Improved bounds for zeros of the chromatic polynomial on bounded degree graphs

Guus Regts

University of Amsterdam

Atlantic Graph Theory Seminar

27 October, 2021

Based on joint work with Maurizio Moreschi, Viresh Patel and Ayla Stam

Introduction: The chromatic polynomial

For a graph $G=(V, E)$,

$$
\chi_{G}(x)=\sum_{F \subseteq E}(-1)^{|F|} x^{k(F)}
$$

($V, F)$

Introduction: The chromatic polynomial

For a graph $G=(V, E)$,

$$
\chi_{G}(x)=\sum_{F \subseteq E}(-1)^{|F|} x^{k(F)}
$$

- For positive integer $k, \chi_{G}(k)$ equals the number of proper k-colorings of G.
- Introduced by Birkhoff in 1912.
- χ_{G} is a monic polynomial of degree $|V(G)|$.
- $\chi_{K_{n}}(x)=x(x-1) \cdots(x-n+1)$.

Introduction: The chromatic polynomial

For a graph $G=(V, E)$,

$$
\chi_{G}(x)=\sum_{F \subseteq E}(-1)^{|F|} x^{k(F)}
$$

- For positive integer $k, \chi_{G}(k)$ equals the number of proper k-colorings of G.
- Introduced by Birkhoff in 1912.
- χ_{G} is a monic polynomial of degree $|V(G)|$.
- $\chi_{K_{n}}(x)=x(x-1) \cdots(x-n+1)$.

This talk: location of complex zeros of χ_{G} for bounded degree graphs G.

Why care about complex zeros?

Why care about complex zeros?

- Statistical physics: relation with phase transitions of the zero-temperature limit of the anti-ferromagnetic Potts model.

Why care about complex zeros?

- Statistical physics: relation with phase transitions of the zero-temperature limit of the anti-ferromagnetic Potts model.
- Algorithms: Absence of complex zeros implies efficient approximation algorithms for computing evaluations of χ_{G} via Barvinok's interpolation method.

What is known?

What is known?

- The zeros of the chromatic polynomial are dense in the complex plane (Sokal 2004).

What is known?

- The zeros of the chromatic polynomial are dense in the complex plane (Sokal 2004).
- There exists a constant $C \leq 7.97$ such that all zeros of χ_{G} are contained in the disk centered at 0 of radius $C \Delta(G)$. (Sokal, 2001).
- The constant C is at most 6.91 (Fernandéz and Procacci 2008).

What is known?

- The zeros of the chromatic polynomial are dense in the complex plane (Sokal 2004).
- There exists a constant $C \leq 7.97$ such that all zeros of χ_{G} are contained in the disk centered at 0 of radius $C \Delta(G)$. (Sokal, 2001).
- The constant C is at most 6.91 (Fernandéz and Procacci 2008).

Theorem (Moreschi, Patel, R. Stam, 2021+)
The constant C is at most 5.02 .

Overview of the rest of the talk

- Revisit Sokal's approach
(a) Expres the chromatic polynomial as a multivariate independence polynomial.
(b) Use known conditions that guarantee zero-freeness of multivariate independence polynomials.
(c) Verify these conditions.

Overview of the rest of the talk

- Revisit Sokal's approach
(a) Expres the chromatic polynomial as a multivariate independence polynomial.
(b) Use known conditions that guarantee zero-freeness of multivariate independence polynomials.
(c) Verify these conditions.
- Improving on Sokal's approach
(a') Expressing the chromatic polynomial as a multivariate block polynomial.
(b') Prove conditions that guarantee zero-freeness of multivariate block polynomials.
(c') Verify these conditions.
- Concluding remarks and questions
(a) From chromatic to independence

Look at
 notice that we can ignore singletons is?

