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A scheduling problem

A group of v people, representing c countries, attend a summit.

They will take part in meetings of k people at a time.

Can we devise a meeting schedule so that:

Each person attends a meeting with each other person the same
number, λ, of times.
Each meeting has, as much as possible, equal representation from every
country. (I.e. at each meeting, the number of delegates from different
countries differ by at most 1.)
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Example: v = 6, k = 5, λ = 4, c = 3

Suppose we have the following delegates:

Canada France Italy
1, 4 2, 5 3, 6

Here is a possible schedule:

Meeting 1: 1 2 3 4 5

Meeting 2: 1 2 3 4 6

Meeting 3: 1 2 3 5 6

Meeting 4: 1 2 4 5 6

Meeting 5: 1 3 4 5 6

Meeting 6: 2 3 4 5 6
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Graph Decompositions

Definition

A collection {H1, . . . ,Ht} of subgraphs of Γ is a decomposition of Γ if
the edge sets of H1,H2, . . . ,Ht partition the edges of Γ.

If H1
∼= · · · ∼= Ht

∼= H, then we speak of an H-decomposition of Γ.

We call the subgraphs H1, . . . ,Ht blocks of the decomposition.
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Example: A K3-decomposition of K7

0
1

2

34

5

6
{0, 1, 3}
{1, 2, 4}
{2, 3, 5}
{3, 4, 6}
{4, 5, 0}
{5, 6, 1}
{6, 0, 2}

.

.

Remark

This decomposition is cyclic, formed from the base block {0, 1, 3} by
adding elements of Z7.
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Balanced incomplete block designs

A Kk -decomposition of λKv is a BIBD(v , k, λ).

If a BIBD(v , k , λ) exists, then (k − 1) | λ(v − 1) and
k(k − 1) | λv(v − 1).

Given k and λ, any v ≥ k satisfying the necessary conditions above
will be called admissible for existence of a BIBD.

For any k and λ, there exists a BIBD(v , k , λ) for any sufficiently large
admissible v . (Wilson, 1975)

A BIBD(v , k , λ) gives a meeting schedule with v people meeting in
groups of k , with each pair of people attending λ meetings.
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A BIBD(6, 5, 4)

1 2 3 4 5

1 2 3 4 6

1 2 3 5 6

1 2 4 5 6

1 3 4 5 6

2 3 4 5 6
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Cycle decompositions

Instead of asking that each pair of people attend the same number of
meetings, suppose now that:

The meetings will take place at round tables.
Each person must sit next to each other person the same number of
times.

In this case, we would look for a cycle decomposition.
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Example: A 4-cycle decomposition of K9

0

1

2

3

45

6

7

8
(0, 1, 8, 3)

(1, 2, 0, 4)
(2, 3, 1, 5)
(3, 4, 2, 6)
(4, 5, 3, 7)
(5, 6, 4, 8)
(6, 7, 5, 0)
(7, 8, 6, 1)
(8, 0, 7, 2)
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Cycle decompositions of complete graphs

A k-cycle decomposition of Kv is also called a k-cycle system of order v .

Theorem (Alspach, Gavlas (2001); Šajna (2002))

There exists a k-cycle decomposition of Kv if and only if:

3 ≤ k ≤ v;

v is odd; and

k |
(v
2

)
.
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What if v is even?

The “trick” is to remove a 1-factor before decomposing into cycles.

So we look for a k-cycle decomposition of the cocktail party graph Kv − I .
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Cycle decompositions of the cocktail party graph

Theorem (Alspach, Gavlas (2001); Šajna (2002))

There exists a k-cycle decomposition of Kv − I if and only if:

3 ≤ k ≤ v;

v is even; and

k | v(v−2)
2 .

We will refer to a value of v that satisfies the criteria for existence of a
k-cycle decomposition of Kv or Kv − I as k-admissible (or simply
admissible) for existence of a k-cycle decomposition of Kv or Kv − I .
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Cycle decompositions of complete multigraphs

Theorem (Bryant, Horsley, Maenhaut and Smith (2011))

There exists a k-cycle decomposition of λKv if and only if:

2 ≤ k ≤ v;

if k = 2, then λ is even;

λ(v − 1) is even; and

k | λ
(v
2

)
.

