal, 2001).
- The constant C is at most 6.91 (Fernandéz and Procacci 2008).

Theorem (Moreschi, Patel, R. Stam, 2021+)

The constant C is at most 5.02.

• Revisit Sokal's approach

- (a) Expres the chromatic polynomial as a multivariate independence polynomial.
- (b) Use known conditions that guarantee zero-freeness of multivariate independence polynomials.
- (c) Verify these conditions.

4 3 4 3 4 3 4

• Revisit Sokal's approach

- (a) Expres the chromatic polynomial as a multivariate independence polynomial.
- (b) Use known conditions that guarantee zero-freeness of multivariate independence polynomials.
- (c) Verify these conditions.
- Improving on Sokal's approach
 - (a') Expressing the chromatic polynomial as a multivariate block polynomial.
 - (b') Prove conditions that guarantee zero-freeness of multivariate block polynomials.
 - (c') Verify these conditions.
- Concluding remarks and questions

(a) From chromatic to independence

(a) From chromatic to independence

Look at

$$\hat{\chi}_{G}(x) := \sum_{F \subseteq E(G)} (-1)^{|F|} x^{|V(G)| - k(F)} = x^{|V(G)|} \chi_{G}(1/x)$$

Define for $S \subseteq V(G)$ such that $|S| \ge 2$.

$$w(S) := \sum_{\substack{F \subseteq E(S) \\ (S,F) \text{ connected}}} (-1)^{|F|} x^{|S|-1}$$

and set w(S) = 0 otherwise. Then

$$\hat{\chi}_{G}(x) = \sum_{k \ge 0} \sum_{\substack{S_1, \dots, S_k \subseteq V(G) \\ S_i \cap S_j = \emptyset \text{ if } i \neq j}} \prod_{i=1}^k w(S_i).$$

(b) Applying known conditions for zero-freeness

Guus Regts (University of Amsterdam)

(b) Applying known conditions for zero-freeness

(Kotecký-Preiss condition)

Suppose there exists a > 0 such that for all $v \in V(G)$:

イロト 不得下 イヨト イヨト

W(S)

(b) Applying known conditions for zero-freeness

(Kotecký-Preiss condition)

Suppose there exists a > 0 such that for all $v \in V(G)$:

$$\sum_{\substack{S|v\in S\\S|>2}} |w(S)|e^{a|S|} \le a,$$

-) 7.97 band

6.91

then $\chi_G(1/x) \neq 0$.

(Gruber-Kunz condition)

Suppose there exists a > 0 such that for all $v \in V(G)$:

$$\sum_{\substack{S|v\in S\ |S|>2}} |w(S)|e^{a|S|} \leq e^a - 1,$$

then
$$\chi_G(1/x) \neq 0$$
.

 $l^{q}_{-1} = a \neq a \neq a \neq 4$

$$(*)\sum_{\substack{S|v\in S\\|S|\geq 2}}|w(S)|e^{a|S|}$$

Guus Regts (University of Amsterdam)

8/15

E

<ロト < 回 > < 回 > < 回 > 、

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$(*)\sum_{\substack{S|v\in S\\|S|\geq 2}}|w(S)|e^{a|S|}$$

Lemma

$$|w(S)| = \left| \sum_{\substack{F \subseteq E(S) \\ (S,F) \text{ connected}}} (-1)^{|F|} x^{|S|-1} \right|$$

$$\leq \# \text{spanning trees on } S \cdot |x|^{|S|-1}$$

So (*) can be bounded by

$$\sum_{k \ge 2} \sum_{\substack{t \text{ tree rooted at } v \\ |V(T)| = k}} |x|^{k-1} e^{ak}.$$

So (*) can be bounded by

$$\sum_{k \ge 2} \sum_{\substack{T \text{ tree rooted at } v \\ |V(T)| = k}} |x|^{k-1} e^{ak}.$$

Now use that underlying graph has maximum degree Δ .

・ロト ・ 日 ・ ・ ヨ ・

So (*) can be bounded by

$$\sum_{k \ge 2} \sum_{\substack{T \text{ tree rooted at } v \\ |V(T)| = k}} |x|^{k-1} e^{ak}.$$

Now use that underlying graph has maximum degree Δ .

