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Graphs

An interval graph

The intersection graph G (I) of a family I of intervals has vertices
I , I ∈ I, and adjacencies I ∼ I ′ ⇐⇒ I ∩ I ′ 6= ∅
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Graphs

A 2-DR graph

Intersection graph of a family of UP rays vs a family of RIGHT rays

A 2-DR graph

w

b
a

c

x

y

z

w
a b c

x y z

An irreflexive graph
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Graphs

A 2-DR graph

Intersection graph of a family of UP rays vs a family of RIGHT rays
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Graphs with Possible Loops

A new unifying concept

bigraphs

graphsReflexive

Bigraphs

Interval graphs

2DR
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Graphs

Dominating set

A set S of vertices in a graph G is a dominating set in G if each
vertex not in S has a neighbour in S

Total dominating set

A set S of vertices in a graph G is a total dominating set in G if
each vertex has a neighbour in S

.
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Dominating sets

A set S of vertices in a graph G is a dominating set in G if each
vertex not in S has a neighbour in S

Total dominating sets

A set S of vertices in a graph G is a total dominating set in G if
each vertex has a neighbour in S

In a reflexive graph a total dominating set is just a dominating set.
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Graphs

Dominating sets

A set S of vertices in a graph G is a dominating set in G if each
vertex not in S has a neighbour in S

Total dominating sets

A set S of vertices in a graph G is a total dominating set in G if
each vertex has a neighbour in S

Same notion, applied in a reflexive versus an irreflexive graph
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Graphs

A new unifying concept

Total

graphsReflexive

Domination 

Irreflexive graphs

domination 

Pavol Hell, Simon Fraser University In Praise of Loops



Graphs

Cops and robbers

A cop trying to capture a robber on a graph G : at each move,
each player can stay where it is, or move along an edge

Active cops and robbers

A cop trying to capture a robber on a graph G : at each move,
each player must move along an edge

.
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Graphs

Cops and robbers

A cop trying to capture a robber on a graph G : at each move,
each player can stay where it is, or move along an edge

Same notion, applied in a reflexive graph

Active cops and robbers

A cop trying to capture a robber on a graph G : at each move,
each player must move along an edge

Applied in an irreflexive graph

Pavol Hell, Simon Fraser University In Praise of Loops



Graphs

A cop-win graph

A reflexive graph in which the cop wins

Is there an irreflexive version?

Not with these definitions

(The robber can shaddow the cop)
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Graphs

Cop-win graphs

Empty 

graphsReflexive

Irreflexive graphs

Cop−win graphs 
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Graphs

A unifying concept

Dismantlable

graphsReflexive

Irreflexive graphs

Cop−win graphs 

Empty graphs 

Pavol Hell, Simon Fraser University In Praise of Loops



Connected Graphs with Possible Loops

Dismantlable graphs with possible loops

Reducible to a single vertex by a sequence of folds (u to v if N(u) ⊆ N(v))

Examples of dismantlable graphs G with possible loops
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Connected Graphs with Possible Loops

Dismantlable graphs with possible loops

Reducible to a single vertex by a sequence of folds (u to v if N(u) ⊆ N(v))

Examples of non-dismantlable graphs G with possible loops

Dismantlable graphs with possible loops

The cop has a winning strategy in G ⇐⇒ G is dismantlable

Nowakowski+Winkler 1983, Quilliot 1983, Brightwell+Winkler 2000
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Homomorphism Problems

Given a fixed graph H

Is there a homomorphism of input G to H?

David Johnson asked

For which H is the problem NP-complete?

Dichotomy for undirected graphs H

The problem is polynomial if H is bipartite, and NP-complete
otherwise

H+Nešeťril 1990
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Homomorphism Problems

Given a fixed graph H with possible loops

Is there a homomorphism of input G to H?

David Johnson asked

For which H is the problem NP-complete?

Dichotomy for undirected graphs H with possible loops

The problem is polynomial if H has a loop or is bipartite, and
NP-complete otherwise

H+Nešeťril 1990
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Homomorphism Problems

Given a fixed relational system H on {0, 1}
Is there a homomorphism of input G to H?

H has one ternary relation {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
G has an arbitrary ternary relation (triples on V (G ))

This is the problem 1-IN-3-SAT

Generalized satisfiability problems

Richard Karp asked

For which H is the problem NP-complete?
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Is there a homomorphism of input G to H?

