Equitable Colourings of cycle systems

Andrea Burgess
University of New Brunswick Saint John

Joint work with:
Francesca Merola
Università Roma Tre

Outline

(1) A scheduling problem

(2) Graph decompositions
(3) Colourings
(4) Equitable colourings

A scheduling problem

- A group of v people, representing c countries, attend a summit.

A scheduling problem

- A group of v people, representing c countries, attend a summit.
- They will take part in meetings of k people at a time.

A scheduling problem

- A group of v people, representing c countries, attend a summit.
- They will take part in meetings of k people at a time.
- Can we devise a meeting schedule so that:

A scheduling problem

- A group of v people, representing c countries, attend a summit.
- They will take part in meetings of k people at a time.
- Can we devise a meeting schedule so that:
- Each person attends a meeting with each other person the same number, λ, of times.

A scheduling problem

- A group of v people, representing c countries, attend a summit.
- They will take part in meetings of k people at a time.
- Can we devise a meeting schedule so that:
- Each person attends a meeting with each other person the same number, λ, of times.
- Each meeting has, as much as possible, equal representation from every country. (I.e. at each meeting, the number of delegates from different countries differ by at most 1.)

Example: $v=6, k=5, \lambda=4, c=3$

Suppose we have the following delegates:

Canada	France	Italy
1,4	2,5	3,6

Here is a possible schedule:

Meeting 1:	1	2	3	4	5
Meeting 2:	1	2	3	4	6
Meeting 3:	1	2	3	5	6
Meeting 4:	1	2	4	5	6
Meeting 5:	1	3	4	5	6
Meeting 6:	2	3	4	5	6

Graph Decompositions

Definition

- A collection $\left\{H_{1}, \ldots, H_{t}\right\}$ of subgraphs of Γ is a decomposition of Γ if the edge sets of $H_{1}, H_{2}, \ldots, H_{t}$ partition the edges of Γ.
- If $H_{1} \cong \ldots \cong H_{t} \cong H$, then we speak of an H-decomposition of Γ.
- We call the subgraphs H_{1}, \ldots, H_{t} blocks of the decomposition.

Example: A K_{3}-decomposition of K_{7}

Example: $\mathrm{A} K_{3}$-decomposition of K_{7}

Example: $\mathrm{A} K_{3}$-decomposition of K_{7}

$\{0,1,3\}$
$\{1,2,4\}$
$\{2,3,5\}$
$\{3,4,6\}$
$\{4,5,0\}$
$\{5,6,1\}$
$\{6,0,2\}$

Example: $\mathrm{A} K_{3}$-decomposition of K_{7}

$\{0,1,3\}$
$\{1,2,4\}$
$\{2,3,5\}$
$\{3,4,6\}$
$\{4,5,0\}$
$\{5,6,1\}$
$\{6,0,2\}$

Example: $\mathrm{A} K_{3}$-decomposition of K_{7}

$\{0,1,3\}$
$\{1,2,4\}$
$\{2,3,5\}$
$\{3,4,6\}$
$\{4,5,0\}$
$\{5,6,1\}$
$\{6,0,2\}$

Example: $\mathrm{A} K_{3}$-decomposition of K_{7}

$\{0,1,3\}$
$\{1,2,4\}$
$\{2,3,5\}$
$\{3,4,6\}$
$\{4,5,0\}$
$\{5,6,1\}$
$\{6,0,2\}$

Example: $\mathrm{A} K_{3}$-decomposition of K_{7}

$\{0,1,3\}$
$\{1,2,4\}$
$\{2,3,5\}$
$\{3,4,6\}$
$\{4,5,0\}$
$\{5,6,1\}$
$\{6,0,2\}$

Example: $\mathrm{A} K_{3}$-decomposition of K_{7}

$\{0,1,3\}$
$\{1,2,4\}$
$\{2,3,5\}$
$\{3,4,6\}$
$\{4,5,0\}$
$\{5,6,1\}$
$\{6,0,2\}$

Example: A K_{3}-decomposition of K_{7}

Remark

This decomposition is cyclic, formed from the base block $\{0,1,3\}$ by adding elements of \mathbb{Z}_{7}.

Balanced incomplete block designs

- A K_{k}-decomposition of λK_{v} is a $\operatorname{BIBD}(v, k, \lambda)$.