- Number of trees in G of size k containing v is bounded by the number of trees of size k containing v in the infinite Δ -regular tree T_{Δ} .

- E > - E >

< 47 ▶

So (*) can be bounded by

$$\sum_{k\geq 2} \sum_{\substack{T \text{ tree rooted at } v \\ |V(T)|=k}} |x|^{k-1} e^{ak}.$$

Now use that underlying graph has maximum degree Δ .

- Number of trees in G of size k containing v is bounded by the number of trees of size k containing v in the infinite Δ -regular tree T_{Δ} .
- These numbers can be obtained from the generating function:

$$\sum_{k\geq 2} t_k(T_\Delta) x^{k-1}.$$

< 47 ▶

So (*) can be bounded by

$$\sum_{k\geq 2} \sum_{\substack{T \text{ tree rooted at } v \\ |V(T)|=k}} |x|^{k-1} e^{ak}. \qquad \leq$$

Now use that underlying graph has maximum degree Δ .

- Number of trees in G of size k containing v is bounded by the number of trees of size k containing v in the infinite Δ -regular tree T_{Δ} .
- These numbers can be obtained from the generating function:

$$\sum_{k\geq 2} t_k(T_\Delta) x^{k-1}.$$

-
$$t_k(T_\Delta) \leq (e\Delta)^{k-1}$$
.

- 4 回 ト 4 ヨ ト 4 ヨ ト

 $\sum_{k_{2/2}}^{n} C_{(\chi)}^{k}$

Define for $S \subseteq V(G)$ such that $|S| \ge 2$.

$$w(S) := \sum_{\substack{F \subseteq E(S) \\ (S,F) \text{ connected}}} (-1)^{|F|} x^{|S|-1}$$

and set w(S) = 0 otherwise. Observation: w is multiplicative over the blocks of G[S].

Define for $S \subseteq V(G)$ such that $|S| \ge 2$.

$$w(S) := \sum_{\substack{F \subseteq E(S) \\ (S,F) \text{ connected}}} (-1)^{|F|} x^{|S|-1}$$

and set w(S) = 0 otherwise. Observation: w is multiplicative over the blocks of G[S].

$$\hat{\chi}_G(x) = \sum_{k \ge 0} \sum_{\substack{S_1, \dots, S_k \subseteq V(G) \\ S_i \cap S_j = \emptyset}} \prod_{i=1}^k \prod_{\substack{B \text{ block of } G[S]}} w(B).$$

(b') Zero-freeness of block polynomials

(Block path)

▲ロト▲聞ト▲臣ト▲臣ト 臣 のへの

Guus Regts (University of Amsterdam)

(Block path)

For a vertex v and a set $U \subseteq V(G) \setminus \{v\}$.

(Block path)

For a vertex v and a set $U \subseteq V(G) \setminus \{v\}$. Denote by $\mathcal{B}(v, U)$ the collection of block paths from \mathcal{H} to U.

(Block path)

For a vertex v and a set $U \subseteq V(G) \setminus \{v\}$. Denote by $\mathcal{B}(v, U)$ the collection of block paths from κ to U.

Theorem (Moreschi, Patel, R. Stam, 2021+)

Suppose there exists a > 0 such that for all $v \in V(G)$ and connected sets $U \subseteq V(G) \setminus \{v\}$:

$$\sum_{B\in\mathcal{B}(v,U)}|w(B)|e^{a(|B|-1)}\leq e^a-1,$$

then $\chi_G(1/x) \neq 0$.

