In Praise of Loops

Pavol Hell, Simon Fraser University

Dalhousie by Zoom, November 17, 2021

From Various Papers

Includes joint results with

- Tomás Feder
- César Hernández Cruz
- Jing Huang
- Jephian C.-H. Lin
- Ross McConnell
- Jarik Nešetřil
- Arash Rafiey

Graphs

Graphs

An interval graph

The intersection graph $G(\mathcal{I})$ of a family \mathcal{I} of intervals has vertices $I, I \in \mathcal{I}$, and adjacencies $I \sim I^{\prime} \Longleftrightarrow I \cap I^{\prime} \neq \emptyset$

Graphs

An interval graph

The intersection graph $G(\mathcal{I})$ of a family \mathcal{I} of intervals has vertices $I, I \in \mathcal{I}$, and adjacencies $I \sim I^{\prime} \Longleftrightarrow I \cap I^{\prime} \neq \emptyset$

An interval graph

$$
\frac{1}{2-\frac{4}{3}}
$$

Graphs

An interval graph

The intersection graph $G(\mathcal{I})$ of a family \mathcal{I} of intervals has vertices $I, I \in \mathcal{I}$, and adjacencies $I \sim I^{\prime} \Longleftrightarrow I \cap I^{\prime} \neq \emptyset$

An interval graph

$$
\frac{1}{2-\frac{4}{3}}
$$

A reflexive graph

Graphs

A 2-DR graph

Intersection graph of a family of UP rays vs a family of RIGHT rays

Graphs

A 2-DR graph

Intersection graph of a family of UP rays vs a family of RIGHT rays

A 2-DR graph

Graphs

A 2-DR graph

Intersection graph of a family of UP rays vs a family of RIGHT rays

A 2-DR graph

An irreflexive graph

Graphs

A 2-DR graph

Intersection graph of a family of UP rays vs a family of RIGHT rays

A 2-DR graph

A bigraph

Graphs with Possible Loops

A new unifying concept

Graphs

Dominating set

A set S of vertices in a graph G is a dominating set in G if each vertex not in S has a neighbour in S

Graphs

Dominating set

A set S of vertices in a graph G is a dominating set in G if each vertex not in S has a neighbour in S

Total dominating set

A set S of vertices in a graph G is a total dominating set in G if each vertex has a neighbour in S

Graphs

Dominating sets

A set S of vertices in a graph G is a dominating set in G if each vertex not in S has a neighbour in S

Total dominating sets

A set S of vertices in a graph G is a total dominating set in G if each vertex has a neighbour in S

In a reflexive graph a total dominating set is just a dominating set.

Graphs

Dominating sets

A set S of vertices in a graph G is a dominating set in G if each vertex not in S has a neighbour in S

Total dominating sets

A set S of vertices in a graph G is a total dominating set in G if each vertex has a neighbour in S

Same notion, applied in a reflexive versus an irreflexive graph

Graphs

A new unifying concept

Graphs

Cops and robbers

A cop trying to capture a robber on a graph G : at each move, each player can stay where it is, or move along an edge

Graphs

Cops and robbers

A cop trying to capture a robber on a graph G : at each move, each player can stay where it is, or move along an edge

Active cops and robbers

A cop trying to capture a robber on a graph G : at each move, each player must move along an edge

Graphs

Cops and robbers

A cop trying to capture a robber on a graph G : at each move, each player can stay where it is, or move along an edge

Same notion, applied in a reflexive graph

Active cops and robbers

A cop trying to capture a robber on a graph G : at each move, each player must move along an edge

Applied in an irreflexive graph

Graphs

A cop-win graph
 A reflexive graph in which the cop wins

Is there an irreflexive version?

Graphs

A cop-win graph
A reflexive graph in which the cop wins

Is there an irreflexive version?
Not with these definitions

Graphs

A cop-win graph
A reflexive graph in which the cop wins
Is there an irreflexive version?
Not with these definitions
(The robber can shaddow the cop)

Graphs

Cop-win graphs

Graphs

A unifying concept

Connected Graphs with Possible Loops

Connected Graphs with Possible Loops

Dismantlable graphs with possible loops

Reducible to a single vertex by a sequence of folds

Connected Graphs with Possible Loops

Dismantlable graphs with possible loops
Reducible to a single vertex by a sequence of folds (u to vif $N(u) \subseteq N(\nu)$)