Balanced incomplete block designs

- A K_{k}-decomposition of λK_{v} is a $\operatorname{BIBD}(v, k, \lambda)$.
- If a $\operatorname{BIBD}(v, k, \lambda)$ exists, then $(k-1) \mid \lambda(v-1)$ and $k(k-1) \mid \lambda v(v-1)$.

Balanced incomplete block designs

- A K_{k}-decomposition of λK_{v} is a $\operatorname{BIBD}(v, k, \lambda)$.
- If a $\operatorname{BIBD}(v, k, \lambda)$ exists, then $(k-1) \mid \lambda(v-1)$ and $k(k-1) \mid \lambda v(v-1)$.
- Given k and λ, any $v \geq k$ satisfying the necessary conditions above will be called admissible for existence of a BIBD.

Balanced incomplete block designs

- A K_{k}-decomposition of λK_{v} is a $\operatorname{BIBD}(v, k, \lambda)$.
- If a $\operatorname{BIBD}(v, k, \lambda)$ exists, then $(k-1) \mid \lambda(v-1)$ and $k(k-1) \mid \lambda v(v-1)$.
- Given k and λ, any $v \geq k$ satisfying the necessary conditions above will be called admissible for existence of a BIBD.
- For any k and λ, there exists a $\operatorname{BIBD}(v, k, \lambda)$ for any sufficiently large admissible v. (Wilson, 1975)

Balanced incomplete block designs

- A K_{k}-decomposition of λK_{v} is a $\operatorname{BIBD}(v, k, \lambda)$.
- If a $\operatorname{BIBD}(v, k, \lambda)$ exists, then $(k-1) \mid \lambda(v-1)$ and $k(k-1) \mid \lambda v(v-1)$.
- Given k and λ, any $v \geq k$ satisfying the necessary conditions above will be called admissible for existence of a BIBD.
- For any k and λ, there exists a $\operatorname{BIBD}(v, k, \lambda)$ for any sufficiently large admissible v. (Wilson, 1975)
- A $\operatorname{BIBD}(v, k, \lambda)$ gives a meeting schedule with v people meeting in groups of k, with each pair of people attending λ meetings.

$\operatorname{ABIBD}(6,5,4)$

$$
\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 6 \\
1 & 2 & 3 & 5 & 6 \\
1 & 2 & 4 & 5 & 6 \\
1 & 3 & 4 & 5 & 6 \\
2 & 3 & 4 & 5 & 6
\end{array}
$$

Cycle decompositions

- Instead of asking that each pair of people attend the same number of meetings, suppose now that:

Cycle decompositions

- Instead of asking that each pair of people attend the same number of meetings, suppose now that:
- The meetings will take place at round tables.

Cycle decompositions

- Instead of asking that each pair of people attend the same number of meetings, suppose now that:
- The meetings will take place at round tables.
- Each person must sit next to each other person the same number of times.

Cycle decompositions

- Instead of asking that each pair of people attend the same number of meetings, suppose now that:
- The meetings will take place at round tables.
- Each person must sit next to each other person the same number of times.
- In this case, we would look for a cycle decomposition.

Example: A 4-cycle decomposition of K_{9}

Example: A 4-cycle decomposition of K_{9}

$(0,1,8,3)$
$(1,2,0,4)$

Example: A 4-cycle decomposition of K_{9}

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5)
\end{aligned}
$$

Example: A 4-cycle decomposition of K_{9}

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6)
\end{aligned}
$$

Example: A 4-cycle decomposition of K_{9}

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7)
\end{aligned}
$$

Example: A 4-cycle decomposition of K_{9}

$(0,1,8,3)$
$(1,2,0,4)$
$(2,3,1,5)$
$(3,4,2,6)$
$(4,5,3,7)$
$(5,6,4,8)$

Example: A 4-cycle decomposition of K_{9}

$(0,1,8,3)$
$(1,2,0,4)$
$(2,3,1,5)$
$(3,4,2,6)$
$(4,5,3,7)$
$(5,6,4,8)$
$(6,7,5,0)$

Example: A 4-cycle decomposition of K_{9}

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7) \\
& (5,6,4,8) \\
& (6,7,5,0) \\
& (7,8,6,1)
\end{aligned}
$$

Example: A 4-cycle decomposition of K_{9}

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7) \\
& (5,6,4,8) \\
& (6,7,5,0) \\
& (7,8,6,1) \\
& (8,0,7,2)
\end{aligned}
$$

Cycle decompositions of complete graphs

A k-cycle decomposition of K_{v} is also called a k-cycle system of order v.

