Orthogonal Colourings of Graphs

Kyle MacKeigan
Dalhousie University

November 18, 2020

Vertex Colouring

- A proper vertex colouring of a graph G is an assignment of colours (labels) to the vertices of G so that no two adjacent vertices receive the same colour.
- The chromatic number of a graph G, denoted $\chi(G)$, is the minimum number of colours required for a proper vertex colouring.

Example of a Vertex Colouring

Figure: Vertex Colouring of C_{6}

Orthogonal Colourings

- Two colourings of a graph G are orthogonal if they have the property that when two vertices are coloured with the same colour in one of the colourings, then those vertices must receive distinct colours in the other colouring.
- A k-orthogonal colouring of a graph G is a collection of k mutually orthogonal vertex colourings of G.
- The k-orthogonal chromatic number of a graph G, denoted $O \chi_{k}(G)$, is the minimum number of colours required for a proper k-orthogonal colouring of G.

Example of an Orthogonal Colouring

Figure: Colouring 1 of C_{6}

Figure: Colouring 2 of C_{6}

Example of an Orthogonal Colouring

1	0	1	2
0		x	x
1	x		x
2	x	x	

Figure: Orthogonality Grid
Figure: Orthogonal Colouring C_{6}

Optimal Orthogonal Colourings

- The orthogonal chromatic number is bounded by the following chain of inequalities:
- $\max \{\chi(G),\lceil\sqrt{n}\rceil\} \leq O \chi(G) \leq \cdots \leq O \chi_{k}(G) \leq n$.
- If $O \chi_{k}(G)=\lceil\sqrt{n}\rceil$, we say that G has a k-optimal orthogonal colouring ($k-O O C$).
- Optimal orthogonal colourings are of particular interest, in part because of their application to independent coverings.

Applications

- An independent transversal of a graph, with respect to a vertex partition P, is an independent set that contains exactly one vertex from each vertex class.
- An independent covering of a graph, with respect to a vertex partition P, is a collection of disjoint independent transversals with respect to P that spans all of the vertices.
- A graph is [$\mathbf{n}, \mathbf{k}, \mathbf{r}]$-partite if the vertices can be partitioned into n independent sets of size k, with exactly r independent edges between every pair of independent sets.

Example of an Independent Covering

Figure: [4, 4, 4]-Partite Graph

Applications

- In general, an independent covering with respect to a partition of the vertices into independent sets gives an orthogonal colouring.
- On the other hand, an orthogonal colouring only gives an independent covering if the sizes of the colour classes in the first colouring are the same and the sizes of the colour classes in the second colouring are the number of colours used in the first colouring.
- In an optimal orthogonal colouring of a graph with n^{2} vertices, this occurs.

Applications

- Let $c(k, r)$ denote the maximal n such that all [n, k, r]-partite graphs have an independent covering with respect to the given [n, k, r]-partition.

Theorem (Yuster, 1997) [4]
$k \geq c(k, r) \geq \min \{k, k-r+2\}$.
Conjecture (Yuster, 1997) [4]
For all $r \leq k, c(k, r)=k$.
Theorem (M., 2020) [3]
For all $r \leq k, c(k, r) \geq\left\lceil\frac{k}{2}\right\rceil$

Counter Example

- Yuster's [4] conjecture was shown false with the following graph [3].

Figure: Counter Example Graph

Counter Example

- However, an orthogonal colouring using 3 colours does exist, as shown in the following figure.

Figure: Counter Example Graph

Optimal Orthogonal Colourings

- Optimal orthogonal colourings give a partition that has an independent covering.
- Graphs having optimal k-orthogonal colourings are also applied to time scheduling and transversal design problems.
- Graphs having optimal k-orthogonal colourings can be categorized by the following graphs.
- Take the complete graph $K_{n^{2}}$ and delete k edge-disjoint K_{n} factors.
- In the case $k=2$, the graph obtained by this process is independent of the K_{n} factors chosen.

Optimal Orthogonal Colourings

Theorem (M. and Janssen, 2020) [2]

A graph G with $|V(G)|=n$ has an optimal orthogonal colouring if and only if $G \subseteq K_{N} \times K_{N}$, where $N=\lceil\sqrt{n}\rceil$.