(a) From chromatic to independence

Look at

$$
\hat{\chi}_{G}(x):=\sum_{F \subseteq E(G)}(-1)^{|F|} X^{|V(G)|-k(F)}=x^{|V(G)|} \chi_{G}(1 / x)
$$

Define for $S \subseteq V(G)$ such that $|S| \geq 2$.

$$
w(S):=\left.\sum_{\substack{F \subseteq E(S) \\(S, F) \text { connected }}}(-1)^{|F|}\right|_{X}|S|-1
$$

and set $w(S)=0$ otherwise. Then

$$
\hat{\chi}_{G}(x)=\sum_{\substack{k \geq 0 \\ S_{1}, \ldots, S_{k} \subseteq V(G) \\ S_{i} \cap S_{j}=\varnothing \text { if } i \neq j}} \prod_{i=1}^{k} w\left(S_{i}\right) .
$$

(b) Applying known conditions for zero-freeness

(b) Applying known conditions for zero-freeness

(Kotecký-Preiss condition)
Suppose there exists $a>0$ such that for all $v \in V(G)$:

$$
\sum_{\substack{S|v \in S\\| S \mid \geq 2}}|w(S)| e^{a|S|} \leq a
$$

then $\chi_{G}(1 / x) \neq 0$.
$\rightarrow \quad 7.97$ boud

(b) Applying known conditions for zero-freeness

(Kotecký-Preiss condition)

Suppose there exists $a>0$ such that for all $v \in V(G)$:

$$
\sum_{\substack{S|v \in S\\| S \mid \geq 2}}|w(S)| e^{\mathrm{a}|S|} \leq a
$$

$$
\rightarrow 7.97 \text { band }
$$

then $\chi_{G}(1 / x) \neq 0$.
(Gruber-Kunz condition)
Suppose there exists $a>0$ such that for all $v \in V(G)$:

$$
e^{a}-1=a+\frac{a}{c}
$$

$$
\sum_{\substack{S|v \in S\\| S \mid \geq 2}}|w(S)| e^{a|S|} \leq e^{a}-1,
$$

then $\chi_{G}(1 / x) \neq 0$.

$$
\rightarrow 6_{g 1} \text { bound. }
$$

(c) Verifying the condition(s) I

$$
\text { (*) } \sum_{\substack{S|v \in S\\| S \mid \geq 2}}|w(S)| e^{a|S|}
$$

(c) Verifying the conditions) I

$$
\text { (*) } \sum_{\substack{S|v \in S\\| S \mid \geq 2}}|w(S)| e^{a|S|}
$$

Lemma $\rightarrow " T(T, 0) \leq T(1,1)^{\prime \prime}$

$$
\begin{aligned}
|w(S)|= & \mid \sum_{\substack{F \subseteq E(S) \\
(S, F) \text { connected }}}(-1)^{|F|_{X}|S|-1 \mid} \\
& \leq \# \text { spanning trees on } S \cdot|x|^{|S|-1}
\end{aligned}
$$

(c) Verifying the condition(s) I

$$
\text { (*) } \sum_{\substack{S|v \in S\\| S \mid \geq 2}}|w(S)| e^{a|S|}
$$

Lemma

$$
\begin{aligned}
|w(S)|= & \mid \sum_{\substack{F \subseteq E(S) \\
(S, F) \text { connected }}}(-1)^{|F|_{X}|S|-1 \mid} \\
& \leq \# \text { spanning trees on } S \cdot|x|^{|S|-1} .
\end{aligned}
$$

So $\left({ }^{*}\right)$ can be bounded by

$$
\sum_{k \geq 2} \sum_{\substack{\text { tree rooted at } v \\|V(T)|=k}}|x|^{k-1} e^{a k} .
$$

(c) Verifying the condition(s) II

So $\left({ }^{*}\right)$ can be bounded by

$$
\sum_{k \geq 2} \sum_{\substack{\text { tree } \\ \text { rooted at } \\|V(T)|=k}}|x|^{k-1} e^{a k} .
$$

Now use that underlying graph has maximum degree Δ.

(c) Verifying the condition(s) II

So $\left(^{*}\right)$ can be bounded by

$$
\sum_{k \geq 2} \sum_{T \substack{\text { tree rooted at } v \\|V(T)|=k}}|x|^{k-1} e^{a k}
$$

Now use that underlying graph has maximum degree Δ.

- Number of trees in G of size k containing v is bounded by the number of trees of size k containing v in the infinite Δ-regular tree T_{Δ}.