Theorem (Alspach, Gavlas (2001); Šajna (2002))

There exists a k-cycle decomposition of K_{v} if and only if:

- $3 \leq k \leq v$;
- v is odd; and
- $k \left\lvert\,\binom{ v}{2}\right.$.

What if v is even?

The "trick" is to remove a 1-factor before decomposing into cycles.
So we look for a k-cycle decomposition of the cocktail party graph $K_{v}-I$.

What if v is even?

The "trick" is to remove a 1-factor before decomposing into cycles.
So we look for a k-cycle decomposition of the cocktail party graph $K_{v}-I$.

What if v is even?

The "trick" is to remove a 1-factor before decomposing into cycles.
So we look for a k-cycle decomposition of the cocktail party graph $K_{v}-I$.

What if v is even?

The "trick" is to remove a 1-factor before decomposing into cycles.
So we look for a k-cycle decomposition of the cocktail party graph $K_{v}-I$.

Cycle decompositions of the cocktail party graph

Theorem (Alspach, Gavlas (2001); Šajna (2002))

There exists a k-cycle decomposition of $K_{v}-I$ if and only if:

- $3 \leq k \leq v$;
- v is even; and
- $k \left\lvert\, \frac{v(v-2)}{2}\right.$.

Cycle decompositions of the cocktail party graph

Theorem (Alspach, Gavlas (2001); Šajna (2002))

There exists a k-cycle decomposition of $K_{v}-I$ if and only if:

- $3 \leq k \leq v$;
- v is even; and
- $k \left\lvert\, \frac{v(v-2)}{2}\right.$.

We will refer to a value of v that satisfies the criteria for existence of a k-cycle decomposition of K_{v} or $K_{v}-I$ as k-admissible (or simply admissible) for existence of a k-cycle decomposition of K_{v} or $K_{v}-I$.

Cycle decompositions of complete multigraphs

Theorem (Bryant, Horsley, Maenhaut and Smith (2011))

There exists a k-cycle decomposition of λK_{v} if and only if:

- $2 \leq k \leq v$;
- if $k=2$, then λ is even;
- $\lambda(v-1)$ is even; and
- $k \left\lvert\, \lambda\binom{v}{2}\right.$.

Theorem (Bryant, Horsley, Maenhaut and Smith (2011))

Let $v \geq 3$. There exists a k-cycle decomposition of $\lambda K_{v}-I$ if and only if:

- $3 \leq k \leq v$;
- $\lambda(v-1)$ is odd; and
- $k \left\lvert\, \lambda\binom{v}{2}-\frac{v}{2}\right.$.

Colourings

Suppose we have an H -decomposition, \mathcal{D}, of Γ.
A c-colouring of \mathcal{D} is an assignment of c colours to the vertices of Γ.

Colourings

Suppose we have an H -decomposition, \mathcal{D}, of Γ.
A c-colouring of \mathcal{D} is an assignment of c colours to the vertices of Γ.
More formally, a c-colouring is a function

$$
\phi: V(\Gamma) \rightarrow\{1,2, \ldots, c\} .
$$

Colourings

Suppose we have an H -decomposition, \mathcal{D}, of Γ.
A c-colouring of \mathcal{D} is an assignment of c colours to the vertices of Γ.
More formally, a c-colouring is a function

$$
\phi: V(\Gamma) \rightarrow\{1,2, \ldots, c\} .
$$

A c-colouring is:

Colourings

Suppose we have an H -decomposition, \mathcal{D}, of Γ.
A c-colouring of \mathcal{D} is an assignment of c colours to the vertices of Γ.
More formally, a c-colouring is a function

$$
\phi: V(\Gamma) \rightarrow\{1,2, \ldots, c\} .
$$

A c-colouring is:

- Weak if each block contains at least two vertices coloured differently.

Colourings

Suppose we have an H -decomposition, \mathcal{D}, of Γ.
A c-colouring of \mathcal{D} is an assignment of c colours to the vertices of Γ.
More formally, a c-colouring is a function

$$
\phi: V(\Gamma) \rightarrow\{1,2, \ldots, c\} .
$$

A c-colouring is:

- Weak if each block contains at least two vertices coloured differently.
- Strong if no block contains two vertices of the same colour.