Theorem (Bryant, Horsley, Maenhaut and Smith (2011))

Let v ≥ 3. There exists a k-cycle decomposition of λKv − I if and only if:

3 ≤ k ≤ v;

λ(v − 1) is odd; and

k | λ
(v
2

)
− v

2 .
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Colourings

Suppose we have an H-decomposition, D, of Γ.

A c-colouring of D is an assignment of c colours to the vertices of Γ.

More formally, a c-colouring is a function

φ : V (Γ)→ {1, 2, . . . , c}.

A c-colouring is:

Weak if each block contains at least two vertices coloured differently.

Strong if no block contains two vertices of the same colour.

Equitable if for any two colours i and j , the number of vertices
coloured i and j on any block differ by at most 1.
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Weak colourings: Examples

A weak 3-colouring of a 4-cycle decomposition of K9:

(0, 1, 8, 3)
(1, 2, 0, 4)
(2, 3, 1, 5)
(3, 4, 2, 6)
(4, 5, 3, 7)
(5, 6, 4, 8)
(6, 7, 5, 0)
(7, 8, 6, 1)
(8, 0, 7, 2)

Colour classes:
{0, 2, 7}, {1, 4, 5}, {3, 6, 8}
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Weak colourings: Examples

The chromatic number χ(D) is the minimum number c of colours needed
to weakly c-colour the decomposition D.

(0, 1, 8, 3)
(1, 2, 0, 4)
(2, 3, 1, 5)
(3, 4, 2, 6)
(4, 5, 3, 7)
(5, 6, 4, 8)
(6, 7, 5, 0)
(7, 8, 6, 1)
(8, 0, 7, 2)

This decomposition has chromatic number 2.
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Weak colourings of BIBDs

Every BIBD(v , 3, 1) with v ≥ 7 has chromatic number at least 3.
(Rosa and Pelikán (1970))

For each c ≥ 3, there is a c-chromatic BIBD(v , 3, 1) for any
sufficiently large admissible v .
(de Brandes, Phelps and Rödl (1982))

There is a 2-chromatic BIBD(v , 4, λ) for each admissible v .
(Hoffman, Lindner and Phelps (1990); Hoffman, Lindner and Phelps
(1991); Rosa and Colbourn (1992); Franek, Griggs, Lindner and Rosa
(2002))

There is a 2-chromatic BIBD(v , 5, 1) for each admissible v .
(Ling (1999))

For all integers c ≥ 2 and k ≥ 3 with (c , k) 6= (2, 3), there is a
c-chromatic BIBD(v , k, λ) for each sufficiently large admissible v .
(Horsley and Pike (2014))
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Weak colourings of cycle systems

Every 3-cycle system of order v ≥ 7 has chromatic number at least 3.
(Rosa and Pelikán (1970))

For each c ≥ 3, there is a c-chromatic 3-cycle system of order v for
any sufficiently large admissible v . (de Brandes, Phelps and Rödl (1982))

For every k ≥ 4, there is a 2-chromatic k-cycle system and a k-cycle
system which is not 2-chromatic. (Milici and Tuza (1996, 1999))

For every c ≥ 2, there is an integer vc such that there is a
c-chromatic 4-cycle system of any admissible order v ≥ vc .
(Burgess and Pike (2006))

For every c ≥ 2 and even k ≥ 4, there is a c-chromatic k-cycle
system. (Burgess and Pike (2008))

For every c ≥ 2 and k ≥ 3 with (c , k) 6= (2, 3), there is a c-chromatic
k-cycle system of every sufficiently large admissible order v .
(Horsley and Pike (2010))
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Equitable colourings: Examples

An equitably 3-colourable BIBD(6, 5, 4):

1 2 3 4 5

1 2 3 4 6

1 2 3 5 6

1 2 4 5 6

1 3 4 5 6

2 3 4 5 6
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Equitable colourings: Examples

