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Vertex Colouring

A proper vertex colouring of a graph G is an
assignment of colours (labels) to the vertices of G so that
no two adjacent vertices receive the same colour.

The chromatic number of a graph G , denoted χ(G ), is
the minimum number of colours required for a proper
vertex colouring.
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0 1

01

10

Figure: Vertex Colouring of C6
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Orthogonal Colourings

Two colourings of a graph G are orthogonal if they have
the property that when two vertices are coloured with the
same colour in one of the colourings, then those vertices
must receive distinct colours in the other colouring.

A k-orthogonal colouring of a graph G is a collection
of k mutually orthogonal vertex colourings of G .

The k-orthogonal chromatic number of a graph G ,
denoted Oχk(G ), is the minimum number of colours
required for a proper k-orthogonal colouring of G .
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0 1

02

21

Figure: Colouring 1 of C6

1 0
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Figure: Colouring 2 of C6

Kyle MacKeigan Orthogonal Colourings of Graphs



6

Introduction
Orthogonal Colourings of Tree Graphs

Orthogonal Colourings of Cayley Graphs
Orthogonal Colourings of Product Graphs

Definitions
Applications

Example of an Orthogonal Colouring

(0, 1) (1, 0)

(0, 2)(2, 0)

(2, 1)(1, 2)

Figure: Orthogonal Colouring C6

\ 0 1 2
0 x x

1 x x

2 x x

Figure: Orthogonality Grid
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Optimal Orthogonal Colourings

The orthogonal chromatic number is bounded by the
following chain of inequalities:

max{χ(G ), d
√
n e} ≤ Oχ(G ) ≤ · · · ≤ Oχk(G ) ≤ n.

If Oχk(G ) = d
√
n e, we say that G has a k-optimal

orthogonal colouring (k-OOC).

Optimal orthogonal colourings are of particular interest,
in part because of their application to independent
coverings.
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Applications

An independent transversal of a graph, with respect to
a vertex partition P , is an independent set that contains
exactly one vertex from each vertex class.

An independent covering of a graph, with respect to a
vertex partition P , is a collection of disjoint independent
transversals with respect to P that spans all of the
vertices.

A graph is [n,k,r]-partite if the vertices can be
partitioned into n independent sets of size k , with exactly
r independent edges between every pair of independent
sets.
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Figure: [4, 4, 4]-Partite Graph
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Applications

In general, an independent covering with respect to a
partition of the vertices into independent sets gives an
orthogonal colouring.

On the other hand, an orthogonal colouring only gives an
independent covering if the sizes of the colour classes in
the first colouring are the same and the sizes of the
colour classes in the second colouring are the number of
colours used in the first colouring.

In an optimal orthogonal colouring of a graph with n2

vertices, this occurs.

Kyle MacKeigan Orthogonal Colourings of Graphs



11

Introduction
Orthogonal Colourings of Tree Graphs

Orthogonal Colourings of Cayley Graphs
Orthogonal Colourings of Product Graphs

Definitions
Applications

Applications

Let c(k , r) denote the maximal n such that all
[n, k , r ]-partite graphs have an independent covering with
respect to the given [n, k , r ]-partition.

Theorem (Yuster, 1997) [4]

k ≥ c(k , r) ≥ min{k , k − r + 2}.

Conjecture (Yuster, 1997) [4]

For all r ≤ k , c(k , r) = k .

Theorem (M., 2020) [3]

For all r ≤ k , c(k , r) ≥ dk
2
e
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Counter Example

Yuster’s [4] conjecture was shown false with the following
graph [3].

Figure: Counter Example Graph
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Counter Example

However, an orthogonal colouring using 3 colours does
exist, as shown in the following figure.

(0, 0) (1, 2)

(2, 1)

(0, 1) (1, 0)

(2, 2)

(0, 2) (2, 0)

(1, 1)

Figure: Counter Example Graph
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Optimal Orthogonal Colourings

Optimal orthogonal colourings give a partition that has an
independent covering.