Colourings

Suppose we have an H -decomposition, \mathcal{D}, of Γ.
A c-colouring of \mathcal{D} is an assignment of c colours to the vertices of Γ.
More formally, a c-colouring is a function

$$
\phi: V(\Gamma) \rightarrow\{1,2, \ldots, c\} .
$$

A c-colouring is:

- Weak if each block contains at least two vertices coloured differently.
- Strong if no block contains two vertices of the same colour.
- Equitable if for any two colours i and j, the number of vertices coloured i and j on any block differ by at most 1 .

Weak colourings: Examples

A weak 3-colouring of a 4-cycle decomposition of K_{9} :

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7) \\
& (5,6,4,8) \\
& (6,7,5,0) \\
& (7,8,6,1) \\
& (8,0,7,2)
\end{aligned}
$$

Weak colourings: Examples

A weak 3-colouring of a 4-cycle decomposition of K_{9} :

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7) \\
& (5,6,4,8) \\
& (6,7,5,0) \\
& (7,8,6,1) \\
& (8,0,7,2)
\end{aligned}
$$

Weak colourings: Examples

A weak 3-colouring of a 4-cycle decomposition of K_{9} :

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7) \\
& (5,6,4,8) \\
& (6,7,5,0) \\
& (7,8,6,1) \\
& (8,0,7,2)
\end{aligned}
$$

Colour classes:

$$
\{0,2,7\},\{1,4,5\},\{3,6,8\}
$$

Weak colourings: Examples

The chromatic number $\chi(\mathcal{D})$ is the minimum number c of colours needed to weakly c-colour the decomposition \mathcal{D}.

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7) \\
& (5,6,4,8) \\
& (6,7,5,0) \\
& (7,8,6,1) \\
& (8,0,7,2)
\end{aligned}
$$

Weak colourings: Examples

The chromatic number $\chi(\mathcal{D})$ is the minimum number c of colours needed to weakly c-colour the decomposition \mathcal{D}.

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7) \\
& (5,6,4,8) \\
& (6,7,5,0) \\
& (7,8,6,1) \\
& (8,0,7,2)
\end{aligned}
$$

Weak colourings: Examples

The chromatic number $\chi(\mathcal{D})$ is the minimum number c of colours needed to weakly c-colour the decomposition \mathcal{D}.

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7) \\
& (5,6,4,8) \\
& (6,7,5,0) \\
& (7,8,6,1) \\
& (8,0,7,2)
\end{aligned}
$$

This decomposition has chromatic number 2 .

Weak colourings of BIBDs

- Every $\operatorname{BIBD}(v, 3,1)$ with $v \geq 7$ has chromatic number at least 3 . (Rosa and Pelikán (1970))

Weak colourings of BIBDs

- Every $\operatorname{BIBD}(v, 3,1)$ with $v \geq 7$ has chromatic number at least 3 . (Rosa and Pelikán (1970))
- For each $c \geq 3$, there is a c-chromatic $\operatorname{BIBD}(v, 3,1)$ for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))

Weak colourings of BIBDs

- Every $\operatorname{BIBD}(v, 3,1)$ with $v \geq 7$ has chromatic number at least 3 . (Rosa and Pelikán (1970))
- For each $c \geq 3$, there is a c-chromatic $\operatorname{BIBD}(v, 3,1)$ for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))
- There is a 2-chromatic $\operatorname{BIBD}(v, 4, \lambda)$ for each admissible v. (Hoffman, Lindner and Phelps (1990); Hoffman, Lindner and Phelps (1991); Rosa and Colbourn (1992); Franek, Griggs, Lindner and Rosa (2002))

Weak colourings of BIBDs

- Every $\operatorname{BIBD}(v, 3,1)$ with $v \geq 7$ has chromatic number at least 3 . (Rosa and Pelikán (1970))
- For each $c \geq 3$, there is a c-chromatic $\operatorname{BIBD}(v, 3,1)$ for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))
- There is a 2-chromatic $\operatorname{BIBD}(v, 4, \lambda)$ for each admissible v. (Hoffman, Lindner and Phelps (1990); Hoffman, Lindner and Phelps (1991); Rosa and Colbourn (1992); Franek, Griggs, Lindner and Rosa (2002))
- There is a 2-chromatic $\operatorname{BIBD}(v, 5,1)$ for each admissible v. (Ling (1999))