Connected Graphs with Possible Loops

Dismantlable graphs with possible loops

Reducible to a single vertex by a sequence of folds (u to vif $N(u) \subseteq N(\nu)$)

Examples of dismantlable graphs G with possible loops

Connected Graphs with Possible Loops

Dismantlable graphs with possible loops

Reducible to a single vertex by a sequence of folds (u to vif $N(u) \subseteq N(v)$)
Examples of non-dismantlable graphs G with possible loops

00	Δ
0.0	\square
$9-0$	0
0	0

Connected Graphs with Possible Loops

Dismantlable graphs with possible loops

Reducible to a single vertex by a sequence of folds (u to vif $N(u) \subseteq N(v)$)
Examples of non-dismantlable graphs G with possible loops

00	Δ
0.0	\square
$9-0$	00

Dismantlable graphs with possible loops
The cop has a winning strategy in $G \Longleftrightarrow G$ is dismantlable

Homomorphism Problems

Given a fixed graph H

Is there a homomorphism of input G to H ?

Homomorphism Problems

Given a fixed graph H

Is there a homomorphism of input G to H ?

David Johnson asked
For which H is the problem NP-complete?

Homomorphism Problems

Given a fixed graph H

Is there a homomorphism of input G to H ?

David Johnson asked
For which H is the problem NP-complete?

Dichotomy for undirected graphs H
The problem is polynomial if H is bipartite, and NP-complete otherwise

H+Nešetřil 1990

Homomorphism Problems

Given a fixed graph H with possible loops

Is there a homomorphism of input G to H ?

David Johnson asked

For which H is the problem NP-complete?

Dichotomy for undirected graphs H with possible loops

The problem is polynomial if H has a loop or is bipartite, and NP-complete otherwise

H+Nešetřil 1990

Homomorphism Problems

Given a fixed relational system H on $\{0,1\}$
Is there a homomorphism of input G to H ?

Homomorphism Problems

Given a fixed relational system H on $\{0,1\}$
Is there a homomorphism of input G to H ?
H has one ternary relation $\{(0,0,1),(0,1,0),(1,0,0)\}$
G has an arbitrary ternary relation (triples on $V(G)$)

Homomorphism Problems

Given a fixed relational system H on $\{0,1\}$
Is there a homomorphism of input G to H ?
H has one ternary relation $\{(0,0,1),(0,1,0),(1,0,0)\}$
G has an arbitrary ternary relation (triples on $V(G)$)
This is the problem 1-IN-3-SAT

Homomorphism Problems

Given a fixed relational system H on $\{0,1\}$
Is there a homomorphism of input G to H ?
H has one ternary relation $\{(0,0,1),(0,1,0),(1,0,0)\}$
G has an arbitrary ternary relation (triples on $V(G)$)
This is the problem 1-IN-3-SAT
Generalized satisfiability problems

Homomorphism Problems

Given a fixed relational system H on $\{0,1\}$
Is there a homomorphism of input G to H ?
H has one ternary relation $\{(0,0,1),(0,1,0),(1,0,0)\}$
G has an arbitrary ternary relation (triples on $V(G)$)
This is the problem 1-IN-3-SAT
Generalized satisfiability problems
Richard Karp asked
For which H is the problem NP-complete?

Homomorphism Problems

Dichotomy for generalized satisfiability problems H

- The problem is polynomial-time solvable if each relation in H contains $(1,1, \ldots, 1)$ or $(0,0, \ldots, 0)$, or
- if it is equivalent to 2-SAT, or to Horn clauses (or to co-Horn clauses), or
- if it is equivalent to a system of linear equations modulo 2

Homomorphism Problems

Dichotomy for generalized satisfiability problems H

- The problem is polynomial-time solvable if each relation in H contains $(1,1, \ldots, 1)$ or $(0,0, \ldots, 0)$, or
- if it is equivalent to 2-SAT, or to Horn clauses (or to co-Horn clauses), or
- if it is equivalent to a system of linear equations modulo 2 ,
- and is NP-complete otherwise

Homomorphism Problems

Dichotomy for generalized satisfiability problems H

- The problem is polynomial-time solvable if each relation in H contains $(1,1, \ldots, 1)$ or $(0,0, \ldots, 0)$, or
- if it is equivalent to 2-SAT, or to Horn clauses (or to co-Horn clauses), or
- if it is equivalent to a system of linear equations modulo 2 ,
- and is NP-complete otherwise

Schaeffer 1978
Dichotomy for undirected graphs H with possible loops

- The problem is polynomial if H has a loop or is bipartite
- and is NP-complete otherwise

Constraint Satisfaction Problems

Given a fixed relational system H
Is there a homomorphism of input G to H ?

