Equitable Colourings of cycle systems

Andrea Burgess

University of New Brunswick Saint John

Joint work with:

Francesca Merola

Università Roma Tre

Andrea Burgess

Equitable Colourings

Atlantic Graph Theory Seminar

2 Graph decompositions

• A group of v people, representing c countries, attend a summit.

- A group of v people, representing c countries, attend a summit.
- They will take part in meetings of k people at a time.

- A group of v people, representing c countries, attend a summit.
- They will take part in meetings of k people at a time.
- Can we devise a meeting schedule so that:

- A group of v people, representing c countries, attend a summit.
- They will take part in meetings of k people at a time.
- Can we devise a meeting schedule so that:
 - Each person attends a meeting with each other person the same number, $\lambda,$ of times.

- A group of v people, representing c countries, attend a summit.
- They will take part in meetings of k people at a time.
- Can we devise a meeting schedule so that:
 - Each person attends a meeting with each other person the same number, $\lambda,$ of times.
 - Each meeting has, as much as possible, equal representation from every country. (I.e. at each meeting, the number of delegates from different countries differ by at most 1.)

Example: v = 6, k = 5, $\lambda = 4$, c = 3

Suppose we have the following delegates:

Canada	France	Italy
1, 4	2, 5	3, 6

Here is a possible schedule:

Meeting 1:	1	2	3	4	5
Meeting 2:	1	2	3	4	6
Meeting 1: Meeting 2: Meeting 3: Meeting 4: Meeting 5: Meeting 6:	1	2	3	5	6
Meeting 4:	1	2	4	5	6
Meeting 5:	1	3	4	5	6
Meeting 6:	2	3	4	5	6

Definition

- A collection {H₁,..., H_t} of subgraphs of Γ is a decomposition of Γ if the edge sets of H₁, H₂,..., H_t partition the edges of Γ.
- If $H_1 \cong \cdots \cong H_t \cong H$, then we speak of an *H*-decomposition of Γ .
- We call the subgraphs H_1, \ldots, H_t blocks of the decomposition.

Remark

This decomposition is cyclic, formed from the base block $\{0,1,3\}$ by adding elements of $\mathbb{Z}_7.$

• A K_k -decomposition of λK_v is a BIBD (v, k, λ) .

Balanced incomplete block designs

- A K_k -decomposition of λK_v is a BIBD (v, k, λ) .
- If a BIBD(v, k, λ) exists, then $(k 1) \mid \lambda(v 1)$ and $k(k 1) \mid \lambda v(v 1)$.

Balanced incomplete block designs

- A K_k -decomposition of λK_v is a BIBD (v, k, λ) .
- If a BIBD(v, k, λ) exists, then $(k 1) \mid \lambda(v 1)$ and $k(k 1) \mid \lambda v(v 1)$.
- Given k and λ, any v ≥ k satisfying the necessary conditions above will be called admissible for existence of a BIBD.

Balanced incomplete block designs

- A K_k -decomposition of λK_v is a BIBD (v, k, λ) .
- If a BIBD(v, k, λ) exists, then $(k 1) \mid \lambda(v 1)$ and $k(k 1) \mid \lambda v(v 1)$.
- Given k and λ, any v ≥ k satisfying the necessary conditions above will be called admissible for existence of a BIBD.
- For any k and λ, there exists a BIBD(v, k, λ) for any sufficiently large admissible v. (Wilson, 1975)

- A K_k -decomposition of λK_v is a BIBD (v, k, λ) .
- If a BIBD(v, k, λ) exists, then $(k 1) \mid \lambda(v 1)$ and $k(k 1) \mid \lambda v(v 1)$.
- Given k and λ, any v ≥ k satisfying the necessary conditions above will be called admissible for existence of a BIBD.
- For any k and λ, there exists a BIBD(v, k, λ) for any sufficiently large admissible v. (Wilson, 1975)
- A BIBD(v, k, λ) gives a meeting schedule with v people meeting in groups of k, with each pair of people attending λ meetings.

1	2	3	4	5	
1	2	3	4	6	
1	2	3	5	6	
1	2	4	5	6	
1	3	4	5	6	
2	3	4	5	6	

• Instead of asking that each pair of people attend the same number of meetings, suppose now that:

- Instead of asking that each pair of people attend the same number of meetings, suppose now that:
 - The meetings will take place at round tables.