(c') Verifying the condition

$$(*)\sum_{B\in\mathcal{B}(v,U)}|w(B)|e^{a(|B|-1)}$$

Guus Regts (University of Amsterdam)

E

< ロ > < 同 > < 三 > < 三 > 、

(c') Verifying the condition

$$(*)\sum_{B\in\mathcal{B}(\mathbf{v},U)}|w(B)|e^{\mathbf{a}(|B|-1)}$$

Lemma

$$|w(B)| = \left| \sum_{\substack{F \subseteq E(B)\\(B,F) \text{ connected}}} (-1)^{|F|} x^{|B|-1} \right|$$

$$\leq \# \text{spanning trees on } B \cdot |x|^{|B|-1}$$

Guus Regts (University of Amsterdam)

臣

イロト イヨト イヨト イヨト

(c') Verifying the condition

$$(*)\sum_{B\in\mathcal{B}(\mathbf{v},U)}|w(B)|e^{\mathbf{a}(|B|-1)}$$

Lemma

$$|w(B)| = \left| \sum_{\substack{F \subseteq E(B) \\ (B,F) \text{ connected}}} (-1)^{|F|} x^{|B|-1} \right|$$

$$\leq \# \text{spanning trees on } B \cdot |x|^{|B|-1}$$

So (*) can be bounded by

$$\sum_{\substack{k \ge 2 \\ |V(T)|=k, |V(T) \cap U|=1}} \sum_{\substack{|x|^{k-1}e^{a(k-1)}.}$$

- Currently working on inductive approach for (c') to improve the bound of 5.02. (Joint with Jeroen Huijben)

- Currently working on inductive approach for (c') to improve the bound of 5.02. (Joint with Jeroen Huijben)
- Method not optimal: for complete bipartite graph of degree Δ , $K_{\Delta,\Delta}$, it gives a bound of $C \cong 3.13$ as $\Delta \to \infty$. (Joint with Jeroen Huijben)

- Currently working on inductive approach for (c') to improve the bound of 5.02. (Joint with Jeroen Huijben)
- Method not optimal: for complete bipartite graph of degree Δ , $K_{\Delta,\Delta}$, it gives a bound of $C \cong 3.13$ as $\Delta \to \infty$. (Joint with Jeroen Huijben)
- A heuristic approach due to Alan Sokal gives that chromatic roots of $K_{\Delta,\Delta}$ are bounded by 1.6 Δ in absolute value.

- Currently working on inductive approach for (c') to improve the bound of 5.02. (Joint with Jeroen Huijben)
- Method not optimal: for complete bipartite graph of degree Δ , $K_{\Delta,\Delta}$, it gives a bound of $C \cong 3.13$ as $\Delta \to \infty$. (Joint with Jeroen Huijben)
- A heuristic approach due to Alan Sokal gives that chromatic roots of $K_{\Delta,\Delta}$ are bounded by 1.6 Δ in absolute value.
- Gordon Royle has conjectured that $K_{\Delta,\Delta}$ is the extremal graph.

- Currently working on inductive approach for (c') to improve the bound of 5.02. (Joint with Jeroen Huijben)
- Method not optimal: for complete bipartite graph of degree Δ , $K_{\Delta,\Delta}$, it gives a bound of $C \cong 3.13$ as $\Delta \to \infty$. (Joint with Jeroen Huijben)
- A heuristic approach due to Alan Sokal gives that chromatic roots of $K_{\Delta,\Delta}$ are bounded by 1.6 Δ in absolute value.
- Gordon Royle has conjectured that $\mathcal{K}_{\Delta,\Delta}$ is the extremal graph.
- What is the optimal constant C?

- As the girth $g \to \infty$ the constant C = C(g) tends to $1 + e \cong 3.72$.

· · · · · · · · ·

- As the girth $g \to \infty$ the constant C = C(g) tends to $1 + e \cong 3.72$.
- The method also applies to other polynomials. In particular to the partition function of the Ising model.

- As the girth $g \to \infty$ the constant C = C(g) tends to $1 + e \cong 3.72$.
- The method also applies to other polynomials. In particular to the partition function of the Ising model.
- Plan to look at applications to the partition function of the Potts model.

- As the girth $g \to \infty$ the constant C = C(g) tends to $1 + e \cong 3.72$.
- The method also applies to other polynomials. In particular to the partition function of the Ising model.
- Plan to look at applications to the partition function of the Potts model.
- Block polynomials can be extended to matroids and a similar zero-free result can be proved in that setting. (Joint with Vincent Schmeits)

臣

イロト イヨト イヨト イヨト