$c_{1} \backslash c_{2}$	0	1	2
0	$v_{0,0}$	$v_{0,1}$	$v_{0,2}$
1	$v_{1,0}$	$v_{1,1}$	$v_{1,2}$
1	$v_{2,0}$	$v_{2,1}$	$v_{2,2}$

Figure: Orthogonality Grid

Figure: $K_{3} \times K_{3}$

Orthogonal Colourings of Tree Graphs

- A tree graph is a connected graph containing no cycles.
- A d-degenerate graph is a graph such that there exists an ordering of the vertices, in which each vertex has d or fewer neighbours that are earlier in the ordering.
- We call such an ordering a d-degenerate ordering.

Degenerate Graphs

- For example, the tree graph has the 1-degenerate ordering of: $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$.

Figure: Tree Graph

Orthogonal Colourings of Degenerate Graphs

- Using the degenerate ordering, an upper bound on the orthogonal chromatic number of degenerate graphs is obtained.

Theorem (Caro and Yuster, 1999) [1]

If G is a d-degenerate graph with n vertices, then $O \chi(G) \leq d+\lceil\sqrt{n-d}\rceil$.

- This bound is tight by considering the join of an independent set I_{n-d} and a clique K_{d}.
- The orthogonal chromatic number of a tree graph T_{n} is one a two values, $\lceil\sqrt{n}\rceil$, or $\lceil\sqrt{n}\rceil+1$.

Classifying the Orthogonal Chromatic Number of Tree Graphs

- Let $T_{n, k}$ denote the class of all trees on n vertices having maximum degree k. Then we are interested in bounding the following parameter:

$$
\Delta_{1}=\max \left\{k: \forall n \forall T \in T_{n, k}, O \chi(T)=\lceil\sqrt{n}\rceil\right\}
$$

- Let D_{n} denote the graph obtained by joining two $K_{1, \frac{n}{2}-1}$ graphs at the roots.

Orthogonal Colourings of Double Star Graphs

Theorem (M., 2020) [3]

$O \chi\left(D_{n}\right)=\lceil\sqrt{n}\rceil$ if and only if n is not a perfect square.

Figure: Double Star Graph D_{16}

Orthogonal Colourings of D_{14}

Figure: Orthogonal Colouring of D_{14}

Orthogonal Colourings of Tree Graphs Conjecture

- Firstly, this corrected the result in [1] published by Caro and Yuster, that stated that $O \chi\left(D_{n}\right)=\lceil\sqrt{n}\rceil+1$ whenever n is even and $\lceil\sqrt{n}\rceil\lceil\sqrt{n}-1\rceil<n$.
- Secondly, this theorem gives us that $\Delta_{1}<\frac{n}{2}$.

Conjecture (Caro and Yuster, 1999) [1]

$\Delta_{1}=\frac{n}{2}-1$.

Counter Example Graph

- This conjecture is false, as shown with the following graph.

Figure: Counter Example Graph

Optimal Orthogonal Colouring using Degree

- On the other hand, the following result gives a lower bound for Δ_{1}.

Theorem (Caro and Yuster, 1999) [1]

If G is an n-vertex graph and $\Delta(G) \leq \frac{\sqrt{n}-1}{4}$, then
$O \chi(G)=\lceil\sqrt{n}\rceil$.

- Therefore, $\Delta_{1} \geq \frac{\sqrt{n}-1}{4}$

Optimal Orthogonal Colouring using Degeneracy

Theorem (M., 2020) [3]

If G is d-degenerate with $\Delta(G)<\frac{\sqrt{n}-2 d-1}{2}$, then $O \chi(G)=\lceil\sqrt{n}\rceil$.

Idea of Proof

- Consider a d-degenerate ordering $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
- Let G_{t} be the graph where all the edges to the vertices v_{t+1}, \ldots, v_{n} are removed.
- The goal is to inductively colour G_{t} with $\lceil\sqrt{n}\rceil$ colours. $\left(G_{1}=I_{n}, G_{n}=G\right)$.
- Suppose that we have a proper orthogonal colouring of G_{t-1}. Assign the same colouring to G_{t}.