- Instead of asking that each pair of people attend the same number of meetings, suppose now that:
 - The meetings will take place at round tables.
 - Each person must sit next to each other person the same number of times.

- Instead of asking that each pair of people attend the same number of meetings, suppose now that:
 - The meetings will take place at round tables.
 - Each person must sit next to each other person the same number of times.
- In this case, we would look for a cycle decomposition.

(0, 1, 8, 3)

(0, 1, 8, 3)(1, 2, 0, 4)

(0,1,8,3)(1,2,0,4)(2,3,1,5)(3,4,2,6)

(0,1,8,3)(1,2,0,4)(2,3,1,5)(3,4,2,6)(4,5,3,7)

 $\begin{array}{c} (0,1,8,3)\\ (1,2,0,4)\\ (2,3,1,5)\\ (3,4,2,6)\\ (4,5,3,7)\\ (5,6,4,8) \end{array}$

 $\begin{array}{c} (0,1,8,3)\\ (1,2,0,4)\\ (2,3,1,5)\\ (3,4,2,6)\\ (4,5,3,7)\\ (5,6,4,8)\\ (6,7,5,0) \end{array}$

 $\begin{array}{c} (0,1,8,3)\\ (1,2,0,4)\\ (2,3,1,5)\\ (3,4,2,6)\\ (4,5,3,7)\\ (5,6,4,8)\\ (6,7,5,0)\\ (7,8,6,1) \end{array}$

Example: A 4-cycle decomposition of K_9

 $\begin{array}{c} (0,1,8,3)\\ (1,2,0,4)\\ (2,3,1,5)\\ (3,4,2,6)\\ (4,5,3,7)\\ (5,6,4,8)\\ (6,7,5,0)\\ (7,8,6,1)\\ (8,0,7,2) \end{array}$

A k-cycle decomposition of K_v is also called a k-cycle system of order v.

Theorem (Alspach, Gavlas (2001); Šajna (2002))

There exists a k-cycle decomposition of K_v if and only if:

- $3 \le k \le v$;
- v is odd; and

•
$$k \mid {\binom{v}{2}}.$$

Theorem (Alspach, Gavlas (2001); Šajna (2002))

There exists a k-cycle decomposition of $K_v - I$ if and only if:

- $3 \le k \le v$;
- v is even; and
- $k \mid \frac{v(v-2)}{2}$.

Theorem (Alspach, Gavlas (2001); Šajna (2002))

There exists a k-cycle decomposition of $K_v - I$ if and only if:

- $3 \le k \le v$;
- v is even; and

•
$$k \mid \frac{v(v-2)}{2}$$

We will refer to a value of v that satisfies the criteria for existence of a k-cycle decomposition of K_v or $K_v - I$ as k-admissible (or simply admissible) for existence of a k-cycle decomposition of K_v or $K_v - I$.

Cycle decompositions of complete multigraphs

Theorem (Bryant, Horsley, Maenhaut and Smith (2011))

There exists a k-cycle decomposition of λK_v if and only if:

- $2 \leq k \leq v$;
- if k = 2, then λ is even;
- $\lambda(v-1)$ is even; and
- $k \mid \lambda \binom{v}{2}$.

Theorem (Bryant, Horsley, Maenhaut and Smith (2011))

Let $v \ge 3$. There exists a k-cycle decomposition of $\lambda K_v - I$ if and only if:

- $3 \le k \le v$;
- $\lambda(v-1)$ is odd; and
- $k \mid \lambda \binom{v}{2} \frac{v}{2}$.

A *c*-colouring of \mathcal{D} is an assignment of *c* colours to the vertices of Γ .

A *c*-colouring of \mathcal{D} is an assignment of *c* colours to the vertices of Γ .

More formally, a *c*-colouring is a function

 $\phi: V(\Gamma) \rightarrow \{1, 2, \ldots, c\}.$

A *c*-colouring of \mathcal{D} is an assignment of *c* colours to the vertices of Γ .

More formally, a *c*-colouring is a function

 $\phi: V(\Gamma) \rightarrow \{1, 2, \ldots, c\}.$

A *c*-colouring is:

A *c*-colouring of \mathcal{D} is an assignment of *c* colours to the vertices of Γ .

More formally, a *c*-colouring is a function

 $\phi: V(\Gamma) \rightarrow \{1, 2, \ldots, c\}.$

A *c*-colouring is:

• Weak if each block contains at least two vertices coloured differently.