Constraint Satisfaction Problems

Given a fixed relational system H

Is there a homomorphism of input G to H ?

Motivating examples H

- H has only one (symmetric) binary relation
- H has only two vertices

Constraint Satisfaction Problems

Given a fixed relational system H

Is there a homomorphism of input G to H ?

Motivating examples H

- H has only one (symmetric) binary relation
- H has only two vertices

Feder-Vardi Dichotomy Conjecture 1993

There is dichotomy, i.e., is for each H the problem NP-complete or polynomial

Constraint Satisfaction Problems

Given a fixed relational system H

Is there a homomorphism of input G to H ?

Motivating examples H

- H has only one (symmetric) binary relation
- H has only two vertices

Feder-Vardi Dichotomy Conjecture 1993

There is dichotomy, i.e., is for each H the problem NP-complete or polynomial

Bulatov 2017, Zhuk 2017
Alonzo Church Award 2018 to Feder and Vardi

Constraint Satisfaction Problems

Given a fixed relational system H

Is there a homomorphism of input G to H ?

Motivating examples H

- H has only one (symmetric) binary relation
- H has only two vertices

Feder-Vardi Dichotomy Conjecture 1993

There is dichotomy, i.e., is for each H the problem NP-complete or polynomial

Alonzo Church Award 2018 to Feder and Vardi Gödel Prize 2021 to Bulatov (counting)

Graphs with Possible Loops

Graphs with Possible Loops

A unifying concept for interval graphs and 2DR graphs

Strongly Chordal Graphs

Strongly Chordal Graphs

A strongly chordal graph H : admits an ordering $<$

$$
u \sim v, u^{\prime} \sim v^{\prime}, u \sim v^{\prime} \text { and } u<u^{\prime}, v^{\prime}<v \Longrightarrow u^{\prime} \sim v
$$

Strongly Chordal Graphs

A strongly chordal graph H : admits an ordering $<$

$$
u \sim v, u^{\prime} \sim v^{\prime}, u \sim v^{\prime} \text { and } u<u^{\prime}, v^{\prime}<v \Longrightarrow u^{\prime} \sim v
$$

$\operatorname{ADJ}(H)$ can be permuted to avoid the Γ matrix

Characterization Theorems

For a reflexive graph H

- H is strongly chordal \Longleftrightarrow
- $\operatorname{ADJ}(H)$ is totally balanced (no cycle submatrix) \Longleftrightarrow
- H does not contain an induced cycle >3 or an induced trampoline

Characterization Theorems

For a reflexive graph H

- H is strongly chordal \Longleftrightarrow
- $\operatorname{ADJ}(H)$ is totally balanced (no cycle submatrix) \Longleftrightarrow
- H does not contain an induced cycle >3 or an induced trampoline

Farber 1983, Anstee+Farber 1984

Chordal Bigraphs

Chordal Bigraphs

A chordal bigraph $H=(U, V)$: there are orderings $<U,<v$

$$
u \sim v, u^{\prime} \sim v^{\prime}, u \sim v^{\prime} \text { and } u<u u^{\prime}, v^{\prime}<v v \Longrightarrow u^{\prime} \sim v
$$

Chordal Bigraphs

A chordal bigraph $H=(U, V)$: there are orderings $<U,<v$

$$
u \sim v, u^{\prime} \sim v^{\prime}, u \sim v^{\prime} \text { and } u<u u^{\prime}, v^{\prime}<v v \Longrightarrow u^{\prime} \sim v
$$

Bi-ADJ (H) can be permuted to avoid the Γ matrix

Golumbic+Goss 1978

Characterization Theorems

For a bigraph H

- H is chordal \Longleftrightarrow
- $\mathrm{Bi}-\mathrm{ADJ}(H)$ is totally balanced \Longleftrightarrow
- H does not contain an induced cycle >4

Golumbic+Goss 1978

Graphs

A new unifying concept

Graphs With Possible Loops

Graphs With Possible Loops

A strongly chordal graph H with possible loops:

The adjacency matrix can be permuted to avoid Γ

Graphs With Possible Loops

A strongly chordal graph H with possible loops:
 The adjacency matrix can be permuted to avoid Γ

Special cases

- For reflexive graphs, as before, the strongly chordal graphs

Graphs With Possible Loops

A strongly chordal graph H with possible loops:

The adjacency matrix can be permuted to avoid Γ

Special cases

- For reflexive graphs, as before, the strongly chordal graphs
- For irreflexive graphs H, we have H is strongly chordal $\Longleftrightarrow H$ is chordal bipartite

Strongly Chordal Graphs with Possible Loops

For graphs H with possible loops

- H is strongly chordal

Strongly Chordal Graphs with Possible Loops

For graphs H with possible loops

- H is strongly chordal
- $\operatorname{ADJ}(H)$ is totally balanced

Strongly Chordal Graphs with Possible Loops

For graphs H with possible loops

- H is strongly chordal \Longleftrightarrow
- $\operatorname{ADJ}(H)$ is totally balanced \Longleftrightarrow
- H does not have an induced subgraph from the lists

Strongly Chordal Graphs with Possible Loops

For graphs H with possible loops

Domination

Dominating set in a reflexive graph

Each vertex is in the set or has a neighbour in the set
Total dominating set in an irreflexive graph
Each vertex has a neighbour in the set

Domination

Dominating set in a reflexive graph

Each vertex is in the set or has a neighbour in the set
Total dominating set in an irreflexive graph
Each vertex has a neighbour in the set

General dominating set in a graph with possible loops
Each vertex has a neighbour in the set

Domination

Existing linear-time algorithms

- Minimum dominating set in reflexive strongly chordal graphs (Farber 84)
- Minimum total dominating set in a chordal bipartite graph (Damaschke + Mueller + Kratsch 1990)

Domination

Existing linear-time algorithms

- Minimum dominating set in reflexive strongly chordal graphs (Farber 84)
- Minimum total dominating set in a chordal bipartite graph (Damaschke + Mueller + Kratsch 1990)

New result

Linear-time algorithm to find a smallest general dominating set in strongly chordal graphs with possible loops

H+Hernandez-Cruz+Huang+Lin 2020

Domination in strongly chordal graphs with possible loops

$C=$ a set of vertices with disjoint neighbourhoods
$D=$ a general dominating set

Duality

$\operatorname{Max}|C|=\operatorname{Min}|D|$

Domination in strongly chordal graphs with possible loops

$C=$ a set of vertices with disjoint neighbourhoods
$D=$ a general dominating set

Duality

$\operatorname{Max}|C|=\operatorname{Min}|D|$

Algorithm / Proof

Repeat until all vertices are labeled:

- Find, in $<$, the first vertex x without the label N
- Find, in $<$, the last neighbour y of x
- Label x by C and y by D, then label all neighbours of y by N

H+Hernandez-Cruz+Huang+Lin 2020

Interval Graphs

Interval Graphs

For a reflexive graph

- H is an interval graph

Interval Graphs

For a reflexive graph

- H is an interval graph
- $V(H)$ can be linearly ordered by $<$ so that $u \sim v, u^{\prime} \sim v^{\prime}$ and $u<u^{\prime}, v^{\prime}<v \Longrightarrow u \sim v^{\prime}$

Interval Graphs

For a reflexive graph

- H is an interval graph
- $V(H)$ can be linearly ordered by $<$ so that

$$
u \sim v, u^{\prime} \sim v^{\prime} \text { and } u<u^{\prime}, v^{\prime}<v \Longrightarrow u \sim v^{\prime}
$$

$\operatorname{ADJ}(H)$ can be permuted to avoid a Σ matrix

Graphs with Possible Loops

Graphs with Possible Loops

Threshold tolerance (tt-) graphs

Each vertex v can be assigned a weight w_{v} and a threshold t_{v} so that

$$
u \sim v \Longleftrightarrow w_{u}+w_{v} \geq \min \left(t_{u}, t_{v}\right)
$$

Graphs with Possible Loops

Threshold tolerance (tt-) graphs

Each vertex v can be assigned a weight w_{v} and a threshold t_{v} so that

$$
u \sim v \Longleftrightarrow w_{u}+w_{v} \geq \min \left(t_{u}, t_{v}\right)
$$

Co-tt graphs $=$ complements of tt-graphs
H is a co-tt graph \Longleftrightarrow there exist real functions ℓ, r on $V(H)$ such that

$$
u \sim v \Longleftrightarrow \ell(u) \leq r(v) \text { and } \ell(v) \leq r(u)
$$