(c) Verifying the condition(s) II

So $\left(^{*}\right)$ can be bounded by

$$
\sum_{k \geq 2} \sum_{T \substack{\text { tree rooted at } v \\|V(T)|=k}}|x|^{k-1} e^{a k}
$$

Now use that underlying graph has maximum degree Δ.

- Number of trees in G of size k containing v is bounded by the number of trees of size k containing v in the infinite Δ-regular tree T_{Δ}.
- These numbers can be obtained from the generating function:

$$
\sum_{k \geq 2} t_{k}\left(T_{\Delta}\right) x^{k-1}
$$

(c) Verifying the condition(s) II

So $\left(^{*}\right)$ can be bounded by

$$
\sum_{k \geq 2} \sum_{\substack{\text { tree rooted at } v \\|V(T)|=k}}|x|^{k-1} e^{a k} . \leq \sum_{h \geqslant} C_{(x)}^{h}
$$

Now use that underlying graph has maximum degree Δ.

- Number of trees in G of size k containing v is bounded by the number of trees of size k containing v in the infinite Δ-regular tree T_{Δ}.
- These numbers can be obtained from the generating function:

$$
\sum_{k \geq 2} t_{k}\left(T_{\Delta}\right) x^{k-1}
$$

- $t_{k}\left(T_{\Delta}\right) \leq(e \Delta)^{k-1}$.

(a') Improvement: From chromatic to block

Define for $S \subseteq V(G)$ such that $|S| \geq 2$.

$$
w(S):=\sum_{\substack{F \subseteq E(S) \\(S, F) \text { connected }}}(-1)^{|F|} x^{|S|-1}
$$

and set $w(S)=0$ otherwise.
Observation: w is multiplicative over the blocks of $G[S]$.

(a') Improvement: From chromatic to block

Define for $S \subseteq V(G)$ such that $|S| \geq 2$.

$$
w(S):=\left.\sum_{\substack{F \subseteq E(S) \\(S, F) \text { connected }}}(-1)^{|F|}\right|_{X}|S|-1
$$

and set $w(S)=0$ otherwise.
Observation: w is multiplicative over the blocks of $G[S]$.

$$
\hat{\chi}_{G}(x)=\sum_{k \geq 0} \sum_{\substack{S_{1}, \ldots, S_{k} \subseteq V(G) \\ S_{i} \cap S_{j}=\varnothing \text { if } i \neq j}} \prod_{i=1}^{k} \prod_{\text {B block of } G[S]} w(B) .
$$

(b') Zero-freeness of block polynomials

(Block path)

(b') Zero-freeness of block polynomials

(Block path)

For a vertex v and a set $U \subseteq V(G) \backslash\{v\}$.

(b') Zero-freeness of block polynomials

(Block path)

For a vertex v and a set $U \subseteq V(G) \backslash\{v\}$. Denote by $\mathcal{B}(v, U)$ the collection of block paths from $\boldsymbol{\mu}$ to U.

(b') Zero-freeness of block polynomials

(Block path)

For a vertex v and a set $U \subseteq V(G) \backslash\{v\}$. Denote by $\mathcal{B}(v, U)$ the collection of block paths from an to U.

Theorem (Moreschi, Patel, R. Stam, 2021+)
Suppose there exists $a>0$ such that for all $v \in V(G)$ and connected sets $U \subseteq V(G) \backslash\{v\}:$

$$
\sum_{B \in \mathcal{B}(v, U)}|w(B)| e^{a(|B|-1)} \leq e^{a}-1
$$

then $\chi_{G}(1 / x) \neq 0$.

(c') Verifying the condition

$$
(*) \sum_{B \in \mathcal{B}(v, U)}|w(B)| e^{a(|B|-1)}
$$

(c') Verifying the condition

$$
(*) \sum_{B \in \mathcal{B}(v, U)}|w(B)| e^{a(|B|-1)}
$$

Lemma

$$
\begin{aligned}
|w(B)|= & \mid \sum_{\substack{F \subseteq E(B) \\
(B, F) \text { connected }}}(-1)^{|F|_{X}|B|-1 \mid} \\
& \leq \# \text { spanning trees on } B \cdot|x|^{|B|-1} .
\end{aligned}
$$