A *c*-colouring of \mathcal{D} is an assignment of *c* colours to the vertices of Γ .

More formally, a *c*-colouring is a function

 $\phi: V(\Gamma) \to \{1, 2, \ldots, c\}.$

A *c*-colouring is:

- Weak if each block contains at least two vertices coloured differently.
- Strong if no block contains two vertices of the same colour.

A *c*-colouring of \mathcal{D} is an assignment of *c* colours to the vertices of Γ .

More formally, a c-colouring is a function

 $\phi: V(\Gamma) \rightarrow \{1, 2, \ldots, c\}.$

A *c*-colouring is:

- Weak if each block contains at least two vertices coloured differently.
- Strong if no block contains two vertices of the same colour.
- Equitable if for any two colours *i* and *j*, the number of vertices coloured *i* and *j* on any block differ by at most 1.

Weak colourings: Examples

A weak 3-colouring of a 4-cycle decomposition of K_9 :

$$\begin{array}{c} (0,1,8,3)\\ (1,2,0,4)\\ (2,3,1,5)\\ (3,4,2,6)\\ (4,5,3,7)\\ (5,6,4,8)\\ (6,7,5,0)\\ (7,8,6,1)\\ (8,0,7,2) \end{array}$$

Weak colourings: Examples

A weak 3-colouring of a 4-cycle decomposition of K_9 :

```
\begin{array}{c} (0,1,8,3) \\ (1,2,0,4) \\ (2,3,1,5) \\ (3,4,2,6) \\ (4,5,3,7) \\ (5,6,4,8) \\ (6,7,5,0) \\ (7,8,6,1) \\ (8,0,7,2) \end{array}
```

Weak colourings: Examples

A weak 3-colouring of a 4-cycle decomposition of K_9 :

```
\begin{array}{c} (0,1,8,3)\\ (1,2,0,4)\\ (2,3,1,5)\\ (3,4,2,6)\\ (4,5,3,7)\\ (5,6,4,8)\\ (6,7,5,0)\\ (7,8,6,1)\\ (8,0,7,2) \end{array}
```

Colour classes:

$$\{0, 2, 7\}, \{1, 4, 5\}, \{3, 6, 8\}$$

Andrea Burgess

The chromatic number $\chi(\mathcal{D})$ is the minimum number *c* of colours needed to weakly *c*-colour the decomposition \mathcal{D} .

```
\begin{array}{c} (0,1,8,3) \\ (1,2,0,4) \\ (2,3,1,5) \\ (3,4,2,6) \\ (4,5,3,7) \\ (5,6,4,8) \\ (6,7,5,0) \\ (7,8,6,1) \\ (8,0,7,2) \end{array}
```

The chromatic number $\chi(\mathcal{D})$ is the minimum number *c* of colours needed to weakly *c*-colour the decomposition \mathcal{D} .

```
\begin{array}{c}(0,1,8,3)\\(1,2,0,4)\\(2,3,1,5)\\(3,4,2,6)\\(4,5,3,7)\\(5,6,4,8)\\(6,7,5,0)\\(7,8,6,1)\\(8,0,7,2)\end{array}
```

The chromatic number $\chi(\mathcal{D})$ is the minimum number *c* of colours needed to weakly *c*-colour the decomposition \mathcal{D} .

```
\begin{array}{c} (0,1,8,3)\\ (1,2,0,4)\\ (2,3,1,5)\\ (3,4,2,6)\\ (4,5,3,7)\\ (5,6,4,8)\\ (6,7,5,0)\\ (7,8,6,1)\\ (8,0,7,2) \end{array}
```

This decomposition has chromatic number 2.

 Every BIBD(v, 3, 1) with v ≥ 7 has chromatic number at least 3. (Rosa and Pelikán (1970))

- Every BIBD(v, 3, 1) with v ≥ 7 has chromatic number at least 3. (Rosa and Pelikán (1970))
- For each c ≥ 3, there is a c-chromatic BIBD(v, 3, 1) for any sufficiently large admissible v.
 (de Brandes, Phelps and Rödl (1982))

