Gracefully labelling windmills using Skolem-like sequences

Jared Howell - Grenfell Campus, MUN work with Danny Dyer \& Ahmad Alkasasbeh

Windmills

- A windmill (with t vanes) is a graph created from a smaller graph G.
- First select a vertex $v \in G$ to be the central vertex.
- Next take t copies of G and identifying each copy of v so that they form one central vertex.
- We denote this windmill by G^{t}

Windmills

This is the windmill C_{3}^{4}.

Graceful Labellings

- Introduced by A. Rosa (as β-labellings).
- $G=(V, E)$ is a graph with m edges.
- Each $v \in V$ is given a distinct label $\ell(v)$ from $[0, m]$.
- Edge labels are induced by the vertex labels: $|\ell(u)-\ell(v)|, \forall u v \in E$.
- The labelling is a graceful labelling if and only if the set of edge labels is $[1, m]$.
- If G has a graceful labelling then we say G is graceful.

Graceful Labellings

Near Graceful Labellings

- Similar to graceful labellings
- $G=(V, E)$ is a graph with m edges.
- Each $v \in V$ is given a distinct label $\ell(v)$ from $[0, m+1]$.
- Edge labels are induced by the vertex labels: $|\ell(u)-\ell(v)|, \forall u v \in E$.
- The labelling is a near graceful labelling if and only if the set of edge labels is $[1, m]$ or $[1, m+1] \backslash\{m\}$.
- If G has a near graceful labelling then we say G is near graceful.

Near Graceful Labellings

Graceful and Near Graceful Labellings

Conjecture: [Koh, Rogers, Lee, Toh]
 C_{n}^{t} is graceful if $n t \equiv 0,3(\bmod 4)$.

The "if and only if" version of this conjecture has been shown to hold for

- C_{3}^{t} [Bermond]
- C_{4}^{t} [Bermond, Brouwer, Germa]
- C_{5}^{t} [Yang,Lin, Yu]
- $C_{6}^{t}[\mathrm{Ma}]$
- $C_{4 k}^{t}$ [Koh, Rogers, Lee, Toh]

Graceful and Near Graceful Labellings

Graceful labellings have been shown to exist for

- C_{7}^{t} [Yang, Xu, Xi, Li, Haque]
- C_{9}^{t} [Yang, Xu, Xi, Huijun]
- $C_{11}^{t}[\mathrm{Xu}$, Yang, Li, Xi]
- $C_{13}^{t}[\mathrm{Xu}$, Yang, Han, Li]

Skolem Sequences

- A Skolem sequence of order n is a sequence $K=\left(s_{1}, s_{2}, \ldots, s_{2 n}\right)$ of $2 n$ integers.
- $\forall k \in\{1,2,3, \ldots, n\}, \exists s_{i}, s_{j} \in K$ such that $s_{i}=s_{j}=k$;
- if $s_{i}=s_{j}=k$, with $i<j$, then $j-i=k$.

For example, $(1,1,3,4,2,3,2,4)$ is a Skolem sequence of order 4.

λ-fold Skolem Sequences

- A λ-fold Skolem Sequence of order n is a sequence $K=\left(s_{1}, s_{2}, \ldots, s_{2 \lambda n}\right)$ of $2 \lambda n$ positive integers.
- Each $k \in\{1,2,3, \ldots, n\}$ occurs 2λ times in K.
- These occurrences can be partitioned into λ disjoint pairs, $\left(s_{i}, s_{j}\right)$, such that $s_{i}=s_{j}=k$ and $j-i=k$

For example, $(1,1,2,3,2,3,3,2,3,2,1,1)$ is a two-fold Skolem sequence of order 3.

Skolem-like Sequences

- A Skolem-like sequence of order n is a sequence $K=\left(s_{1}, s_{2}, \ldots, s_{2 n}\right)$ of $2 n$ integers.
- $\forall k \in H$, where H is a set of n distinct positive integers,
$\exists s_{i}, s_{j} \in K$ such that $s_{i}=s_{j}=k$;
- if $s_{i}=s_{j}=k$, with $i<j$, then $j-i=k$.

For example, $(6,4,1,1,3,4,6,3)$ is a Skolem-like sequence of order 4 with $H=\{1,3,4,6\}$.