(c') Verifying the condition

$$
(*) \sum_{B \in \mathcal{B}(v, U)}|w(B)| e^{a(|B|-1)}
$$

Lemma

$$
\begin{aligned}
|w(B)|= & \left|\sum_{\substack{F \subseteq E(B) \\
(B, F) \text { connected }}}(-1)^{|F|_{X}|B|-1}\right| \\
& \leq \# \text { spanning trees on } B \cdot|x|^{|B|-1} .
\end{aligned}
$$

So (*) can be bounded by

$$
\sum_{k \geq 2} \sum_{\substack{T \text { tree rooted at } V \\|V(T)|=k,|V(T) \cap U|=1}}|x|^{k-1} e^{a(k-1)} .
$$

Concluding remarks and question I

- Currently working on inductive approach for (c^{\prime}) to improve the bound of 5.02. (Joint with Jeroen Huijben)

Concluding remarks and question I

- Currently working on inductive approach for (c^{\prime}) to improve the bound of 5.02. (Joint with Jeroen Huijben)
- Method not optimal: for complete bipartite graph of degree $\Delta, K_{\Delta, \Delta}$, it gives a bound of $C \cong 3.13$ as $\Delta \rightarrow \infty$. (Joint with Jeroen Huijben)

Concluding remarks and question I

- Currently working on inductive approach for (c^{\prime}) to improve the bound of 5.02. (Joint with Jeroen Huijben)
- Method not optimal: for complete bipartite graph of degree $\Delta, K_{\Delta, \Delta}$, it gives a bound of $C \cong 3.13$ as $\Delta \rightarrow \infty$. (Joint with Jeroen Huijben)
- A heuristic approach due to Alan Sokal gives that chromatic roots of $K_{\Delta, \Delta}$ are bounded by 1.6Δ in absolute value.

Concluding remarks and question I

- Currently working on inductive approach for (c^{\prime}) to improve the bound of 5.02. (Joint with Jeroen Huijben)
- Method not optimal: for complete bipartite graph of degree $\Delta, K_{\Delta, \Delta}$, it gives a bound of $C \cong 3.13$ as $\Delta \rightarrow \infty$. (Joint with Jeroen Huijben)
- A heuristic approach due to Alan Sokal gives that chromatic roots of $K_{\Delta, \Delta}$ are bounded by 1.6Δ in absolute value.
- Gordon Royle has conjectured that $K_{\Delta, \Delta}$ is the extremal graph.

Concluding remarks and question I

- Currently working on inductive approach for (c^{\prime}) to improve the bound of 5.02. (Joint with Jeroen Huijben)
- Method not optimal: for complete bipartite graph of degree $\Delta, K_{\Delta, \Delta}$, it gives a bound of $C \cong 3.13$ as $\Delta \rightarrow \infty$. (Joint with Jeroen Huijben)
- A heuristic approach due to Alan Sokal gives that chromatic roots of $K_{\Delta, \Delta}$ are bounded by 1.6Δ in absolute value.
- Gordon Royle has conjectured that $K_{\Delta, \Delta}$ is the extremal graph.
- What is the optimal constant C?

Concluding remarks and question II

- As the girth $g \rightarrow \infty$ the constant $C=C(g)$ tends to $1+e \cong 3.72$.

Concluding remarks and question II

- As the girth $g \rightarrow \infty$ the constant $C=C(g)$ tends to $1+e \cong 3.72$.
- The method also applies to other polynomials. In particular to the partition function of the Ising model.

Concluding remarks and question II

- As the girth $g \rightarrow \infty$ the constant $C=C(g)$ tends to $1+e \cong 3.72$.
- The method also applies to other polynomials. In particular to the partition function of the Ising model.
- Plan to look at applications to the partition function of the Potts model.

Concluding remarks and question II

- As the girth $g \rightarrow \infty$ the constant $C=C(g)$ tends to $1+e \cong 3.72$.
- The method also applies to other polynomials. In particular to the partition function of the Ising model.
- Plan to look at applications to the partition function of the Potts model.
- Block polynomials can be extended to matroids and a similar zero-free result can be proved in that setting. (Joint with Vincent Schmeits)

Thank you for your attention!

