In Praise of Loops

Pavol Hell, Simon Fraser University

Dalhousie by Zoom, November 17, 2021

Pavol Hell, Simon Fraser University In Praise of Loops

Includes joint results with

- Tomás Feder
- César Hernández Cruz
- Jing Huang
- Jephian C.-H. Lin
- Ross McConnell
- Jarik Nešetřil
- Arash Rafiey

Graphs

Pavol Hell, Simon Fraser University In Praise of Loops

<ロ> <同> <同> < 同> < 同>

æ

An interval graph

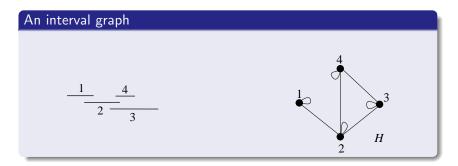
The intersection graph $G(\mathcal{I})$ of a family \mathcal{I} of intervals has vertices $I, I \in \mathcal{I}$, and adjacencies $I \sim I' \iff I \cap I' \neq \emptyset$

A 10

Graphs

An interval graph

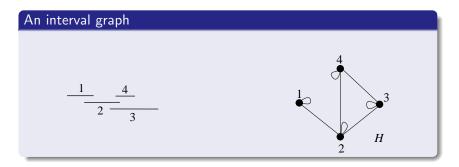
The intersection graph $G(\mathcal{I})$ of a family \mathcal{I} of intervals has vertices $I, I \in \mathcal{I}$, and adjacencies $I \sim I' \iff I \cap I' \neq \emptyset$



∄ ▶ ∢ ≣

An interval graph

The intersection graph $G(\mathcal{I})$ of a family \mathcal{I} of intervals has vertices $I, I \in \mathcal{I}$, and adjacencies $I \sim I' \iff I \cap I' \neq \emptyset$



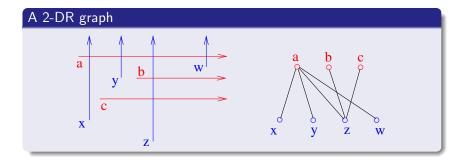
A reflexive graph

Intersection graph of a family of UP rays vs a family of RIGHT rays

▲ 同 ▶ → ● 三

э

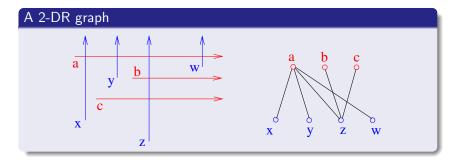
Intersection graph of a family of UP rays vs a family of RIGHT rays



э

合 ▶ ◀

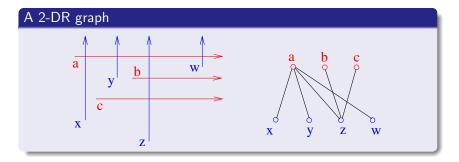
Intersection graph of a family of UP rays vs a family of RIGHT rays



A 10

An irreflexive graph

Intersection graph of a family of UP rays vs a family of RIGHT rays

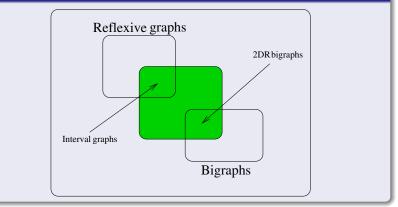


合 ▶ ◀

э

A bigraph

A new unifying concept



э

∃►

▲ 同 ▶ → 三 ▶

Dominating set

A set S of vertices in a graph G is a *dominating set* in G if each vertex not in S has a neighbour in S

Dominating set

A set S of vertices in a graph G is a *dominating set* in G if each vertex not in S has a neighbour in S

Total dominating set

A set S of vertices in a graph G is a *total dominating set* in G if each vertex has a neighbour in S

Dominating sets

A set S of vertices in a graph G is a *dominating set* in G if each vertex not in S has a neighbour in S

Total dominating sets

A set S of vertices in a graph G is a *total dominating set* in G if each vertex has a neighbour in S

In a reflexive graph a total dominating set is just a dominating set.