Optimal Orthogonal Colouring using Degeneracy

Idea of Proof

- Let $N_{t}\left(v_{t}\right)$ be the neighbourhood of v_{t} is G_{t}.
- Let W be the set of vertices having the property that for some vertex $v \in N_{t}\left(v_{t}\right), c_{1}(v)=c_{1}(w)$ or $c_{2}(v)=c_{2}(w)$.
- Let Y_{t} denote the set of vertices having the property that $c_{1}(y)=c_{1}\left(v_{t}\right)$ or $c_{2}(y)=c_{2}\left(v_{t}\right)$.
- Let $N\left(Y_{t}\right)$ be the union of open neighbourhoods of these vertices in G.
- Let $X=V(G) \backslash\left(W \cup N\left(Y_{t}\right)\right.$.

Cayley Graphs

- Let (G, \circ) be a group and let S be a generating set of G.
- The associated Cayley graph is denoted $\Gamma(G, S)$.
- There is a vertex for each element of G.
- There is a directed edge between two elements u and v if and only if $u \circ v^{-1} \in S$.
- To get simple, undirected Cayley graphs, we assume that the generating set is self-inverse and that $1 \notin S$.

Circulant Graphs

- Circulant graphs are Cayley graphs of cyclic groups.
- For instance, the cycle graph C_{n} is a circulant graph.
- Consider \mathbb{Z}_{n} with addition as its group operation.
- Then the Cayley graph $\Gamma\left(\mathbb{Z}_{n},\{1,-1\}\right) \cong C_{n}$.

Orthogonal Chromatic Number of Cycles

Theorem (Janssen and M., 2020) [2]
$O \chi\left(C_{n}\right)=\lceil\sqrt{n}\rceil$ if and only if $n>4$.

$c_{1} \backslash c_{2}$	0	1	2
0	v_{0}	v_{3}	v_{6}
1	v_{7}	v_{1}	v_{4}
2	v_{5}	v_{8}	v_{2}

Figure: Orthogonality Grid

k-Orthogonal Chromatic Number of Cycles

Theorem (Janssen and M., 2020) [2]

If $\lceil\sqrt{n}\rceil=p$ is a prime number, then $O \chi_{p-2}\left(C_{n}\right)=p$.

- $|0,1,2,3,4| 0,1,2,3,4|0,1,2,3,4| 0,1,2,3,4|0,1,2,3,4|$
- $|0,1,2,3,4| 1,2,3,4,0|2,3,4,0,1| 3,4,0,1,2|4,0,1,2,3|$
- $|0,1,2,3,4| 2,3,4,0,1|4,0,1,2,3| 1,2,3,4,0|3,4,0,1,2|$
- $|0,1,2,3,4| 3,4,0,1,2|1,2,3,4,0| 4,0,1,2,3|2,3,4,0,1|$

Figure: 3-Orthogonal Colouring of C_{17}

Orthogonal Colourings of Circulant Graphs

Lemma (Janssen and M., 2020) [2]

For every $\alpha \in \mathbb{Z}_{p} \backslash\{0\}, \hat{F}_{\alpha, p}(i, j): \mathbb{Z}_{n} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n^{2}}$ defined by $F_{\alpha, n}(i, j)=\left((\alpha(j-i)(\bmod p)+p(2 i-j))\left(\bmod p^{2}\right)\right.$ is a bijection.

Theorem (Janssen and M., 2020) [2]

For p a prime, if $|S|<\frac{p-1}{2}$, then $O \chi\left(\Gamma\left(\mathbb{Z}_{p^{2}}, S\right)\right)=p$.

Idea of Proof

- Suppose that two vertices k and / receive the same colour in the first colouring.
- That is, $\hat{F}_{\alpha, p}^{-1}(k)=\left(i,(j+x)(\bmod p)\right.$ and $\hat{F}_{\alpha, p}^{-1}(I)=(i, j)$ for some $i, j \in \mathbb{Z}_{p}$ and $x \in \mathbb{Z}_{p} \backslash\{0\}$.
- Then $k-I=((\alpha x)(\bmod p)-p x)\left(\bmod p^{2}\right)$.
- Let $A_{\alpha}=\left\{((\alpha x)(\bmod p)-p x)\left(\bmod p^{2}\right) \mid x \in \mathbb{Z}_{p} \backslash\{0\}\right\}$.
- Differences in the second colouring are of the form $((-\alpha x)(\bmod p))+2 p x)\left(\bmod p^{2}\right)$.
- $\left.B_{\alpha}=\{((-\alpha x)(\bmod p))+2 p x)\left(\bmod p^{2}\right) \mid x \in \mathbb{Z}_{p} \backslash\{0\}\right\}$.
- Therefore, there is a colour conflict in the first and second colouring if and only if $S \cap A_{\alpha} \neq 0$ and $S \cap B_{\alpha} \neq 0$ respectively.