Weak colourings of BIBDs

- Every $\operatorname{BIBD}(v, 3,1)$ with $v \geq 7$ has chromatic number at least 3 . (Rosa and Pelikán (1970))
- For each $c \geq 3$, there is a c-chromatic $\operatorname{BIBD}(v, 3,1)$ for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))
- There is a 2-chromatic $\operatorname{BIBD}(v, 4, \lambda)$ for each admissible v. (Hoffman, Lindner and Phelps (1990); Hoffman, Lindner and Phelps (1991); Rosa and Colbourn (1992); Franek, Griggs, Lindner and Rosa (2002))
- There is a 2-chromatic $\operatorname{BIBD}(v, 5,1)$ for each admissible v. (Ling (1999))
- For all integers $c \geq 2$ and $k \geq 3$ with $(c, k) \neq(2,3)$, there is a c-chromatic $\operatorname{BIBD}(v, k, \lambda)$ for each sufficiently large admissible v. (Horsley and Pike (2014))

Weak colourings of cycle systems

- Every 3-cycle system of order $v \geq 7$ has chromatic number at least 3 . (Rosa and Pelikán (1970))
- For each $c \geq 3$, there is a c-chromatic 3-cycle system of order v for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))

Weak colourings of cycle systems

- Every 3-cycle system of order $v \geq 7$ has chromatic number at least 3 . (Rosa and Pelikán (1970))
- For each $c \geq 3$, there is a c-chromatic 3-cycle system of order v for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))
- For every $k \geq 4$, there is a 2 -chromatic k-cycle system and a k-cycle system which is not 2-chromatic. (Milici and Tuza $(1996,1999)$)

Weak colourings of cycle systems

- Every 3-cycle system of order $v \geq 7$ has chromatic number at least 3 . (Rosa and Pelikán (1970))
- For each $c \geq 3$, there is a c-chromatic 3-cycle system of order v for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))
- For every $k \geq 4$, there is a 2 -chromatic k-cycle system and a k-cycle system which is not 2-chromatic. (Milici and Tuza $(1996,1999)$)
- For every $c \geq 2$, there is an integer v_{c} such that there is a c-chromatic 4-cycle system of any admissible order $v \geq v_{c}$. (Burgess and Pike (2006))

Weak colourings of cycle systems

- Every 3-cycle system of order $v \geq 7$ has chromatic number at least 3 . (Rosa and Pelikán (1970))
- For each $c \geq 3$, there is a c-chromatic 3-cycle system of order v for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))
- For every $k \geq 4$, there is a 2 -chromatic k-cycle system and a k-cycle system which is not 2-chromatic. (Milici and Tuza $(1996,1999)$)
- For every $c \geq 2$, there is an integer v_{c} such that there is a c-chromatic 4-cycle system of any admissible order $v \geq v_{c}$. (Burgess and Pike (2006))
- For every $c \geq 2$ and even $k \geq 4$, there is a c-chromatic k-cycle system. (Burgess and Pike (2008))

Weak colourings of cycle systems

- Every 3-cycle system of order $v \geq 7$ has chromatic number at least 3 . (Rosa and Pelikán (1970))
- For each $c \geq 3$, there is a c-chromatic 3-cycle system of order v for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))
- For every $k \geq 4$, there is a 2 -chromatic k-cycle system and a k-cycle system which is not 2-chromatic. (Milici and Tuza $(1996,1999)$)
- For every $c \geq 2$, there is an integer v_{c} such that there is a c-chromatic 4-cycle system of any admissible order $v \geq v_{c}$. (Burgess and Pike (2006))
- For every $c \geq 2$ and even $k \geq 4$, there is a c-chromatic k-cycle system. (Burgess and Pike (2008))
- For every $c \geq 2$ and $k \geq 3$ with $(c, k) \neq(2,3)$, there is a c-chromatic k-cycle system of every sufficiently large admissible order v. (Horsley and Pike (2010))

Equitable colourings: Examples

An equitably 3-colourable $\operatorname{BIBD}(6,5,4)$:

$$
\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 6 \\
1 & 2 & 3 & 5 & 6 \\
1 & 2 & 4 & 5 & 6 \\
1 & 3 & 4 & 5 & 6 \\
2 & 3 & 4 & 5 & 6
\end{array}
$$

Equitable colourings: Examples

An equitable 3-colouring of a 4-cycle decomposition of K_{9} :

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7) \\
& (5,6,4,8) \\
& (6,7,5,0) \\
& (7,8,6,1) \\
& (8,0,7,2)
\end{aligned}
$$

Equitable colourings: Examples

An equitable 3-colouring of a 4-cycle decomposition of K_{9} :

$$
\begin{aligned}
& (0,1,8,3) \\
& (1,2,0,4) \\
& (2,3,1,5) \\
& (3,4,2,6) \\
& (4,5,3,7) \\
& (5,6,4,8) \\
& (6,7,5,0) \\
& (7,8,6,1) \\
& (8,0,7,2)
\end{aligned}
$$

This decomposition cannot be equitably 2 -coloured.