Dominating sets

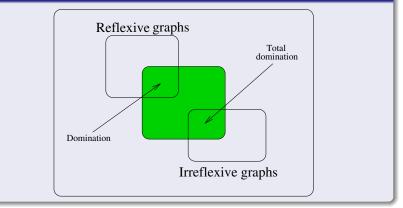
A set S of vertices in a graph G is a *dominating set* in G if each vertex not in S has a neighbour in S

Total dominating sets

A set S of vertices in a graph G is a *total dominating set* in G if each vertex has a neighbour in S

Same notion, applied in a reflexive versus an irreflexive graph

A new unifying concept



æ

∃ >

▲ 同 ▶ ▲ 目

Cops and robbers

A cop trying to capture a robber on a graph G: at each move, each player can stay where it is, or move along an edge

___ ▶ <

Cops and robbers

A cop trying to capture a robber on a graph G: at each move, each player can stay where it is, or move along an edge

Active cops and robbers

A cop trying to capture a robber on a graph G: at each move, each player must move along an edge

Cops and robbers

A cop trying to capture a robber on a graph G: at each move, each player can stay where it is, or move along an edge

Same notion, applied in a reflexive graph

Active cops and robbers

A cop trying to capture a robber on a graph G: at each move, each player must move along an edge

Applied in an irreflexive graph

A cop-win graph

A reflexive graph in which the cop wins

Is there an irreflexive version?

- ● ● ●

э

A cop-win graph

A reflexive graph in which the cop wins

Is there an irreflexive version?

Not with these definitions

э

_ ₽ ▶

A cop-win graph

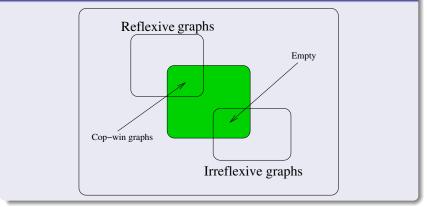
A reflexive graph in which the cop wins

Is there an irreflexive version?

Not with these definitions

(The robber can shaddow the cop)

Cop-win graphs

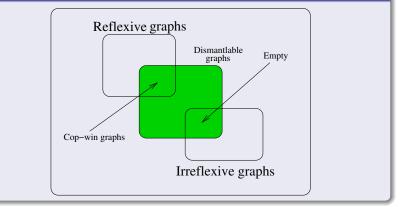


æ

∃ >

▲ 同 ▶ → 三 ▶

A unifying concept



æ

▲ 同 ▶ → ● 三

Pavol Hell, Simon Fraser University In Praise of Loops

Dismantlable graphs with possible loops

Reducible to a single vertex by a sequence of *folds*

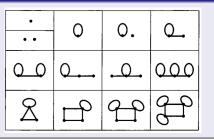
Dismantlable graphs with possible loops

Reducible to a single vertex by a sequence of *folds* $(u \text{ to } v \text{ if } N(u) \subseteq N(v))$

Dismantlable graphs with possible loops

Reducible to a single vertex by a sequence of *folds* $(u \text{ to } v \text{ if } N(u) \subseteq N(v))$

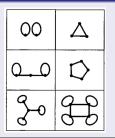
Examples of dismantlable graphs G with possible loops



Dismantlable graphs with possible loops

Reducible to a single vertex by a sequence of folds $(u \text{ to } v \text{ if } N(u) \subseteq N(v))$

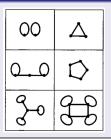
Examples of non-dismantlable graphs G with possible loops



Dismantlable graphs with possible loops

Reducible to a single vertex by a sequence of folds $(u \text{ to } v \text{ if } N(u) \subseteq N(v))$

Examples of non-dismantlable graphs G with possible loops



Dismantlable graphs with possible loops

The cop has a winning strategy in $G \iff G$ is dismantlable

Nowakowski+Winkler 1983, Quilliot 1983, Brightwell+Winkler 2000

Pavol Hell, Simon Fraser University In Praise of Loops

Given a fixed graph H

Is there a homomorphism of input G to H?

- ● ● ●

Given a fixed graph H

Is there a homomorphism of input G to H?

David Johnson asked

For which H is the problem NP-complete?

- ● ● ●

Given a fixed graph H

Is there a homomorphism of input G to H?

David Johnson asked

For which H is the problem NP-complete?

Dichotomy for undirected graphs H

The problem is polynomial if H is bipartite, and NP-complete otherwise

H+Nešetřil 1990

A∄ ▶ ∢ ∃=

Given a fixed graph H with possible loops

Is there a homomorphism of input G to H?

David Johnson asked

For which H is the problem NP-complete?

Dichotomy for undirected graphs H with possible loops

The problem is polynomial if H has a loop or is bipartite, and NP-complete otherwise

H+Nešetřil 1990

Given a fixed relational system H on $\{0,1\}$

Is there a homomorphism of input G to H?