Idea of Proof

- $A_{\alpha}=B_{2 \alpha(\bmod p)}$
- The $A_{\alpha}^{\prime} s$ together with $\left\{m \mid m \in \mathbb{Z}_{p}\right\}$ and $\left\{m p \mid m \in \mathbb{Z}_{p}\right\}$ are disjoint.
- Let $c \in S$ and suppose that $c \in\left\{m \mid m \in \mathbb{Z}_{p}\right\}$ or $c \in\left\{m p \mid m \in \mathbb{Z}_{p}\right\}$. Since these are disjoint with the A_{α} 's, $c \notin A_{\alpha}$ for any $\alpha \in \mathbb{Z}_{p} \backslash\{0\}$.
- Let $c \in S$ and suppose that $c \in A_{\alpha}$ for some α. Then $c \in B_{2 \alpha}$. But since the A_{α} 's and B_{α} 's are disjoint, $c \notin A_{\alpha^{\prime}}$ and $c \notin B_{2 \alpha^{\prime}}$ for any $\alpha^{\prime} \neq \alpha$.
- Therefore, each c removes two options for α. There are less than $\frac{p-1}{2}$ choices for c, so less than $p-1$ restrictions on α. But there are $p-1$ options for α, so at least one of these will work.

Open Problems

Theorem (Walter and Torsten, 2016)

If $S=\{ \pm 1, \pm 2, \ldots, \pm(n-1)\}$, then $\Gamma\left(\mathbb{Z}_{n^{2}}, S\right)$ is uniquely n-colourable.

- Therefore, we need $|S| \leq 2 n-4$.
- However, there are still circulant graphs with $|S|>2 n-4$ that have optimal orthogonal colourings.

Lemma (Janssen and M., 2020) [2]
If $n \nmid \alpha$, then $F_{\alpha, n}: \mathbb{Z}_{n} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n^{2}}$ defined by
$F_{\alpha, n}(i, j)=i n+j \alpha$ is a bijection.

- Note that for $\alpha=1, F_{1, n}^{-1}$ is the orthogonal colouring used on C_{n}.

Theorem (Janssen and M., 2020) [2]
If $|S|<n$, then $O \chi\left(\Gamma\left(\mathbb{Z}_{n^{2}}, S\right)\right)=n$.

Payley Graphs

- The Payley graph is denoted $Q R(q)$.
- Let \mathbb{F}_{q} be the finite field of order q.
- Let S be the set of quadratic residues.
- Then $\Gamma\left(\mathbb{F}_{q}, S\right)=Q R(q)$.

Theorem (Janssen and M., 2020) [2]

For p a prime and an integer $r \geq 1, O \chi_{\frac{\rho^{r}+1}{2}}\left(Q R\left(p^{2 r}\right)\right)=p^{r}$.

Orthogonal Colourings of Hamming Graphs

- Hamming graphs, denoted $H(d, q)$, are a special class of Cayley graphs.
- Consider \mathbb{Z}_{q}^{d} with operation + coordinate wise.
- Let $S=\left\{\mathbb{Z}_{q} \backslash\{0\}\right\}$.
- Then $H(d, q) \cong \Gamma\left(\mathbb{Z}_{q}^{d}, S^{d}\right)$.
- Alternatively, $H(d, q)$ can be constructed as the Cartesian product of d complete graphs K_{q}.
- The Cartesian product of two graphs G and H, denoted by $G \square H$, has vertex set $V(g) \square V(H)$, and two vertices (u_{1}, v_{1}) and (u_{2}, v_{2}) in $G \square H$ are adjacent if and only if $u_{1} u_{2} \in E(G)$ and $v_{1}=v_{2}$, or $v_{1} v_{2} \in E(H)$ and $u_{1}=u_{2}$.

Orthogonal Colourings of Hamming Graphs

- Note that $H(d+2, q) \cong H(d, q) \square H(2, q)$.