An equitable 3-colouring of a 4-cycle decomposition of K9:

(0, 1, 8, 3)
(1, 2, 0, 4)
(2, 3, 1, 5)
(3, 4, 2, 6)
(4, 5, 3, 7)
(5, 6, 4, 8)
(6, 7, 5, 0)
(7, 8, 6, 1)
(8, 0, 7, 2)

This decomposition cannot be equitably 2-coloured.
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Equitable colourings: Examples

An equitable 2-colouring of a 6-cycle decomposition of K8 − I :
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Equitable colourings of cycle decompositions

Lemma

Suppose there is an equitable c-colouring of a k-cycle decomposition of Kv

or Kv − I , where c | k. Then:

Each cycle contains k/c vertices of every colour.

c | v, and each colour class has size v
c .

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

If there is an equitably c-colourable (c + 1)-cycle decomposition of Kv ,
then v ≤ c2.

If there is an equitably c-colourable (c + 1)-cycle decomposition of Kv − I ,
then v ≤ 2c2.
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Equitable 2-colourings of cycle decompositions

Lemma (Adams, Bryant and Waterhouse (2007))

If k is even, then there is no equitably 2-colourable k-cycle decomposition
of Kv .

Theorem (Adams, Bryant and Waterhouse (2007))

For k ∈ {4, 5, 6}, there is an equitably 2-colourable k-cycle decomposition
of Kv − I for any admissible order v .

Theorem (Adams, Bryant and Waterhouse (2007))

For all admissible v , there is an equitably 2-colourable 5-cycle
decomposition of Kv . If v > 5, there is also a 5-cycle decomposition of Kv

which is not equitably 2-colourable.
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Equitable 3-colourings of cycle decompositions

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 4-cycle decomposition of Kv (resp.
Kv − I ) if and only if v = 9 (resp. v ∈ {4, 6, 8, 10, 12, 18}).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 5-cycle decomposition of Kv or Kv − I
for every admissible v . (I.e. iff v ≡ 1, 5 (mod 10) for decomposition of Kv

and v ≡ 0 or 2 (mod 10) for decomposition of Kv − I ).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 6-cycle decomposition of Kv if and only
if v ≡ 9 (mod 12), and an equitably 3-colourable 6-cycle decomposition of
Kv − I if and only if v ≡ 0 (mod 6).

Andrea Burgess Equitable Colourings Atlantic Graph Theory Seminar



Equitable 3-colourings of cycle decompositions

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 4-cycle decomposition of Kv (resp.
Kv − I ) if and only if v = 9 (resp. v ∈ {4, 6, 8, 10, 12, 18}).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 5-cycle decomposition of Kv or Kv − I
for every admissible v . (I.e. iff v ≡ 1, 5 (mod 10) for decomposition of Kv

and v ≡ 0 or 2 (mod 10) for decomposition of Kv − I ).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 6-cycle decomposition of Kv if and only
if v ≡ 9 (mod 12), and an equitably 3-colourable 6-cycle decomposition of
Kv − I if and only if v ≡ 0 (mod 6).

Andrea Burgess Equitable Colourings Atlantic Graph Theory Seminar



Equitable 3-colourings of cycle decompositions

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 4-cycle decomposition of Kv (resp.
Kv − I ) if and only if v = 9 (resp. v ∈ {4, 6, 8, 10, 12, 18}).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 5-cycle decomposition of Kv or Kv − I
for every admissible v . (I.e. iff v ≡ 1, 5 (mod 10) for decomposition of Kv

and v ≡ 0 or 2 (mod 10) for decomposition of Kv − I ).

Theorem (Adams, Bryant, Lefevre and Waterhouse (2004))

There is an equitably 3-colourable 6-cycle decomposition of Kv if and only
if v ≡ 9 (mod 12), and an equitably 3-colourable 6-cycle decomposition of
Kv − I if and only if v ≡ 0 (mod 6).