Given a fixed relational system H on $\{0,1\}$

Is there a homomorphism of input G to H?

H has one ternary relation $\{(0,0,1), (0,1,0), (1,0,0)\}$

G has an arbitrary ternary relation (triples on V(G))

Given a fixed relational system H on $\{0,1\}$

Is there a homomorphism of input G to H?

H has one ternary relation $\{(0,0,1), (0,1,0), (1,0,0)\}$

G has an arbitrary ternary relation (triples on V(G))

This is the problem 1-IN-3-SAT

Given a fixed relational system H on $\{0,1\}$

Is there a homomorphism of input G to H?

H has one ternary relation $\{(0,0,1), (0,1,0), (1,0,0)\}$

G has an arbitrary ternary relation (triples on V(G))

This is the problem 1-IN-3-SAT

Generalized satisfiability problems

Given a fixed relational system H on $\{0,1\}$

Is there a homomorphism of input G to H?

H has one ternary relation $\{(0,0,1), (0,1,0), (1,0,0)\}$

G has an arbitrary ternary relation (triples on V(G))

This is the problem 1-IN-3-SAT

Generalized satisfiability problems

Richard Karp asked

For which H is the problem NP-complete?

Homomorphism Problems

Dichotomy for generalized satisfiability problems H

- The problem is polynomial-time solvable if each relation in *H* contains (1, 1, ..., 1) or (0, 0, ..., 0), or
- if it is equivalent to 2-SAT, or to Horn clauses (or to co-Horn clauses), or
- if it is equivalent to a system of linear equations modulo 2

Homomorphism Problems

Dichotomy for generalized satisfiability problems H

- The problem is polynomial-time solvable if each relation in *H* contains (1, 1, ..., 1) or (0, 0, ..., 0), or
- if it is equivalent to 2-SAT, or to Horn clauses (or to co-Horn clauses), or
- if it is equivalent to a system of linear equations modulo 2,
- and is NP-complete otherwise

Schaeffer 1978

Homomorphism Problems

Dichotomy for generalized satisfiability problems H

- The problem is polynomial-time solvable if each relation in *H* contains (1, 1, ..., 1) or (0, 0, ..., 0), or
- if it is equivalent to 2-SAT, or to Horn clauses (or to co-Horn clauses), or
- if it is equivalent to a system of linear equations modulo 2,
- and is NP-complete otherwise

Schaeffer 1978

Dichotomy for undirected graphs H with possible loops

- The problem is polynomial if H has a loop or is bipartite
- and is NP-complete otherwise

H+Nešetřil 1990

Given a fixed relational system H

Is there a homomorphism of input G to H?

Constraint Satisfaction Problems

Given a fixed relational system H

Is there a homomorphism of input G to H?

Motivating examples H

- H has only one (symmetric) binary relation
- H has only two vertices

Constraint Satisfaction Problems

Given a fixed relational system H

Is there a homomorphism of input G to H?

Motivating examples H

- H has only one (symmetric) binary relation
- H has only two vertices

Feder-Vardi Dichotomy Conjecture 1993

There is dichotomy, i.e., is for each H the problem NP-complete or polynomial

Bulatov 2017, Zhuk 2017

Given a fixed relational system H

Is there a homomorphism of input G to H?

Motivating examples H

- H has only one (symmetric) binary relation
- H has only two vertices

Feder-Vardi Dichotomy Conjecture 1993

There is dichotomy, i.e., is for each H the problem NP-complete or polynomial

Bulatov 2017, Zhuk 2017

Alonzo Church Award 2018 to Feder and Vardi

Given a fixed relational system H

Is there a homomorphism of input G to H?