- Every BIBD(v, 3, 1) with v ≥ 7 has chromatic number at least 3. (Rosa and Pelikán (1970))
- For each c ≥ 3, there is a c-chromatic BIBD(v, 3, 1) for any sufficiently large admissible v.
 (de Brandes, Phelps and Rödl (1982))
- There is a 2-chromatic BIBD(v, 4, λ) for each admissible v. (Hoffman, Lindner and Phelps (1990); Hoffman, Lindner and Phelps (1991); Rosa and Colbourn (1992); Franek, Griggs, Lindner and Rosa (2002))

- Every BIBD(v, 3, 1) with v ≥ 7 has chromatic number at least 3. (Rosa and Pelikán (1970))
- For each c ≥ 3, there is a c-chromatic BIBD(v, 3, 1) for any sufficiently large admissible v.
 (de Brandes, Phelps and Rödl (1982))
- There is a 2-chromatic BIBD(v, 4, λ) for each admissible v. (Hoffman, Lindner and Phelps (1990); Hoffman, Lindner and Phelps (1991); Rosa and Colbourn (1992); Franek, Griggs, Lindner and Rosa (2002))
- There is a 2-chromatic BIBD(v, 5, 1) for each admissible v . (Ling (1999))

- Every BIBD(v, 3, 1) with v ≥ 7 has chromatic number at least 3. (Rosa and Pelikán (1970))
- For each c ≥ 3, there is a c-chromatic BIBD(v, 3, 1) for any sufficiently large admissible v.
 (de Brandes, Phelps and Rödl (1982))
- There is a 2-chromatic BIBD(v, 4, λ) for each admissible v. (Hoffman, Lindner and Phelps (1990); Hoffman, Lindner and Phelps (1991); Rosa and Colbourn (1992); Franek, Griggs, Lindner and Rosa (2002))
- There is a 2-chromatic BIBD(v, 5, 1) for each admissible v . (Ling (1999))
- For all integers c ≥ 2 and k ≥ 3 with (c, k) ≠ (2,3), there is a c-chromatic BIBD(v, k, λ) for each sufficiently large admissible v. (Horsley and Pike (2014))

- Every 3-cycle system of order v ≥ 7 has chromatic number at least 3. (Rosa and Pelikán (1970))
- For each c ≥ 3, there is a c-chromatic 3-cycle system of order v for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))

- Every 3-cycle system of order v ≥ 7 has chromatic number at least 3. (Rosa and Pelikán (1970))
- For each c ≥ 3, there is a c-chromatic 3-cycle system of order v for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))
- For every k ≥ 4, there is a 2-chromatic k-cycle system and a k-cycle system which is not 2-chromatic. (Milici and Tuza (1996, 1999))

- Every 3-cycle system of order v ≥ 7 has chromatic number at least 3. (Rosa and Pelikán (1970))
- For each c ≥ 3, there is a c-chromatic 3-cycle system of order v for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))
- For every k ≥ 4, there is a 2-chromatic k-cycle system and a k-cycle system which is not 2-chromatic. (Milici and Tuza (1996, 1999))
- For every c ≥ 2, there is an integer v_c such that there is a c-chromatic 4-cycle system of any admissible order v ≥ v_c. (Burgess and Pike (2006))

- Every 3-cycle system of order v ≥ 7 has chromatic number at least 3. (Rosa and Pelikán (1970))
- For each c ≥ 3, there is a c-chromatic 3-cycle system of order v for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))
- For every k ≥ 4, there is a 2-chromatic k-cycle system and a k-cycle system which is not 2-chromatic. (Milici and Tuza (1996, 1999))
- For every c ≥ 2, there is an integer v_c such that there is a c-chromatic 4-cycle system of any admissible order v ≥ v_c. (Burgess and Pike (2006))
- For every c ≥ 2 and even k ≥ 4, there is a c-chromatic k-cycle system. (Burgess and Pike (2008))

- Every 3-cycle system of order v ≥ 7 has chromatic number at least 3. (Rosa and Pelikán (1970))
- For each c ≥ 3, there is a c-chromatic 3-cycle system of order v for any sufficiently large admissible v. (de Brandes, Phelps and Rödl (1982))
- For every k ≥ 4, there is a 2-chromatic k-cycle system and a k-cycle system which is not 2-chromatic. (Milici and Tuza (1996, 1999))
- For every c ≥ 2, there is an integer v_c such that there is a c-chromatic 4-cycle system of any admissible order v ≥ v_c. (Burgess and Pike (2006))
- For every c ≥ 2 and even k ≥ 4, there is a c-chromatic k-cycle system. (Burgess and Pike (2008))
- For every c ≥ 2 and k ≥ 3 with (c, k) ≠ (2, 3), there is a c-chromatic k-cycle system of every sufficiently large admissible order v. (Horsley and Pike (2010))

