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Introduction: The chromatic polynomial

For a graph G = (V ,E ),

cG (x) = Â
F✓E

(�1)|F |xk(F ).

• For positive integer k , cG (k) equals the number of proper k-colorings
of G .

• Introduced by Birkho↵ in 1912.

• cG is a monic polynomial of degree |V (G )|.
• cKn(x) = x(x � 1) · · · (x � n+ 1).

This talk: location of complex zeros of cG for bounded degree graphs G .
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Why care about complex zeros?

• Statistical physics: relation with phase transitions of the
zero-temperature limit of the anti-ferromagnetic Potts model.

• Algorithms: Absence of complex zeros implies e�cient approximation
algorithms for computing evaluations of cG via Barvinok’s
interpolation method.
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What is known?

• The zeros of the chromatic polynomial are dense in the complex plane
(Sokal 2004).

• There exists a constant C  7.97 such that all zeros of cG are
contained in the disk centered at 0 of radius CD(G ). (Sokal, 2001).

• The constant C is at most 6.91 (Fernandéz and Procacci 2008).

Theorem (Moreschi, Patel, R. Stam, 2021+)

The constant C is at most 5.02.
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Overview of the rest of the talk

Revisit Sokal’s approach
(a) Expres the chromatic polynomial as a multivariate independence

polynomial.
(b) Use known conditions that guarantee zero-freeness of multivariate

independence polynomials.
(c) Verify these conditions.

Improving on Sokal’s approach
(a’) Expressing the chromatic polynomial as a multivariate block

polynomial.
(b’) Prove conditions that guarantee zero-freeness of multivariate block

polynomials.
(c’) Verify these conditions.

Concluding remarks and questions
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(a) From chromatic to independence

Look at

ĉG (x) := Â
F✓E (G )

(�1)|F |x |V (G )|�k(F ) = x |V (G )|cG (1/x)

Define for S ✓ V (G ) such that |S | � 2.

w(S) := Â
F✓E (S)

(S ,F ) connected

(�1)|F |x |S |�1

and set w(S) = 0 otherwise. Then

ĉG (x) = Â
k�0

Â
S1,...,Sk✓V (G )
Si\Sj=∆ if i 6=j

k

’
i=1

w(Si ).
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(b) Applying known conditions for zero-freeness

(Kotecký-Preiss condition)

Suppose there exists a > 0 such that for all v 2 V (G ):

Â
S |v2S
|S |�2

|w(S)|ea|S |  a,

then cG (1/x) 6= 0.

(Gruber-Kunz condition)

Suppose there exists a > 0 such that for all v 2 V (G ):

Â
S |v2S
|S |�2

|w(S)|ea|S |  ea � 1,

then cG (1/x) 6= 0.
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(c) Verifying the condition(s) I

(⇤) Â
S |v2S
|S |�2

|w(S)|ea|S |

Lemma

|w(S)| =
��� Â

F✓E (S)
(S ,F ) connected

(�1)|F |x |S |�1
���

 #spanning trees on S · |x ||S |�1.

So (*) can be bounded by

Â
k�2

Â
T tree rooted at v

|V (T )|=k

|x |k�1eak .
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(c) Verifying the condition(s) II

So (*) can be bounded by

Â
k�2

Â
T tree rooted at v

|V (T )|=k

|x |k�1eak .

Now use that underlying graph has maximum degree D.

- Number of trees in G of size k containing v is bounded by the number
of trees of size k containing v in the infinite D-regular tree TD.

- These numbers can be obtained from the generating function:

Â
k�2

tk(TD)x
k�1.

- tk(TD)  (eD)k�1.
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(a’) Improvement: From chromatic to block

Define for S ✓ V (G ) such that |S | � 2.

w(S) := Â
F✓E (S)

(S ,F ) connected

(�1)|F |x |S |�1

and set w(S) = 0 otherwise.
Observation: w is multiplicative over the blocks of G [S ].

ĉG (x) = Â
k�0

Â
S1,...,Sk✓V (G )
Si\Sj=∆ if i 6=j

k

’
i=1

’
B block of G [S ]

w(B).
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(b’) Zero-freeness of block polynomials

(Block path)

For a vertex v and a set U ✓ V (G ) \ {v}. Denote by B(v ,U) the
collection of block paths from x to U.