Andrea Burgess Equitable Colourings Atlantic Graph Theory Seminar



Existence of equitably coloured BIBDs

Theorem (Luther and Pike, 2016)

There is an equitably c-colourable BIBD(v , k , λ) with k < v if and only if

c = v, or

v = k + 1, λ ≡ 0 (mod k − 1) and k + 1 ≡ 0 (mod c).
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Reduction step for equitably 2-colourable even cycle
decomposition of Kv − I

Lemma (Burgess and Merola (2020+))

Let r and k be even, 0 ≤ r < k. If Kk+r − I admits an equitably
2-colourable k-cycle decomposition, then so does Kv − I for any v ≡ r
(mod k) with v ≥ k.

Kk Kk Kk Kk+r

Kk,k
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Reduction step for equitably 2-colourable even cycle
decomposition of Kv − I

Lemma (Burgess and Merola (2020+))

Let r and k be even, 0 ≤ r < k. If Kk+r − I admits an equitably
2-colourable k-cycle decomposition, then so does Kv − I for any v ≡ r
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Kk Kk Kk Kk+r
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Doubly equitable decompositions of the complete bipartite
graph

We say a cycle decomposition of Km,n is doubly equitably c-colourable if it
admits a c-colouring φ such that:

φ is an equitable colouring

φ equitably colours the parts
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Theorem (Burgess and Merola (2020+))

Let k be even and 0 ≤ r < k. There exists a doubly equitably 2-colourable
k-cycle decomposition of Kk,k+r .

When k ≡ 0 (mod 4), we split the part of size k into two sub-parts of
size k/2, and decompose Kk/2,k+r .

+2

When k ≡ 2 (mod 4), we use a variant of a decomposition due to
Sotteau (1981).
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Reduction step for equitably 2-colourable even cycle
decomposition of Kv − I

Theorem (Burgess and Merola (2020+))

Let k ≥ 4 be even. If Kv − I admits an equitably 2-colourable k-cycle
decomposition for any k-admissible even v satisfying k ≤ v < 2k, then
Kv − I admits an equitably 2-colourable k-cycle decomposition for any
k-admissible even v.
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v ≡ 0 or 2 (mod k)

Theorem (Burgess and Merola (2020+))

Let k be even. There exist equitably 2-colourable k-cycle decompositions
of Kk − I and Kk+2 − I . Hence there is an equitably 2-colourable k-cycle
decomposition of Kv − I whenever v ≡ 0 or 2 (mod k).

∞1∞0

0

1

2

3

4

5

6

7

8

9
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k = 2q or 4q, q a prime power

Corollary (Burgess and Merola (2020+))

Let q be an odd prime power. There is an equitably 2-colourable 2q-cycle
decomposition of Kv − I if and only if v is 2q-admissible.

Theorem (Burgess and Merola (2020+))

Let q be an odd prime power. There is an equitably 2-colourable 4q-cycle
decomposition of Kv − I if and only if v is 4q-admissible.

Proof.

The 4q-admissible orders v ∈ [4q, 8q) are v = 4q, 4q + 2, 6q, 6q + 2. For
v ∈ {6q, 6q + 2} we directly construct a equitably 2-colourable
decomposition.
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An equitably 2-colourable 12-cycle decomposition of
K20 − I
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Cycle length k ≤ 30

Theorem (Burgess and Merola (2020+))

If 4 ≤ k ≤ 30 is even, then there is an equitably 2-colourable k-cycle
decomposition of Kv − I if and only if v is k-admissible.

Proof.

The previous results cover all k-values except 24 and 30.

For k = 24, we only need to check orders 32 and 42.

For k = 30, we only need to check orders 42 and 50.

We construct an equitably 2-colourable decomposition in each case.
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Future directions

Find equitably 2-colourable odd cycle decompositions of Kv or Kv − I .

Find equitably c-colourable k-cycle decompositions of Kv or Kv − I .

Complete the spectrum of equitably 2-colourable even cycle
decompositions of Kv − I .

Relax “equitable” condition

The number of vertices on a block with colours i and j may differ by at
most d .
Not every colour need appear on every block, but those that do appear
equitably.
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Thanks!
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