Equitable colourings: Examples

An equitable 2-colouring of a 6-cycle decomposition of $K_{8}-I$:

Equitable colourings: Examples

An equitable 2-colouring of a 6-cycle decomposition of $K_{8}-I$:

Equitable colourings: Examples

An equitable 2-colouring of a 6-cycle decomposition of $K_{8}-I$:

Equitable colourings: Examples

An equitable 2-colouring of a 6-cycle decomposition of $K_{8}-I$:

Equitable colourings: Examples

An equitable 2-colouring of a 6-cycle decomposition of $K_{8}-I$:

Equitable colourings: Examples

An equitable 2-colouring of a 6-cycle decomposition of $K_{8}-I$:

Equitable colourings: Examples

An equitable 2-colouring of a 6-cycle decomposition of $K_{8}-I$:

Equitable colourings of cycle decompositions

Lemma

Suppose there is an equitable c-colouring of a k-cycle decomposition of K_{v} or $K_{v}-I$, where $c \mid k$. Then:

- Each cycle contains k/c vertices of every colour.
- c|v, and each colour class has size $\frac{v}{c}$.

Equitable colourings of cycle decompositions

Lemma

Suppose there is an equitable c-colouring of a k-cycle decomposition of K_{v} or $K_{v}-I$, where $c \mid k$. Then:

- Each cycle contains k / c vertices of every colour.
- c|v, and each colour class has size $\frac{v}{c}$.

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

If there is an equitably c-colourable $(c+1)$-cycle decomposition of K_{v}, then $v \leq c^{2}$.

If there is an equitably c-colourable $(c+1)$-cycle decomposition of $K_{v}-I$, then $v \leq 2 c^{2}$.

Equitable 2-colourings of cycle decompositions

Lemma (Adams, Bryant and Waterhouse (2007))

If k is even, then there is no equitably 2 -colourable k-cycle decomposition of K_{v}.

Equitable 2-colourings of cycle decompositions

Lemma (Adams, Bryant and Waterhouse (2007))

If k is even, then there is no equitably 2 -colourable k-cycle decomposition of K_{v}.

Theorem (Adams, Bryant and Waterhouse (2007))

For $k \in\{4,5,6\}$, there is an equitably 2-colourable k-cycle decomposition of $K_{v}-I$ for any admissible order v.

Equitable 2-colourings of cycle decompositions

Lemma (Adams, Bryant and Waterhouse (2007))

If k is even, then there is no equitably 2-colourable k-cycle decomposition of K_{v}.

Theorem (Adams, Bryant and Waterhouse (2007))

For $k \in\{4,5,6\}$, there is an equitably 2-colourable k-cycle decomposition of $K_{v}-I$ for any admissible order v.

Theorem (Adams, Bryant and Waterhouse (2007))

For all admissible v, there is an equitably 2-colourable 5-cycle decomposition of K_{v}. If $v>5$, there is also a 5-cycle decomposition of K_{v} which is not equitably 2-colourable.

Equitable 3-colourings of cycle decompositions

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 4-cycle decomposition of K_{v} (resp. $K_{v}-I$) if and only if $v=9$ (resp. $v \in\{4,6,8,10,12,18\}$).

Equitable 3-colourings of cycle decompositions

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 4-cycle decomposition of K_{v} (resp. $\left.K_{v}-I\right)$ if and only if $v=9$ (resp. $v \in\{4,6,8,10,12,18\}$).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 5-cycle decomposition of K_{v} or $K_{v}-I$ for every admissible v. (I.e. iff $v \equiv 1,5(\bmod 10)$ for decomposition of K_{v} and $v \equiv 0$ or $2(\bmod 10)$ for decomposition of $\left.K_{v}-I\right)$.