Theorem (Moreschi, Patel, R. Stam, 2021+)

Suppose there exists a > 0 such that for all v 2 V (G ) and connected sets
U ✓ V (G ) \ {v}:

Â
B2B(v ,U)

|w(B)|ea(|B |�1)  ea � 1,

then cG (1/x) 6= 0.
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(c’) Verifying the condition

(⇤) Â
B2B(v ,U)

|w(B)|ea(|B |�1)

Lemma

|w(B)| =
��� Â

F✓E (B)
(B,F ) connected

(�1)|F |x |B |�1
���

 #spanning trees on B · |x ||B |�1.

So (*) can be bounded by

Â
k�2

Â
T tree rooted at v

|V (T )|=k,|V (T )\U |=1

|x |k�1ea(k�1).
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Concluding remarks and question I

- Currently working on inductive approach for (c’) to improve the
bound of 5.02. (Joint with Jeroen Huijben)

- Method not optimal: for complete bipartite graph of degree D, KD,D,
it gives a bound of C ⇠= 3.13 as D ! •. (Joint with Jeroen Huijben)

- A heuristic approach due to Alan Sokal gives that chromatic roots of
KD,D are bounded by 1.6D in absolute value.

- Gordon Royle has conjectured that KD,D is the extremal graph.

- What is the optimal constant C?

Guus Regts (University of Amsterdam) 13 / 15



Concluding remarks and question I

- Currently working on inductive approach for (c’) to improve the
bound of 5.02. (Joint with Jeroen Huijben)

- Method not optimal: for complete bipartite graph of degree D, KD,D,
it gives a bound of C ⇠= 3.13 as D ! •. (Joint with Jeroen Huijben)

- A heuristic approach due to Alan Sokal gives that chromatic roots of
KD,D are bounded by 1.6D in absolute value.

- Gordon Royle has conjectured that KD,D is the extremal graph.

- What is the optimal constant C?

Guus Regts (University of Amsterdam) 13 / 15



Concluding remarks and question I

- Currently working on inductive approach for (c’) to improve the
bound of 5.02. (Joint with Jeroen Huijben)

- Method not optimal: for complete bipartite graph of degree D, KD,D,
it gives a bound of C ⇠= 3.13 as D ! •. (Joint with Jeroen Huijben)

- A heuristic approach due to Alan Sokal gives that chromatic roots of
KD,D are bounded by 1.6D in absolute value.

- Gordon Royle has conjectured that KD,D is the extremal graph.

- What is the optimal constant C?

Guus Regts (University of Amsterdam) 13 / 15



Concluding remarks and question I

- Currently working on inductive approach for (c’) to improve the
bound of 5.02. (Joint with Jeroen Huijben)

- Method not optimal: for complete bipartite graph of degree D, KD,D,
it gives a bound of C ⇠= 3.13 as D ! •. (Joint with Jeroen Huijben)

- A heuristic approach due to Alan Sokal gives that chromatic roots of
KD,D are bounded by 1.6D in absolute value.

- Gordon Royle has conjectured that KD,D is the extremal graph.

- What is the optimal constant C?

Guus Regts (University of Amsterdam) 13 / 15



Concluding remarks and question I

- Currently working on inductive approach for (c’) to improve the
bound of 5.02. (Joint with Jeroen Huijben)

- Method not optimal: for complete bipartite graph of degree D, KD,D,
it gives a bound of C ⇠= 3.13 as D ! •. (Joint with Jeroen Huijben)

- A heuristic approach due to Alan Sokal gives that chromatic roots of
KD,D are bounded by 1.6D in absolute value.

- Gordon Royle has conjectured that KD,D is the extremal graph.

- What is the optimal constant C?

Guus Regts (University of Amsterdam) 13 / 15



Concluding remarks and question II

- As the girth g ! • the constant C = C (g) tends to 1+ e ⇠= 3.72.

- The method also applies to other polynomials. In particular to the
partition function of the Ising model.

- Plan to look at applications to the partition function of the Potts
model.

- Block polynomials can be extended to matroids and a similar zero-free
result can be proved in that setting. (Joint with Vincent Schmeits)
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Thank you for your attention!
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