Motivating examples H

- H has only one (symmetric) binary relation
- H has only two vertices

Feder-Vardi Dichotomy Conjecture 1993

There is dichotomy, i.e., is for each H the problem NP-complete or polynomial

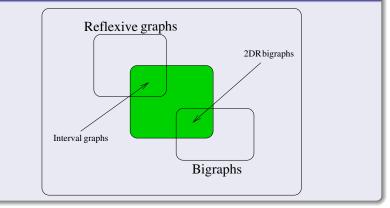
Bulatov 2017, Zhuk 2017

Alonzo Church Award 2018 to Feder and Vardi Gödel Prize 2021 to Bulatov (counting)

Pavol Hell, Simon Fraser University In Praise of Loops

æ

___ ▶ <



- ● ● ●

Strongly Chordal Graphs

Pavol Hell, Simon Fraser University In Praise of Loops

æ

⊡ ► < ≣

A strongly chordal graph H: admits an ordering <

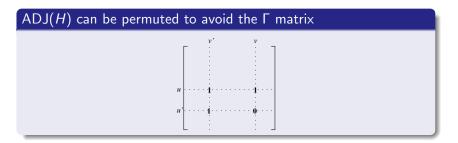
 $u \sim v, u' \sim v', u \sim v'$ and $u < u', v' < v \implies u' \sim v$

・四ト・モート ・モート

3

A strongly chordal graph H: admits an ordering <

 $u \sim v, u' \sim v', u \sim v'$ and $u < u', v' < v \implies u' \sim v$



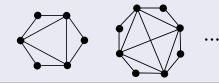
- **□** ► < **□** ►

For a reflexive graph H

- H is strongly chordal \iff
- ADJ(H) is totally balanced (no cycle submatrix) \iff
- *H* does not contain an induced cycle > 3 or an induced trampoline

For a reflexive graph H

- H is strongly chordal \iff
- ADJ(H) is totally balanced (no cycle submatrix) \iff
- *H* does not contain an induced cycle > 3 or an induced trampoline



Farber 1983, Anstee+Farber 1984

Chordal Bigraphs

Pavol Hell, Simon Fraser University In Praise of Loops

æ

- 17

A chordal bigraph H = (U, V): there are orderings $<_U, <_V$

$$u \sim v, u' \sim v', u \sim v'$$
 and $u <_U u', v' <_V v \implies u' \sim v$

- **→** → **→**

э

A chordal bigraph H = (U, V): there are orderings $<_U, <_V$

 $u \sim v, u' \sim v', u \sim v'$ and $u <_U u', v' <_V v \implies u' \sim v$

Bi-ADJ(H) can be permuted to avoid the Γ matrix $\begin{bmatrix} v' & v \\ u' & 1 & \dots & 1 \\ u' & 1 & \dots & 1 & \dots \\ u' & 1 & \dots & 1 & \dots \\ u' & 1 & \dots & 0 & \dots \end{bmatrix}$

▲ □ ▶ ▲ 三 ▶ ▲

3

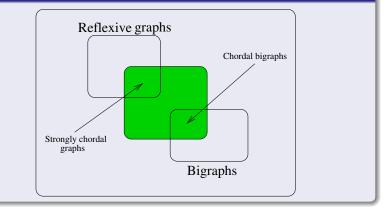
Golumbic+Goss 1978

For a bigraph H

- *H* is chordal \iff
- Bi-ADJ(H) is totally balanced \iff
- H does not contain an induced cycle > 4

Golumbic+Goss 1978

A new unifying concept



- 4 同 6 4 日 6 4 日 6

æ

Pavol Hell, Simon Fraser University In Praise of Loops

æ

___ ▶ <

A strongly chordal graph *H* with possible loops:

The adjacency matrix can be permuted to avoid $\boldsymbol{\Gamma}$

A strongly chordal graph *H* with possible loops:

The adjacency matrix can be permuted to avoid $\boldsymbol{\Gamma}$

Special cases

• For reflexive graphs, as before, the strongly chordal graphs

A strongly chordal graph *H* with possible loops:

The adjacency matrix can be permuted to avoid Γ

Special cases

- For reflexive graphs, as before, the strongly chordal graphs
- For irreflexive graphs *H*, we have
 H is strongly chordal ↔ *H* is chordal bipartite

For graphs H with possible loops

• *H* is strongly chordal

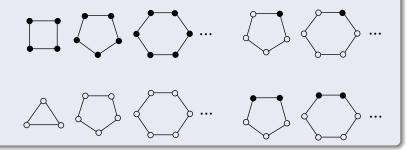
- ▲ - □

For graphs H with possible loops

- H is strongly chordal \iff
- ADJ(H) is totally balanced

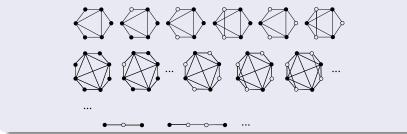
For graphs H with possible loops

- H is strongly chordal \iff
- ADJ(H) is totally balanced \iff
- H does not have an induced subgraph from the lists