Equitable 3-colourings of cycle decompositions

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 4-cycle decomposition of K_{v} (resp. $K_{v}-I$) if and only if $v=9$ (resp. $v \in\{4,6,8,10,12,18\}$).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 5-cycle decomposition of K_{v} or $K_{v}-I$ for every admissible v. (I.e. iff $v \equiv 1,5(\bmod 10)$ for decomposition of K_{v} and $v \equiv 0$ or $2(\bmod 10)$ for decomposition of $\left.K_{v}-1\right)$.

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 6-cycle decomposition of K_{v} if and only if $v \equiv 9(\bmod 12)$, and an equitably 3-colourable 6-cycle decomposition of $K_{v}-I$ if and only if $v \equiv 0(\bmod 6)$.

Existence of equitably coloured BIBDs

Theorem (Luther and Pike, 2016)

There is an equitably c-colourable $\operatorname{BIBD}(v, k, \lambda)$ with $k<v$ if and only if

- $c=v$, or
- $v=k+1, \lambda \equiv 0(\bmod k-1)$ and $k+1 \equiv 0(\bmod c)$.

Reduction step for equitably 2-colourable even cycle decomposition of $K_{v}-I$

Lemma (Burgess and Merola (2020+))

Let r and k be even, $0 \leq r<k$. If $K_{k+r}-I$ admits an equitably 2-colourable k-cycle decomposition, then so does $K_{v}-I$ for any $v \equiv r$ $(\bmod k)$ with $v \geq k$.

Reduction step for equitably 2-colourable even cycle decomposition of $K_{v}-I$

Lemma (Burgess and Merola (2020+))

Let r and k be even, $0 \leq r<k$. If $K_{k+r}-I$ admits an equitably 2-colourable k-cycle decomposition, then so does $K_{v}-I$ for any $v \equiv r$ $(\bmod k)$ with $v \geq k$.

Reduction step for equitably 2-colourable even cycle decomposition of $K_{v}-I$

Lemma (Burgess and Merola (2020+))

Let r and k be even, $0 \leq r<k$. If $K_{k+r}-I$ admits an equitably 2-colourable k-cycle decomposition, then so does $K_{v}-I$ for any $v \equiv r$ $(\bmod k)$ with $v \geq k$.

Doubly equitable decompositions of the complete bipartite graph

We say a cycle decomposition of $K_{m, n}$ is doubly equitably c-colourable if it admits a c-colouring ϕ such that:

- ϕ is an equitable colouring
- ϕ equitably colours the parts

Theorem (Burgess and Merola (2020+))

Let k be even and $0 \leq r<k$. There exists a doubly equitably 2-colourable k-cycle decomposition of $K_{k, k+r}$.

- When $k \equiv 0(\bmod 4)$, we split the part of size k into two sub-parts of size $k / 2$, and decompose $K_{k / 2, k+r}$.

$$
2+2
$$

- When $k \equiv 2(\bmod 4)$, we use a variant of a decomposition due to Sotteau (1981).

Reduction step for equitably 2-colourable even cycle decomposition of $K_{v}-I$

Theorem (Burgess and Merola (2020+))

Let $k \geq 4$ be even. If $K_{v}-I$ admits an equitably 2-colourable k-cycle decomposition for any k-admissible even v satisfying $k \leq v<2 k$, then $K_{v}-I$ admits an equitably 2-colourable k-cycle decomposition for any k-admissible even v.

$v \equiv 0$ or $2(\bmod k)$

Theorem (Burgess and Merola (2020+))

Let k be even. There exist equitably 2-colourable k-cycle decompositions of $K_{k}-I$ and $K_{k+2}-I$. Hence there is an equitably 2 -colourable k-cycle decomposition of $K_{v}-I$ whenever $v \equiv 0$ or $2(\bmod k)$.

$v \equiv 0$ or $2(\bmod k)$

Theorem (Burgess and Merola (2020+))

Let k be even. There exist equitably 2-colourable k-cycle decompositions of $K_{k}-I$ and $K_{k+2}-I$. Hence there is an equitably 2-colourable k-cycle decomposition of $K_{v}-I$ whenever $v \equiv 0$ or $2(\bmod k)$.

$v \equiv 0$ or $2(\bmod k)$

Theorem (Burgess and Merola (2020+))

Let k be even. There exist equitably 2-colourable k-cycle decompositions of $K_{k}-I$ and $K_{k+2}-I$. Hence there is an equitably 2 -colourable k-cycle decomposition of $K_{v}-I$ whenever $v \equiv 0$ or $2(\bmod k)$.