Theorem (Janssen and M., 2020) [2]
If $|V(G)|=n^{2},|V(H)|=m^{2} \leq n^{2}$, and $O \chi(G)=n$, then
$O \chi(G \square H)=n m$.
Corollary (Janssen and M., 2020) [2]
$O \chi(H(2 d, q))=q^{d}$ if $q \neq 2,6$ and $d \geq 1$.

Optimal Orthogonal Colourings

- A Latin square is an $n \times n$ array, filled with n different symbols, each occurring exactly once in each row and exactly once in each column.

0	1	2
1	2	0
2	0	1

Figure: 3×3 Latin square.

0	1	2
2	0	1
1	2	0

Figure: 3×3 Latin square.

- Two Latin squares L_{1} and L_{2} of order n are orthogonal if for any ordered pair (s, t) there is exactly one pair (i, j) for which $L_{1}(i, j)=s$ and $L_{2}(i, j)=t$.

Optimal Orthogonal Colourings

Lemma (M. and Janssen)
$O \chi\left(K_{n} \square K_{n}\right)=n$ for $n \neq 2,6$.

$$
\begin{array}{|l|l|}
\hline(0,0) & (1,1) \\
\hline(2,2) \\
\hline(1,2) & (2,0) \\
(0,1) \\
(2,1) & (0,2) \\
(1,0) \\
\hline
\end{array}
$$

Figure: Orthogonal Latin squares.

Figure: $K_{3} \square K_{3}$

Orthogonal Colourings of Hamming Graphs

Theorem (M. and Janssen)
$O \chi(H(4 d, 2))=q^{d}$ and $O \chi(H(4 d, 6))=q^{d}$ if $d \geq 2$.

Tensor Graph Product

- The tensor product of two graphs G and H, denoted by $G \times H$, has vertex set $V(G) \times V(H)$, and two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) in $G \times H$ are adjacent if and only if $u_{1} u_{2} \in E(G)$ and $v_{1} v_{2} \in E(H)$.

Theorem

If G has n^{2} vertices, H has m^{2} vertices, and $O \chi(G)=n$, then $O \chi(G \times H)=n m$.

Theorem

If G has n^{2} vertices with $O \chi_{k}(G)=n$ and H has m^{2} vertices with $O \chi_{k}(H)=m$, then $O \chi_{k}(G \times H)=n m$.

Idea of Proof

- For $0 \leq r<k$ and $0 \leq i<n$, let $G_{r, i}$ be the i-th colour class in the r-th colouring of G.
- For $0 \leq r<k$ and $0 \leq j<m$, let $H_{r, j}$ be the j-th colour class in the r-th colouring of H.
- Let $I_{r, i, j}=\left\{(u, v) \mid u \in G_{r, i}, v \in H_{r, j}\right\}$.
- For $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right) \in I_{r, i, j}, u_{1} u_{2} \notin G$ and $v_{1} v_{2} \notin H$. Thus $I_{r, i, j}$ is an independent set in $G \times H$.
- Note that it is also an independent set in $G \square H$, and $G \boxtimes H$.

Theorem

If G has n^{2} vertices, H has p^{2} vertices where p is a prime, and $O \chi_{k}(G)=n$ with $k \leq p$, then $O \chi_{k}(G \times H)=n p$.

Idea of Proof

- Label $V(H)=\left\{\left(u_{i}, u_{j}\right): 0 \leq i, j<p\right\}$. For $O \leq r<k$ and $0 \leq s<n$
- Let $I_{r, s}$ be the s-th colour class in the r-th colouring of G.
- For $0 \leq j<p$, let

$$
\bar{I}_{r, s, j}=\left\{\left(v,\left(u_{i}, u_{(i r+j)(\bmod p)}\right) \mid v \in I_{r, s}, 0 \leq i<p\right\} .\right.
$$

Reference

1 Caro, Yair, and Raphael Yuster. "Orthogonal colorings of graphs." the electronic journal of combinatorics (1999): R5-R5.
2 Janssen, Jeannette, and Kyle MacKeigan. "Orthogonal colourings of Cayley graphs." Discrete Mathematics 343.11 (2020): 112079.

3 MacKeigan, Kyle. "Independent Coverings and Orthogonal Colourings." arXiv preprint arXiv:2008.07904 (2020).

4 Yuster, Raphael. "Independent transversals in r-partite graphs." Discrete Mathematics 176.1-3 (1997): 255-261.