For graphs H with possible loops

< 4 ₽ > < E



H+Hernandez-Cruz+Huang+Lin 2020

Dominating set in a reflexive graph

Each vertex is in the set or has a neighbour in the set

Total dominating set in an irreflexive graph

Each vertex has a neighbour in the set

Dominating set in a reflexive graph

Each vertex is in the set or has a neighbour in the set

Total dominating set in an irreflexive graph

Each vertex has a neighbour in the set

General dominating set in a graph with possible loops

Each vertex has a neighbour in the set

Existing linear-time algorithms

- Minimum dominating set in reflexive strongly chordal graphs (Farber 84)
- Minimum total dominating set in a chordal bipartite graph

(Damaschke+Mueller+Kratsch 1990)

Existing linear-time algorithms

- Minimum dominating set in reflexive strongly chordal graphs (Farber 84)
- Minimum total dominating set in a chordal bipartite graph

(Damaschke+Mueller+Kratsch 1990)

New result

Linear-time algorithm to find a smallest general dominating set in strongly chordal graphs with possible loops

H+Hernandez-Cruz+Huang+Lin 2020

Domination in strongly chordal graphs with possible loops

- C = a set of vertices with disjoint neighbourhoods
- D = a general dominating set

Duality	
Max C = Min D	

Domination in strongly chordal graphs with possible loops

${\it C}={\it a}$ set of vertices with disjoint neighbourhoods

D = a general dominating set

$$\begin{array}{l} \mathsf{Duality} \\ \mathsf{Max} \; |\mathcal{C}| = \mathsf{Min} \; |\mathcal{D}| \end{array}$$

Algorithm / Proof

Repeat until all vertices are labeled:

- Find, in <, the first vertex x without the label N
- Find, in <, the last neighbour y of x
- Label x by C and y by D, then label all neighbours of y by N

H+Hernandez-Cruz+Huang+Lin 2020

Interval Graphs

Pavol Hell, Simon Fraser University In Praise of Loops

æ

合 ▶ ◀

For a reflexive graph

• *H* is an interval graph

э

For a reflexive graph

- H is an interval graph \iff
- V(H) can be linearly ordered by < so that $u \sim v, u' \sim v'$ and $u < u', v' < v \implies u \sim v'$

э

- □ ▶ - 4 □ ■

For a reflexive graph

- H is an interval graph \iff
- V(H) can be linearly ordered by < so that $u \sim v, u' \sim v'$ and $u < u', v' < v \implies u \sim v'$



Pavol Hell, Simon Fraser University In Praise of Loops

æ

___ ▶ <

Threshold tolerance (tt-) graphs

Each vertex v can be assigned a weight w_v and a threshold t_v so that

$$u \sim v \iff w_u + w_v \geq \min(t_u, t_v)$$

Threshold tolerance (tt-) graphs

Each vertex v can be assigned a weight w_v and a threshold t_v so that

$$u \sim v \iff w_u + w_v \geq \min(t_u, t_v)$$

Co-tt graphs = complements of tt-graphs

H is a co-tt graph \iff there exist real functions ℓ, r on V(H) such that

$$u \sim v \iff \ell(u) \le r(v) \text{ and } \ell(v) \le r(u)$$

Monma+Reed+Trotter 1988

H is a co-tt graph \iff there exist real functions ℓ, r on V(H) such that

$$u \sim v \iff \ell(u) \le r(v) \text{ and } \ell(v) \le r(u)$$

H is a co-tt graph \iff there exist real functions ℓ, r on V(H) such that

$$u \sim v \iff \ell(u) \le r(v) \text{ and } \ell(v) \le r(u)$$

Interval graphs

H is an interval graph \iff there exist real functions ℓ, r on V(H) such that each $\ell(v) \leq r(v)$ and

$$u \sim v \iff \ell(u) \le r(v) \text{ and } \ell(v) \le r(u)$$

H is a co-tt graph \iff there exist real functions ℓ, r on V(H) such that

$$u \sim v \iff \ell(u) \le r(v) \text{ and } \ell(v) \le r(u)$$

Interval graphs

H is an interval graph \iff there exist real functions ℓ, r on V(H) such that each $\ell(v) \leq r(v)$ and

$$u \sim v \iff \ell(u) \leq r(v) \text{ and } \ell(v) \leq r(u)$$

$$u \not\sim v \iff \ell(u) > r(v) \text{ or } \ell(v) > r(u)$$

${\sf Co-tt\ graphs} = {\sf complements\ of\ tt-graphs}$

H is a co-tt graph \iff there exist real functions ℓ, r on V(H) such that

$$u \sim v \iff \ell(u) \le r(v) \text{ and } \ell(v) \le r(u)$$

${\sf Co-tt\ graphs} = {\sf complements\ of\ tt-graphs}$

H is a co-tt graph \iff there exist real functions ℓ, r on V(H) such that

$$u \sim v \iff \ell(u) \le r(v) \text{ and } \ell(v) \le r(u)$$

Positive (blue) and negative (red)