$v \equiv 0$ or $2(\bmod k)$

Theorem (Burgess and Merola (2020+))

Let k be even. There exist equitably 2-colourable k-cycle decompositions of $K_{k}-I$ and $K_{k+2}-I$. Hence there is an equitably 2-colourable k-cycle decomposition of $K_{v}-I$ whenever $v \equiv 0$ or $2(\bmod k)$.

$v \equiv 0$ or $2(\bmod k)$

Theorem (Burgess and Merola (2020+))

Let k be even. There exist equitably 2-colourable k-cycle decompositions of $K_{k}-I$ and $K_{k+2}-I$. Hence there is an equitably 2-colourable k-cycle decomposition of $K_{v}-I$ whenever $v \equiv 0$ or $2(\bmod k)$.

$v \equiv 0$ or $2(\bmod k)$

Theorem (Burgess and Merola (2020+))

Let k be even. There exist equitably 2-colourable k-cycle decompositions of $K_{k}-I$ and $K_{k+2}-I$. Hence there is an equitably 2 -colourable k-cycle decomposition of $K_{v}-I$ whenever $v \equiv 0$ or $2(\bmod k)$.

$v \equiv 0$ or $2(\bmod k)$

Theorem (Burgess and Merola (2020+))

Let k be even. There exist equitably 2-colourable k-cycle decompositions of $K_{k}-I$ and $K_{k+2}-I$. Hence there is an equitably 2 -colourable k-cycle decomposition of $K_{v}-I$ whenever $v \equiv 0$ or $2(\bmod k)$.

$v \equiv 0$ or $2(\bmod k)$

Theorem (Burgess and Merola (2020+))

Let k be even. There exist equitably 2-colourable k-cycle decompositions of $K_{k}-I$ and $K_{k+2}-I$. Hence there is an equitably 2 -colourable k-cycle decomposition of $K_{v}-I$ whenever $v \equiv 0$ or $2(\bmod k)$.

$k=2 q$ or $4 q, q$ a prime power

Corollary (Burgess and Merola (2020+))

Let q be an odd prime power. There is an equitably 2-colourable $2 q$-cycle decomposition of $K_{v}-I$ if and only if v is $2 q$-admissible.

$k=2 q$ or $4 q, q$ a prime power

Corollary (Burgess and Merola (2020+))

Let q be an odd prime power. There is an equitably 2-colourable $2 q$-cycle decomposition of $K_{v}-I$ if and only if v is $2 q$-admissible.

Theorem (Burgess and Merola (2020+))

Let q be an odd prime power. There is an equitably 2-colourable 4q-cycle decomposition of $K_{v}-I$ if and only if v is $4 q$-admissible.

Proof.

The $4 q$-admissible orders $v \in[4 q, 8 q)$ are $v=4 q, 4 q+2,6 q, 6 q+2$. For $v \in\{6 q, 6 q+2\}$ we directly construct a equitably 2 -colourable decomposition.

An equitably 2 -colourable 12 -cycle decomposition of $K_{20}-1$

An equitably 2 -colourable 12 -cycle decomposition of K_{20} - 1

An equitably 2 -colourable 12 -cycle decomposition of K_{20} - 1

An equitably 2 -colourable 12 -cycle decomposition of K_{20} - 1

An equitably 2 -colourable 12 -cycle decomposition of K_{20} -

Cycle length $k \leq 30$

Theorem (Burgess and Merola (2020+))

If $4 \leq k \leq 30$ is even, then there is an equitably 2-colourable k-cycle decomposition of $K_{v}-l$ if and only if v is k-admissible.

Proof.

- The previous results cover all k-values except 24 and 30 .
- For $k=24$, we only need to check orders 32 and 42 .
- For $k=30$, we only need to check orders 42 and 50 .
- We construct an equitably 2 -colourable decomposition in each case.

Future directions

- Find equitably 2-colourable odd cycle decompositions of K_{v} or $K_{v}-I$.
- Find equitably c-colourable k-cycle decompositions of K_{v} or $K_{v}-I$.
- Complete the spectrum of equitably 2-colourable even cycle decompositions of $K_{v}-I$.
- Relax "equitable" condition
- The number of vertices on a block with colours i and j may differ by at most d.
- Not every colour need appear on every block, but those that do appear equitably.

Thanks!