Graphs having optimal k-orthogonal colourings are also
applied to time scheduling and transversal design
problems.

Graphs having optimal k-orthogonal colourings can be
categorized by the following graphs.

Take the complete graph Kn2 and delete k edge-disjoint
Kn factors.

In the case k = 2, the graph obtained by this process is
independent of the Kn factors chosen.
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Optimal Orthogonal Colourings

Theorem (M. and Janssen, 2020) [2]

A graph G with |V (G )| = n has an optimal orthogonal
colouring if and only if G ⊆ KN × KN , where N = d

√
n e.

c1\c2 0 1 2

0 v0,0 v0,1 v0,2

1 v1,0 v1,1 v1,2

1 v2,0 v2,1 v2,2

Figure: Orthogonality Grid

v0,0 v0,1 v0,2

v2,0 v2,1 v2,2

Figure: K3 × K3
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Orthogonal Colourings of Tree Graphs

A tree graph is a connected graph containing no cycles.

A d-degenerate graph is a graph such that there exists
an ordering of the vertices, in which each vertex has d or
fewer neighbours that are earlier in the ordering.

We call such an ordering a d-degenerate ordering.

Kyle MacKeigan Orthogonal Colourings of Graphs



17

Introduction
Orthogonal Colourings of Tree Graphs

Orthogonal Colourings of Cayley Graphs
Orthogonal Colourings of Product Graphs

Degenerate Graphs
Double Star Graphs
Main Result

Degenerate Graphs

For example, the tree graph has the 1-degenerate ordering
of: {v1, v2, v3, v4, v5, v6, v7, v8, v9}.

v9 v8 v7 v6 v5

v4 v3 v2

v1

Figure: Tree Graph
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Orthogonal Colourings of Degenerate Graphs

Using the degenerate ordering, an upper bound on the
orthogonal chromatic number of degenerate graphs is
obtained.

Theorem (Caro and Yuster, 1999) [1]

If G is a d-degenerate graph with n vertices, then
Oχ(G ) ≤ d + d

√
n − de.

This bound is tight by considering the join of an
independent set In−d and a clique Kd .

The orthogonal chromatic number of a tree graph Tn is
one a two values, d

√
n e, or d

√
n e+ 1.
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Classifying the Orthogonal Chromatic Number of

Tree Graphs

Let Tn,k denote the class of all trees on n vertices having
maximum degree k . Then we are interested in bounding
the following parameter:

∆1 = max{k : ∀n∀T ∈ Tn,k ,Oχ(T ) = d
√
n e}

Let Dn denote the graph obtained by joining two K1, n
2
−1

graphs at the roots.
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Orthogonal Colourings of Double Star Graphs

Theorem (M., 2020) [3]

Oχ(Dn) = d
√
n e if and only if n is not a perfect square.

Figure: Double Star Graph D16
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Orthogonal Colourings of D14

(1, 2)

(1, 3)

(2, 1)

(3, 1)

(3, 2)

(3, 3)

(0, 0) (1, 1)

(0, 2)

(0, 3)

(2, 0)

(3, 0)

(2, 2)

(2, 3)

Figure: Orthogonal Colouring of D14
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Orthogonal Colourings of Tree Graphs Conjecture

Firstly, this corrected the result in [1] published by Caro
and Yuster, that stated that Oχ(Dn) = d

√
n e+ 1

whenever n is even and d
√
n ed
√
n − 1e < n.

Secondly, this theorem gives us that ∆1 <
n
2

.

Conjecture (Caro and Yuster, 1999) [1]

∆1 = n
2
− 1.
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Counter Example Graph

This conjecture is false, as shown with the following
graph.

Figure: Counter Example Graph
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Optimal Orthogonal Colouring using Degree

On the other hand, the following result gives a lower
bound for ∆1.