H has one ternary relation {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
G has an arbitrary ternary relation (triples on V (G ))

This is the problem 1-IN-3-SAT

Generalized satisfiability problems

Richard Karp asked

For which H is the problem NP-complete?
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Homomorphism Problems

Dichotomy for generalized satisfiability problems H

The problem is polynomial-time solvable if each relation in H
contains (1, 1, . . . , 1) or (0, 0, . . . , 0), or

if it is equivalent to 2-SAT, or to Horn clauses (or to co-Horn
clauses), or

if it is equivalent to a system of linear equations modulo 2

,

and is NP-complete otherwise

Schaeffer 1978

Dichotomy for undirected graphs H with possible loops

The problem is polynomial if H has a loop or is bipartite

and is NP-complete otherwise

H+Nešeťril 1990
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Constraint Satisfaction Problems

Given a fixed relational system H

Is there a homomorphism of input G to H?

Motivating examples H

H has only one (symmetric) binary relation

H has only two vertices

Feder-Vardi Dichotomy Conjecture 1993

There is dichotomy, i.e., is for each H the problem NP-complete or
polynomial

Bulatov 2017, Zhuk 2017

Alonzo Church Award 2018 to Feder and Vardi
Gödel Prize 2021 to Bulatov (counting)
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Graphs with Possible Loops

A unifying concept for interval graphs and 2DR graphs

bigraphs

graphsReflexive

Bigraphs

Interval graphs

2DR
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Strongly Chordal Graphs

A strongly chordal graph H: admits an ordering <

u ∼ v , u′ ∼ v ′, u ∼ v ′ and u < u′, v ′ < v =⇒ u′ ∼ v

ADJ(H) can be permuted to avoid the Γ matrix

01

1

u’

u

v’ v

1
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Characterization Theorems

For a reflexive graph H

H is strongly chordal ⇐⇒
ADJ(H) is totally balanced (no cycle submatrix) ⇐⇒
H does not contain an induced cycle > 3 or an induced
trampoline

...

Farber 1983, Anstee+Farber 1984
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Chordal Bigraphs

A chordal bigraph H = (U,V ): there are orderings <U , <V

u ∼ v , u′ ∼ v ′, u ∼ v ′ and u <U u′, v ′ <V v =⇒ u′ ∼ v

Bi-ADJ(H) can be permuted to avoid the Γ matrix

01

1

u’

u

v’ v

1

Golumbic+Goss 1978
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Characterization Theorems

For a bigraph H

H is chordal ⇐⇒
Bi-ADJ(H) is totally balanced ⇐⇒
H does not contain an induced cycle > 4

Golumbic+Goss 1978
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Graphs

A new unifying concept

Chordal bigraphs 

graphsReflexive

Strongly chordal 
graphs 

Bigraphs
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Graphs With Possible Loops

A strongly chordal graph H with possible loops:

The adjacency matrix can be permuted to avoid Γ

Special cases

For reflexive graphs, as before, the strongly chordal graphs

For irreflexive graphs H, we have
H is strongly chordal ⇐⇒ H is chordal bipartite
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Strongly Chordal Graphs with Possible Loops

For graphs H with possible loops

H is strongly chordal

⇐⇒
ADJ(H) is totally balanced ⇐⇒
H does not have an induced subgraph from the lists

...

...

...

...
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Strongly Chordal Graphs with Possible Loops

For graphs H with possible loops
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H+Hernandez-Cruz+Huang+Lin 2020
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Domination

Dominating set in a reflexive graph

Each vertex is in the set or has a neighbour in the set

Total dominating set in an irreflexive graph

Each vertex has a neighbour in the set

General dominating set in a graph with possible loops

Each vertex has a neighbour in the set
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Domination

Existing linear-time algorithms

Minimum dominating set in reflexive strongly chordal graphs
(Farber 84)

Minimum total dominating set in a chordal bipartite graph
(Damaschke+Mueller+Kratsch 1990)

New result

Linear-time algorithm to find a smallest general dominating set in
strongly chordal graphs with possible loops

H+Hernandez-Cruz+Huang+Lin 2020
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Domination in strongly chordal graphs with possible loops

C = a set of vertices with disjoint neighbourhoods
D = a general dominating set

Duality

Max |C | = Min |D|

Algorithm / Proof

Repeat until all vertices are labeled:

Find, in <, the first vertex x without the label N

Find, in <, the last neighbour y of x

Label x by C and y by D, then label all neighbours of y by N

H+Hernandez-Cruz+Huang+Lin 2020
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Interval Graphs

For a reflexive graph

H is an interval graph ⇐⇒
V (H) can be linearly ordered by < so that
u ∼ v , u′ ∼ v ′ and u < u′, v ′ < v =⇒ u ∼ v ′

ADJ(H) can be permuted to avoid a Σ matrix

*

0

1

1

u’

u

v’ v
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Graphs with Possible Loops

Threshold tolerance (tt-) graphs

Each vertex v can be assigned a weight wv and a threshold tv so
that

u ∼ v ⇐⇒ wu + wv ≥ min(tu, tv )

Co-tt graphs = complements of tt-graphs

H is a co-tt graph ⇐⇒ there exist real functions `, r on V (H)
such that

u ∼ v ⇐⇒ `(u) ≤ r(v) and `(v) ≤ r(u)

Monma+Reed+Trotter 1988
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such that
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Graphs with Possible Loops

Co-tt graphs = complements of tt-graphs

H is a co-tt graph ⇐⇒ there exist real functions `, r on V (H)
such that

u ∼ v ⇐⇒ `(u) ≤ r(v) and `(v) ≤ r(u)

Positive (blue) and negative (red)

Positive intervals (blue vertices) have `(v) ≤ r(v)

Negative intervals (red vertices) have `(v) > r(v)

Adjacency rules

Blue u and blue v have u ∼ v ⇐⇒ Iu ∩ Iv 6= ∅
Red u and blue v have u ∼ v ⇐⇒ Iu ⊆ Iv
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Co-tt Graphs

Example
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Graphs with Possible Loops

A graph H with possible loops

H is a co-tt graph ⇐⇒
ADJ(H) can be permuted to avoid a Σ matrix

H+Huang+McConnell+Rafiey 2019

Pavol Hell, Simon Fraser University In Praise of Loops
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ADJ(H) can be permuted to avoid a Σ matrix

⇐⇒ H is an interval graph (if H is a reflexive graph)
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Graphs with Possible Loops

ADJ(H) can be permuted to avoid a Σ matrix

⇐⇒ H is an interval graph (if H is a reflexive graph)

⇐⇒ H is a co-tt graph (if H is a graph with possible loops)
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Interval graphs
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2DR Bigraphs

So where are the 2DR bigraphs?

A bigraph H

A bipartite red-blue digraph with all edges from red to blue
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For a bigraph H

H is a 2DR bigraph ⇐⇒
ADJ(H) can be permuted to avoid a Σ matrix
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Signed-interval Digraphs

A signed-interval digraph H

ADJ(H) can be permuted to avoid a Σ matrix

⇐⇒
Representable by adjusted pairs of signed-intervals

Example signed-interval model of a digraph H
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H+Huang+McConnell+Rafiey 2019

Polynomial recognition Rafiey+Rafiey 2022?
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Signed-interval Digraphs
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Reflexive Digraphs

An adjusted-interval digraph

Vertices can be represented by pairs of adjusted intervals Iv , Jv ,

v → w ⇐⇒ Iv ∩ Jw 6= ∅

Example adjusted-interval model of a reflexive digraph
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Adjusted-interval digraphs

A reflexive digraph H is an adjusted-interval digraph ⇐⇒
ADJ(H) can be permuted to avoid a Σ matrix

Feder+H+Huang+Rafiey 2012
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Obstruction Characterization

A reflexive digraph H an adjusted-interval digraph if and only if

it has no invertible pair

v

u

v

...

v

u

...

u

Feder+H+Huang+Rafiey 2012

Pavol Hell, Simon Fraser University In Praise of Loops



Obstruction Characterization

A reflexive digraph H an adjusted-interval digraph if and only if

it has no invertible pair

v

u

v

...

v

u

...

u

Feder+H+Huang+Rafiey 2012

Pavol Hell, Simon Fraser University In Praise of Loops



Adjusted-interval Digraphs

Similarities to interval graphs

similar geometric representations

similar obstructions

similar ordering characterization

O(n4) recognition algorithm

Open

A more efficient recognition algorithm?
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