An equitably 3-colourable BIBD(6, 5, 4):

1	2	3	4	5
1	2	3	4	6
1	2	3	5	6
1	2	4	5	6
1	3	4	5	6
2	3	4	5	6

An equitable 3-colouring of a 4-cycle decomposition of K_9 :

 $\begin{array}{c} (0,1,8,3)\\ (1,2,0,4)\\ (2,3,1,5)\\ (3,4,2,6)\\ (4,5,3,7)\\ (5,6,4,8)\\ (6,7,5,0)\\ (7,8,6,1)\\ (8,0,7,2) \end{array}$

An equitable 3-colouring of a 4-cycle decomposition of K_9 :

```
\begin{array}{c} (0,1,8,3)\\ (1,2,0,4)\\ (2,3,1,5)\\ (3,4,2,6)\\ (4,5,3,7)\\ (5,6,4,8)\\ (6,7,5,0)\\ (7,8,6,1)\\ (8,0,7,2) \end{array}
```

This decomposition cannot be equitably 2-coloured.

An equitable 2-colouring of a 6-cycle decomposition of $K_8 - I$:

An equitable 2-colouring of a 6-cycle decomposition of $K_8 - I$:

Lemma

Suppose there is an equitable c-colouring of a k-cycle decomposition of K_v or $K_v - I$, where $c \mid k$. Then:

- Each cycle contains k/c vertices of every colour.
- $c \mid v$, and each colour class has size $\frac{v}{c}$.

Lemma

Suppose there is an equitable c-colouring of a k-cycle decomposition of K_v or $K_v - I$, where $c \mid k$. Then:

- Each cycle contains k/c vertices of every colour.
- $c \mid v$, and each colour class has size $\frac{v}{c}$.

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

If there is an equitably c-colourable (c + 1)-cycle decomposition of K_v , then $v \leq c^2$.

If there is an equitably c-colourable (c + 1)-cycle decomposition of $K_v - I$, then $v \leq 2c^2$.

Equitable 2-colourings of cycle decompositions

Lemma (Adams, Bryant and Waterhouse (2007))

If k is even, then there is no equitably 2-colourable k-cycle decomposition of K_v .

Lemma (Adams, Bryant and Waterhouse (2007))

If k is even, then there is no equitably 2-colourable k-cycle decomposition of K_v .

Theorem (Adams, Bryant and Waterhouse (2007))

For $k \in \{4, 5, 6\}$, there is an equitably 2-colourable k-cycle decomposition of $K_v - I$ for any admissible order v.

Lemma (Adams, Bryant and Waterhouse (2007))

If k is even, then there is no equitably 2-colourable k-cycle decomposition of K_v .

Theorem (Adams, Bryant and Waterhouse (2007))

For $k \in \{4, 5, 6\}$, there is an equitably 2-colourable k-cycle decomposition of $K_v - I$ for any admissible order v.

Theorem (Adams, Bryant and Waterhouse (2007))

For all admissible v, there is an equitably 2-colourable 5-cycle decomposition of K_v . If v > 5, there is also a 5-cycle decomposition of K_v which is not equitably 2-colourable.

Equitable 3-colourings of cycle decompositions

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 4-cycle decomposition of K_v (resp. $K_v - I$) if and only if v = 9 (resp. $v \in \{4, 6, 8, 10, 12, 18\}$).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 4-cycle decomposition of K_v (resp. $K_v - I$) if and only if v = 9 (resp. $v \in \{4, 6, 8, 10, 12, 18\}$).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 5-cycle decomposition of K_v or $K_v - I$ for every admissible v. (I.e. iff $v \equiv 1, 5 \pmod{10}$ for decomposition of K_v and $v \equiv 0$ or 2 (mod 10) for decomposition of $K_v - I$).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 4-cycle decomposition of K_v (resp. $K_v - I$) if and only if v = 9 (resp. $v \in \{4, 6, 8, 10, 12, 18\}$).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 5-cycle decomposition of K_v or $K_v - I$ for every admissible v. (I.e. iff $v \equiv 1,5 \pmod{10}$ for decomposition of K_v and $v \equiv 0$ or 2 (mod 10) for decomposition of $K_v - I$).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 6-cycle decomposition of K_v if and only if $v \equiv 9 \pmod{12}$, and an equitably 3-colourable 6-cycle decomposition of $K_v - I$ if and only if $v \equiv 0 \pmod{6}$.