- Positive intervals (blue vertices) have $\ell(v) \leq r(v)$
- Negative intervals (red vertices) have $\ell(v) > r(v)$

H is a co-tt graph \iff there exist real functions ℓ, r on V(H) such that

$$u \sim v \iff \ell(u) \le r(v) \text{ and } \ell(v) \le r(u)$$

Positive (blue) and negative (red)

- Positive intervals (blue vertices) have $\ell(v) \leq r(v)$
- Negative intervals (red vertices) have $\ell(v) > r(v)$

Possible loops

- Blue vertices have loops
- Red vertices have no loops

${\sf Co-tt\ graphs} = {\sf complements\ of\ tt-graphs}$

H is a co-tt graph \iff there exist real functions ℓ, r on V(H) such that

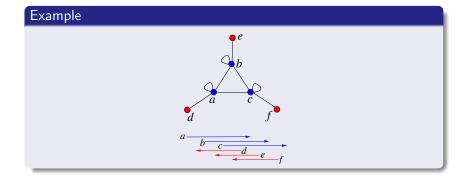
$$u \sim v \iff \ell(u) \le r(v) \text{ and } \ell(v) \le r(u)$$

Positive (blue) and negative (red)

- Positive intervals (blue vertices) have $\ell(v) \leq r(v)$
- Negative intervals (red vertices) have $\ell(v) > r(v)$

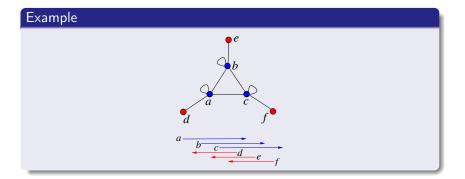
Adjacency rules

- Blue *u* and blue *v* have $u \sim v \iff I_u \cap I_v \neq \emptyset$
- Red u and blue v have $u \sim v \iff I_u \subseteq I_v$



イロン イロン イヨン イヨン

æ



A co-tt model

- Blue = interval graph
- Red = independent set

- ● ● ●

A graph H with possible loops

- H is a co-tt graph \iff
- ADJ(H) can be permuted to avoid a Σ matrix

H+Huang+McConnell+Rafiey 2019

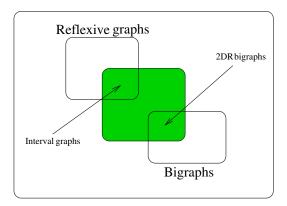
白 ト く ヨ

Graphs with Possible Loops

- \iff *H* is an interval graph (if *H* is a reflexive graph)
- \iff *H* is a co-tt graph (if *H* is a graph with possible loops)

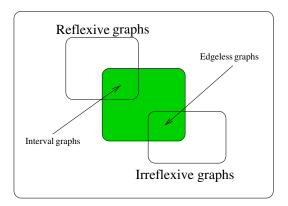
Graphs with Possible Loops

- \iff *H* is an interval graph (if *H* is a reflexive graph)
- \iff *H* is a co-tt graph (if *H* is a graph with possible loops)



Graphs with Possible Loops

- \iff *H* is an interval graph (if *H* is a reflexive graph)
- \iff H is a co-tt graph (if H is a graph with possible loops)



So where are the 2DR bigraphs?

æ

P.

So where are the 2DR bigraphs?

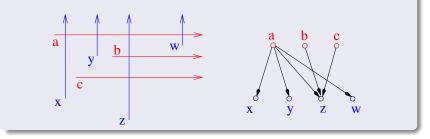
A bigraph H

A bipartite red-blue digraph with all edges from red to blue

So where are the 2DR bigraphs?

A bigraph H

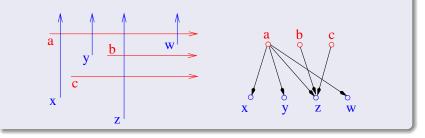
A bipartite red-blue digraph with all edges from red to blue



So where are the 2DR bigraphs?