Theorem (Caro and Yuster, 1999) [1]

If G is an n-vertex graph and ∆(G ) ≤
√
n−1
4

, then
Oχ(G ) = d

√
n e.

Therefore, ∆1 ≥
√
n−1
4
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Optimal Orthogonal Colouring using Degeneracy

Theorem (M., 2020) [3]

If G is d-degenerate with ∆(G ) <
√
n−2d−1

2
, then

Oχ(G ) = d
√
n e.

Idea of Proof

Consider a d-degenerate ordering {v1, v2, . . . , vn}.
Let Gt be the graph where all the edges to the vertices
vt+1, . . . , vn are removed.

The goal is to inductively colour Gt with d
√
n e colours.

(G1 = In,Gn = G ).

Suppose that we have a proper orthogonal colouring of
Gt−1. Assign the same colouring to Gt .
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Optimal Orthogonal Colouring using Degeneracy

Idea of Proof

Let Nt(vt) be the neighbourhood of vt is Gt .

Let W be the set of vertices having the property that for
some vertex v ∈ Nt(vt), c1(v) = c1(w) or c2(v) = c2(w).

Let Yt denote the set of vertices having the property that
c1(y) = c1(vt) or c2(y) = c2(vt).

Let N(Yt) be the union of open neighbourhoods of these
vertices in G .

Let X = V (G )\(W ∪ N(Yt).
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Cayley Graphs

Let (G , ◦) be a group and let S be a generating set of G .

The associated Cayley graph is denoted Γ(G , S).

There is a vertex for each element of G .

There is a directed edge between two elements u and v if
and only if u ◦ v−1 ∈ S .

To get simple, undirected Cayley graphs, we assume that
the generating set is self-inverse and that 1 6∈ S .
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Circulant Graphs

Circulant graphs are Cayley graphs of cyclic groups.

For instance, the cycle graph Cn is a circulant graph.

Consider Zn with addition as its group operation.

Then the Cayley graph Γ(Zn, {1,−1}) ∼= Cn.
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Orthogonal Chromatic Number of Cycles

Theorem (Janssen and M., 2020) [2]

Oχ(Cn) = d
√
n e if and only if n > 4.

c1\c2 0 1 2

0 v0 v3 v6

1 v7 v1 v4

2 v5 v8 v2

Figure: Orthogonality Grid

v0 v1

v2

v3

v4v5

v6

v7

v8

(0,0)
(1,1)

(2,2)

(0,1)

(1,2)(2,0)

(0,2)

(1,0)

(2,1)
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k-Orthogonal Chromatic Number of Cycles

Theorem (Janssen and M., 2020) [2]

If d
√
n e = p is a prime number, then Oχp−2(Cn) = p.

|0, 1, 2, 3, 4|0, 1, 2, 3, 4|0, 1, 2, 3, 4|0, 1, 2, 3, 4|0, 1, 2, 3, 4|
|0, 1, 2, 3, 4|1, 2, 3, 4, 0|2, 3, 4, 0, 1|3, 4, 0, 1, 2|4, 0, 1, 2, 3|
|0, 1, 2, 3, 4|2, 3, 4, 0, 1|4, 0, 1, 2, 3|1, 2, 3, 4, 0|3, 4, 0, 1, 2|
|0, 1, 2, 3, 4|3, 4, 0, 1, 2|1, 2, 3, 4, 0|4, 0, 1, 2, 3|2, 3, 4, 0, 1|
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(0, 0, 0) (1, 1, 1)

(2, 2, 2)

(3, 3, 3)

(4, 4, 4)

(0, 1, 2)

(1, 2, 3)

(2, 3, 4)
(3, 4, 0)(4, 0, 1)

(0, 2, 4)

(1, 3, 0)

(2, 4, 1)

(3, 0, 2)

(4, 1, 3)

(0, 3, 1)

(1, 4, 2)
v0 v1

v2

v3

v4

v5

v6

v7
v8v9

v10

v11

v12

v13

v14

v15

v16

Figure: 3-Orthogonal Colouring of C17
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Orthogonal Colourings of Circulant Graphs

Lemma (Janssen and M., 2020) [2]

For every α ∈ Zp\{0}, F̂α,p(i , j) : Zn × Zn → Zn2 defined by
Fα,n(i , j) = ((α(j − i)(mod p) + p(2i − j))(mod p2) is a
bijection.