Graphs with Possible Loops

Co-tt graphs $=$ complements of tt-graphs
H is a co-tt graph \Longleftrightarrow there exist real functions ℓ, r on $V(H)$ such that

$$
u \sim v \Longleftrightarrow \ell(u) \leq r(v) \text { and } \ell(v) \leq r(u)
$$

Graphs with Possible Loops

Co-tt graphs $=$ complements of tt-graphs

H is a co-tt graph \Longleftrightarrow there exist real functions ℓ, r on $V(H)$ such that

$$
u \sim v \Longleftrightarrow \ell(u) \leq r(v) \text { and } \ell(v) \leq r(u)
$$

Interval graphs
H is an interval graph \Longleftrightarrow there exist real functions ℓ, r on $V(H)$ such that each $\ell(v) \leq r(v)$ and

$$
u \sim v \Longleftrightarrow \ell(u) \leq r(v) \text { and } \ell(v) \leq r(u)
$$

Graphs with Possible Loops

Co-tt graphs $=$ complements of tt-graphs

H is a co-tt graph \Longleftrightarrow there exist real functions ℓ, r on $V(H)$ such that

$$
u \sim v \Longleftrightarrow \ell(u) \leq r(v) \text { and } \ell(v) \leq r(u)
$$

Interval graphs
H is an interval graph \Longleftrightarrow there exist real functions ℓ, r on $V(H)$ such that each $\ell(v) \leq r(v)$ and

$$
u \sim v \Longleftrightarrow \ell(u) \leq r(v) \text { and } \ell(v) \leq r(u)
$$

$$
u \nsim v \Longleftrightarrow \ell(u)>r(v) \text { or } \ell(v)>r(u)
$$

Graphs with Possible Loops

Co-tt graphs $=$ complements of tt-graphs
H is a co-tt graph \Longleftrightarrow there exist real functions ℓ, r on $V(H)$ such that

$$
u \sim v \Longleftrightarrow \ell(u) \leq r(v) \text { and } \ell(v) \leq r(u)
$$

Graphs with Possible Loops

Co-tt graphs $=$ complements of tt-graphs
H is a co-tt graph \Longleftrightarrow there exist real functions ℓ, r on $V(H)$
such that

$$
u \sim v \Longleftrightarrow \ell(u) \leq r(v) \text { and } \ell(v) \leq r(u)
$$

Positive (blue) and negative (red)

- Positive intervals (blue vertices) have $\ell(v) \leq r(v)$
- Negative intervals (red vertices) have $\ell(v)>r(v)$

Graphs with Possible Loops

Co-tt graphs $=$ complements of tt-graphs
H is a co-tt graph \Longleftrightarrow there exist real functions ℓ, r on $V(H)$
such that

$$
u \sim v \Longleftrightarrow \ell(u) \leq r(v) \text { and } \ell(v) \leq r(u)
$$

Positive (blue) and negative (red)

- Positive intervals (blue vertices) have $\ell(v) \leq r(v)$
- Negative intervals (red vertices) have $\ell(v)>r(v)$

Possible loops

- Blue vertices have loops
- Red vertices have no loops

Graphs with Possible Loops

Co-tt graphs $=$ complements of tt-graphs
H is a co-tt graph \Longleftrightarrow there exist real functions ℓ, r on $V(H)$ such that

$$
u \sim v \Longleftrightarrow \ell(u) \leq r(v) \text { and } \ell(v) \leq r(u)
$$

Positive (blue) and negative (red)

- Positive intervals (blue vertices) have $\ell(v) \leq r(v)$
- Negative intervals (red vertices) have $\ell(v)>r(v)$

Adjacency rules

- Blue u and blue v have $u \sim v \Longleftrightarrow I_{u} \cap I_{v} \neq \emptyset$
- Red u and blue v have $u \sim v \Longleftrightarrow I_{u} \subseteq I_{v}$

Co-tt Graphs

Example

Co-tt Graphs

Example

A co-tt model

- Blue = interval graph
- Red $=$ independent set

Graphs with Possible Loops

A graph H with possible loops
 - H is a co-tt graph \Longleftrightarrow
 - $\operatorname{ADJ}(H)$ can be permuted to avoid a Σ matrix

H+Huang+McConnell+Rafiey 2019

Graphs with Possible Loops

$\operatorname{ADJ}(H)$ can be permuted to avoid a Σ matrix

- $\Longleftrightarrow H$ is an interval graph (if H is a reflexive graph)
- $\Longleftrightarrow H$ is a co-tt graph (if H is a graph with possible loops)

Graphs with Possible Loops

ADJ (H) can be permuted to avoid a Σ matrix

- $\Longleftrightarrow H$ is an interval graph (if H is a reflexive graph)
- $\Longleftrightarrow H$ is a co-tt graph (if H is a graph with possible loops)

Graphs with Possible Loops

$\operatorname{ADJ}(H)$ can be permuted to avoid a Σ matrix

- $\Longleftrightarrow H$ is an interval graph (if H is a reflexive graph)
- $\Longleftrightarrow H$ is a co-tt graph (if H is a graph with possible loops)

2DR Bigraphs

So where are the 2DR bigraphs?