Theorem (Luther and Pike, 2016)

There is an equitably c-colourable BIBD(v, k, λ) with k < v if and only if

•
$$c = v$$
, or

•
$$v = k + 1$$
, $\lambda \equiv 0 \pmod{k - 1}$ and $k + 1 \equiv 0 \pmod{c}$.

Lemma (Burgess and Merola (2020+))

Let r and k be even, $0 \le r < k$. If $K_{k+r} - I$ admits an equitably 2-colourable k-cycle decomposition, then so does $K_v - I$ for any $v \equiv r \pmod{k}$ with $v \ge k$.

Lemma (Burgess and Merola (2020+))

Let r and k be even, $0 \le r < k$. If $K_{k+r} - I$ admits an equitably 2-colourable k-cycle decomposition, then so does $K_v - I$ for any $v \equiv r \pmod{k}$ with $v \ge k$.

Lemma (Burgess and Merola (2020+))

Let r and k be even, $0 \le r < k$. If $K_{k+r} - I$ admits an equitably 2-colourable k-cycle decomposition, then so does $K_v - I$ for any $v \equiv r \pmod{k}$ with $v \ge k$.

Doubly equitable decompositions of the complete bipartite graph

We say a cycle decomposition of $K_{m,n}$ is doubly equitably *c*-colourable if it admits a *c*-colouring ϕ such that:

- ϕ is an equitable colouring
- ϕ equitably colours the parts

Theorem (Burgess and Merola (2020+))

Let k be even and $0 \le r < k$. There exists a doubly equitably 2-colourable k-cycle decomposition of $K_{k,k+r}$.

When k ≡ 0 (mod 4), we split the part of size k into two sub-parts of size k/2, and decompose K_{k/2,k+r}.

 When k ≡ 2 (mod 4), we use a variant of a decomposition due to Sotteau (1981).

Theorem (Burgess and Merola (2020+))

Let $k \ge 4$ be even. If $K_v - I$ admits an equitably 2-colourable k-cycle decomposition for any k-admissible even v satisfying $k \le v < 2k$, then $K_v - I$ admits an equitably 2-colourable k-cycle decomposition for any k-admissible even v.

Theorem (Burgess and Merola (2020+))


```
Andrea Burgess
```

Theorem (Burgess and Merola (2020+))

Theorem (Burgess and Merola (2020+))

Corollary (Burgess and Merola (2020+))

Let q be an odd prime power. There is an equitably 2-colourable 2q-cycle decomposition of $K_v - I$ if and only if v is 2q-admissible.

Corollary (Burgess and Merola (2020+))

Let q be an odd prime power. There is an equitably 2-colourable 2q-cycle decomposition of $K_v - I$ if and only if v is 2q-admissible.

Theorem (Burgess and Merola (2020+))

Let q be an odd prime power. There is an equitably 2-colourable 4q-cycle decomposition of $K_v - I$ if and only if v is 4q-admissible.

Proof.

The 4*q*-admissible orders $v \in [4q, 8q)$ are v = 4q, 4q + 2, 6q, 6q + 2. For $v \in \{6q, 6q + 2\}$ we directly construct a equitably 2-colourable decomposition.

Andrea Burgess

Andrea Burgess

Theorem (Burgess and Merola (2020+))

If $4 \le k \le 30$ is even, then there is an equitably 2-colourable k-cycle decomposition of $K_v - I$ if and only if v is k-admissible.

Proof.

- The previous results cover all k-values except 24 and 30.
- For k = 24, we only need to check orders 32 and 42.
- For k = 30, we only need to check orders 42 and 50.
- We construct an equitably 2-colourable decomposition in each case.

- Find equitably 2-colourable odd cycle decompositions of K_v or $K_v I$.
- Find equitably *c*-colourable *k*-cycle decompositions of K_v or $K_v I$.
- Complete the spectrum of equitably 2-colourable even cycle decompositions of $K_v I$.
- Relax "equitable" condition
 - The number of vertices on a block with colours *i* and *j* may differ by at most *d*.
 - Not every colour need appear on every block, but those that do appear equitably.