Theorem (Janssen and M., 2020) [2]

For p a prime, if |S | < p−1
2

, then Oχ(Γ(Zp2 , S)) = p.
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Idea of Proof

Suppose that two vertices k and l receive the same colour
in the first colouring.

That is, F̂−1
α,p(k) = (i , (j + x)(mod p) and F̂−1

α,p(l) = (i , j)
for some i , j ∈ Zp and x ∈ Zp\{0}.
Then k − l = ((αx)(mod p)− px)(mod p2).

Let Aα = {((αx)(mod p)− px)(mod p2)|x ∈ Zp\{0}}.
Differences in the second colouring are of the form
((−αx)(mod p)) + 2px)(mod p2).

Bα = {((−αx)(mod p)) + 2px)(mod p2)|x ∈ Zp\{0}}.
Therefore, there is a colour conflict in the first and
second colouring if and only if S ∩ Aα 6= 0 and
S ∩ Bα 6= 0 respectively.
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Idea of Proof

Aα = B2α(mod p)

The A′αs together with {m|m ∈ Zp} and {mp|m ∈ Zp}
are disjoint.

Let c ∈ S and suppose that c ∈ {m|m ∈ Zp} or
c ∈ {mp|m ∈ Zp}. Since these are disjoint with the Aα’s,
c 6∈ Aα for any α ∈ Zp\{0}.
Let c ∈ S and suppose that c ∈ Aα for some α. Then
c ∈ B2α. But since the Aα’s and Bα’s are disjoint,
c 6∈ Aα′ and c 6∈ B2α′ for any α′ 6= α.

Therefore, each c removes two options for α. There are
less than p−1

2
choices for c , so less than p − 1 restrictions

on α. But there are p − 1 options for α, so at least one
of these will work.
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Open Problems

Theorem (Walter and Torsten, 2016)

If S = {±1,±2, . . . ,±(n − 1)}, then Γ(Zn2 , S) is uniquely
n-colourable.

Therefore, we need |S | ≤ 2n − 4.

However, there are still circulant graphs with |S | > 2n− 4
that have optimal orthogonal colourings.
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Lemma (Janssen and M., 2020) [2]

If n - α, then Fα,n : Zn × Zn → Zn2 defined by
Fα,n(i , j) = in + jα is a bijection.

Note that for α = 1, F−1
1,n is the orthogonal colouring used

on Cn.

Theorem (Janssen and M., 2020) [2]

If |S | < n, then Oχ(Γ(Zn2 , S)) = n.

Kyle MacKeigan Orthogonal Colourings of Graphs



37

Introduction
Orthogonal Colourings of Tree Graphs

Orthogonal Colourings of Cayley Graphs
Orthogonal Colourings of Product Graphs

Circulant Graphs
Payley Graphs

Payley Graphs

The Payley graph is denoted QR(q).

Let Fq be the finite field of order q.

Let S be the set of quadratic residues.

Then Γ(Fq, S) = QR(q).

Theorem (Janssen and M., 2020) [2]

For p a prime and an integer r ≥ 1, Oχ pr +1
2

(QR(p2r )) = pr .
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Orthogonal Colourings of Hamming Graphs

Hamming graphs, denoted H(d , q), are a special class
of Cayley graphs.

Consider Zd
q with operation + coordinate wise.

Let S = {Zq\{0}}.
Then H(d , q) ∼= Γ(Zd

q , S
d).

Alternatively, H(d , q) can be constructed as the Cartesian
product of d complete graphs Kq.