A bigraph H

A bipartite red-blue digraph with all edges from red to blue



A ►

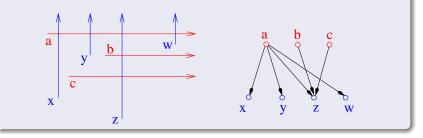
For a bigraph H

• H is a 2DR bigraph

So where are the 2DR bigraphs?

A bigraph H

A bipartite red-blue digraph with all edges from red to blue



A ►

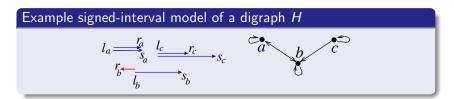
For a bigraph H

- H is a 2DR bigraph \iff
- ADJ(H) can be permuted to avoid a Σ matrix

• ADJ(H) can be permuted to avoid a Σ matrix

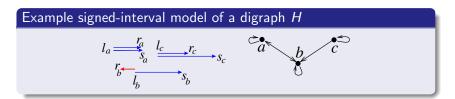
- ADJ(H) can be permuted to avoid a Σ matrix \iff
- Representable by adjusted pairs of signed-intervals

- ADJ(H) can be permuted to avoid a Σ matrix \iff
- Representable by adjusted pairs of signed-intervals



H+Huang+McConnell+Rafiey 2019

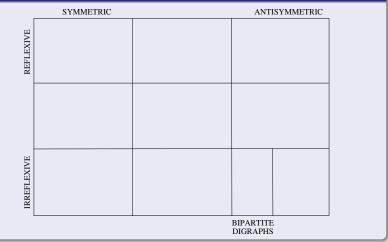
- ADJ(H) can be permuted to avoid a Σ matrix \iff
- Representable by adjusted pairs of signed-intervals



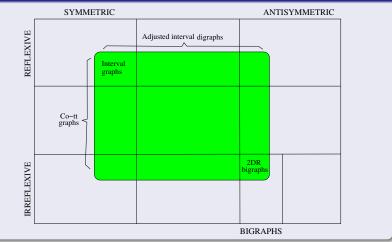
H+Huang+McConnell+Rafiey 2019

Polynomial recognition Rafiey+Rafiey 2022?

Digraphs



Signed-interval digraphs



æ

▲□ ► < □ ► </p>

Reflexive Digraphs

Pavol Hell, Simon Fraser University In Praise of Loops

æ

合 ▶ ◀

An adjusted-interval digraph

Vertices can be represented by pairs of *adjusted* intervals I_{v}, J_{v} ,

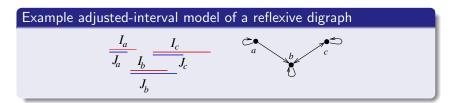
 $v \to w \iff I_v \cap J_w \neq \emptyset$

白 ト く ヨ

An adjusted-interval digraph

Vertices can be represented by pairs of *adjusted* intervals I_{ν}, J_{ν} ,

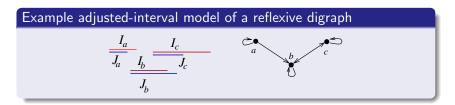
$$v \to w \iff I_v \cap J_w \neq \emptyset$$



An adjusted-interval digraph

Vertices can be represented by pairs of *adjusted* intervals I_{ν}, J_{ν} ,

$$v \to w \iff I_v \cap J_w \neq \emptyset$$



Adjusted-interval digraphs

A reflexive digraph H is an adjusted-interval digraph \iff ADJ(H) can be permuted to avoid a Σ matrix

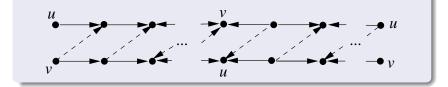
Feder+H+Huang+Rafiey 2012

A reflexive digraph ${\cal H}$ an adjusted-interval digraph if and only if

Pavol Hell, Simon Fraser University In Praise of Loops

A reflexive digraph H an adjusted-interval digraph if and only if

it has no invertible pair



Feder+H+Huang+Rafiey 2012

Similarities to interval graphs

- similar geometric representations
- similar obstructions
- similar ordering characterization

Similarities to interval graphs

- similar geometric representations
- similar obstructions
- similar ordering characterization

$O(n^4)$ recognition algorithm

Open

A more efficient recognition algorithm?