2DR Bigraphs

So where are the 2DR bigraphs?
A bigraph H
A bipartite red-blue digraph with all edges from red to blue

2DR Bigraphs

So where are the 2DR bigraphs?
A bigraph H
A bipartite red-blue digraph with all edges from red to blue

2DR Bigraphs

So where are the 2DR bigraphs?

A bigraph H

A bipartite red-blue digraph with all edges from red to blue

For a bigraph H

- H is a 2DR bigraph

2DR Bigraphs

So where are the 2DR bigraphs?

A bigraph H

A bipartite red-blue digraph with all edges from red to blue

For a bigraph H

- H is a 2DR bigraph \Longleftrightarrow
- $\operatorname{ADJ}(H)$ can be permuted to avoid a Σ matrix

Signed-interval Digraphs

A signed-interval digraph H

- $\operatorname{ADJ}(H)$ can be permuted to avoid a Σ matrix

Signed-interval Digraphs

A signed-interval digraph H

- ADJ (H) can be permuted to avoid a Σ matrix \Longleftrightarrow
- Representable by adjusted pairs of signed-intervals

Signed-interval Digraphs

A signed-interval digraph H

- $\operatorname{ADJ}(H)$ can be permuted to avoid a Σ matrix \Longleftrightarrow
- Representable by adjusted pairs of signed-intervals

Example signed-interval model of a digraph H

H+Huang+McConnell+Rafiey 2019

Signed-interval Digraphs

A signed-interval digraph H

- $\operatorname{ADJ}(H)$ can be permuted to avoid a Σ matrix \Longleftrightarrow
- Representable by adjusted pairs of signed-intervals

Example signed-interval model of a digraph H

H+Huang+McConnell+Rafiey 2019
Polynomial recognition Rafiey+Rafiey 2022?

Digraphs

Digraphs

Signed-interval Digraphs

Signed-interval digraphs

Reflexive Digraphs

Reflexive Digraphs

An adjusted-interval digraph
Vertices can be represented by pairs of adjusted intervals I_{v}, J_{v},

$$
v \rightarrow w \Longleftrightarrow I_{v} \cap J_{w} \neq \emptyset
$$

Reflexive Digraphs

An adjusted-interval digraph

Vertices can be represented by pairs of adjusted intervals I_{v}, J_{v},

$$
v \rightarrow w \Longleftrightarrow I_{v} \cap J_{w} \neq \emptyset
$$

Example adjusted-interval model of a reflexive digraph

$$
\xlongequal[J_{a}]{\xlongequal[J_{a}]{I_{b}} \xlongequal{I_{c}}{ }^{I_{c}}}
$$

Reflexive Digraphs

An adjusted-interval digraph

Vertices can be represented by pairs of adjusted intervals I_{v}, J_{v},

$$
v \rightarrow w \Longleftrightarrow I_{v} \cap J_{w} \neq \emptyset
$$

Example adjusted-interval model of a reflexive digraph

$$
\stackrel{I_{a}}{J_{a}} \xlongequal{I_{b}} \frac{I_{c}}{J_{b}}
$$

Adjusted-interval digraphs

A reflexive digraph H is an adjusted-interval digraph
 $\operatorname{ADJ}(\mathrm{H})$ can be permuted to avoid a Σ matrix

Obstruction Characterization

A reflexive digraph H an adjusted-interval digraph if and only if

Obstruction Characterization

A reflexive digraph H an adjusted-interval digraph if and only if

it has no invertible pair

Feder + H + Huang + Rafiey 2012

Adjusted-interval Digraphs

Similarities to interval graphs

- similar geometric representations
- similar obstructions
- similar ordering characterization

Adjusted-interval Digraphs

Similarities to interval graphs

- similar geometric representations
- similar obstructions
- similar ordering characterization
$O\left(n^{4}\right)$ recognition algorithm

Open

A more efficient recognition algorithm?