The Cartesian product of two graphs G and H , denoted
by G�H , has vertex set V (g)�V (H), and two vertices
(u1, v1) and (u2, v2) in G�H are adjacent if and only if
u1u2 ∈ E (G ) and v1 = v2, or v1v2 ∈ E (H) and u1 = u2.
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Orthogonal Colourings of Hamming Graphs

Note that H(d + 2, q) ∼= H(d , q)�H(2, q).

Theorem (Janssen and M., 2020) [2]

If |V (G )| = n2, |V (H)| = m2 ≤ n2, and Oχ(G ) = n, then
Oχ(G�H) = nm.

Corollary (Janssen and M., 2020) [2]

Oχ(H(2d , q)) = qd if q 6= 2, 6 and d ≥ 1.
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Optimal Orthogonal Colourings

A Latin square is an n × n array, filled with n different
symbols, each occurring exactly once in each row and
exactly once in each column.

0 1 2
1 2 0
2 0 1

Figure: 3x3 Latin square.

0 1 2
2 0 1
1 2 0

Figure: 3x3 Latin square.

Two Latin squares L1 and L2 of order n are orthogonal if
for any ordered pair (s, t) there is exactly one pair (i , j)
for which L1(i , j) = s and L2(i , j) = t.
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Lemma (M. and Janssen)

Oχ(Kn�Kn) = n for n 6= 2, 6.

(0, 0) (1, 1) (2, 2)

(1, 2) (2, 0) (0, 1)

(2, 1) (0, 2) (1, 0)

Figure: Orthogonal Latin squares.

(0, 0) (1, 1) (2, 2)

(1, 2) (2, 0) (0, 1)

(2, 1) (0, 2) (1, 0)

Figure: K3�K3
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Orthogonal Colourings of Hamming Graphs

Theorem (M. and Janssen)

Oχ(H(4d , 2)) = qd and Oχ(H(4d , 6)) = qd if d ≥ 2.

(0, 0) (0, 1) (0, 2) (0, 3) (1, 0)(1, 1)(1, 2)(1, 3)

(2, 0) (2, 1) (2, 2) (2, 3) (3, 0)(3, 1)(3, 2)(3, 3)

Figure: Orthogonal Colouring of Q4
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Tensor Graph Product

The tensor product of two graphs G and H , denoted by
G × H , has vertex set V (G )× V (H), and two vertices
(u1, v1) and (u2, v2) in G × H are adjacent if and only if
u1u2 ∈ E (G ) and v1v2 ∈ E (H).

Theorem

If G has n2 vertices, H has m2 vertices, and Oχ(G ) = n, then
Oχ(G × H) = nm.
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Theorem

If G has n2 vertices with Oχk(G ) = n and H has m2 vertices
with Oχk(H) = m, then Oχk(G × H) = nm.

Idea of Proof

For 0 ≤ r < k and 0 ≤ i < n, let Gr ,i be the i -th colour
class in the r -th colouring of G .

For 0 ≤ r < k and 0 ≤ j < m, let Hr ,j be the j-th colour
class in the r -th colouring of H .

Let Ir ,i ,j = {(u, v)|u ∈ Gr ,i , v ∈ Hr ,j}.
For (u1, v1) and (u2, v2) ∈ Ir ,i ,j , u1u2 6∈ G and v1v2 6∈ H .
Thus Ir ,i ,j is an independent set in G × H .

Note that it is also an independent set in G�H , and
G � H .
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Theorem

If G has n2 vertices, H has p2 vertices where p is a prime, and
Oχk(G ) = n with k ≤ p,then Oχk(G × H) = np.

Idea of Proof

Label V (H) = {(ui , uj) : 0 ≤ i , j < p}. For O ≤ r < k
and 0 ≤ s < n

Let Ir ,s be the s-th colour class in the r -th colouring of G .

For 0 ≤ j < p, let
Īr ,s,j = {(v , (ui , u(ir+j)(modp))|v ∈ Ir ,s , 0 ≤ i < p}.
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