Other Skolem-like Sequences

- A hooked Skolem-like sequence of order n has $2 n+1$ positions, but the penultimate position not used ($s_{2 n}=0$).
- Example: $(3,1,1,3,2,0,2)$ is a hooked Skolem sequence of order 3.
- A near-Skolem sequence of order n and defect m is a Skolem-like sequence of order $n-1$ with $H=\{1,2,3, \ldots, n\} \backslash\{m\}$.
- Example: $(1,1,6,3,7,5,3,2,6,2,5,7)$ is a 4-near-Skolem sequence of order 7 .
- We can combine these ideas as well.
- Example: $(2,5,2,4,6,7,5,4,1,1,6,0,7)$ is a hooked 3 -near-Skolem sequence of order 7 .

Existence of Skolem-like Sequences

Sequence	Necessary and Sufficient conditions
Skolem sequence of order n	$n \equiv 0,1(\bmod 4)$
hooked Skolem sequence of order n	$n \equiv 2,3(\bmod 4)$
Langford sequence of order I and defect d	$I \geq 2 d-1, I \equiv 0,1(\bmod 4)$ and d is odd,
	or $I \equiv 0,3(\bmod 4)$ and d is even
hooked Langford sequence of order I and defect d	$I(I-2 d+1)+2 \geq 0, I \equiv 2,3(\bmod 4)$ and d is odd,
	or $I \equiv 1,2(\bmod 4)$ and d is even
m-near-Skolem sequence of order n	$n \equiv 0,1(\bmod 4)$ and m is odd,
	or $n \equiv 2,3(\bmod 4)$ and m is even
hooked m-near-Skolem sequence of order n	$n \equiv 0,1(\bmod 4)$ and m is even,
	or $n \equiv 2,3(\bmod 4)$ and m is odd
m-fold Skolem sequence of order n	$n \equiv 0,1(\bmod 4)$ and any m,
	or $n \equiv 2,3(\bmod 4)$ and m is even
hooked m-fold Skolem sequence of order n	$n \equiv 2,3(\bmod 4)$ and m is odd

Why Skolem-like Sequences?

- Consider the Skolem sequence of order n.
- Now consider any number, say k, that occurs in the sequence. We often refer to these as differences.
- k occurs in two positions, a_{k} and b_{k}, where $a_{k}<b_{k}$.
- By definition $b_{k}-a_{k}=k$ and so we can form a triple $\left(0, k, b_{k}+n\right)$ which gives pairwise differences $k, a_{k}+n$, and $b_{k}+n$.
- Since $1 \leq k \leq n$, and the a_{k} 's and b_{k} 's are all distinct, we get unique labels and differences.
- Note that the triples of the form $\left(0, a_{k}+n, b_{k}+n\right)$ give the same differences.
- Example: Suppose we want to label C_{3}^{4}.
- Consider the Skolem sequence (1, 1, 3, 4, 2, 3, 2, 4).
- For each $1 \leq k \leq 4$, get the triple $\left(0, k, b_{k}+4\right)$.
- We get $(0,1,6),(0,2,11),(0,3,10)$, and $(0,4,12)$.
- These are the vertex labels we want.

We can do a similar construction with hooked Skolem sequences to get near-graceful labellings of C_{3}^{t}.

Theorem

C_{3}^{t} is graceful when $t \equiv 0,1(\bmod 4)$ and near-graceful when $t \equiv 2,3(\bmod 4)$.

- Example: Suppose we want to label C_{4}^{4}.
- Consider the two-fold Skolem-like sequence ($8,4,2,8,2,4,4,2,8,2,4,8,1,1,1,1)$.
- Each difference k occurs in two pairs $\left(a_{k}, b_{k}\right)$ and $\left(c_{k}, d_{k}\right)$.
- For each $k \in\{1,2,4,8\}$, get the quadruple $\left(0, b_{k}, k, d_{k}\right)$.
- We get $(0,16,1,14),(0,10,2,5),(0,11,4,6)$, and $(0,12,8,9)$.
- In the sequence, the positions $\{1,2,4,8\}$ are all left endpoints. So these are the vertex labels we want.
C_{4}^{5}

We don't currently have a construction that gives sequences with the desired properties to label all C_{4}^{s}. We know the following theorem holds from other constructions.

Theorem
C_{4}^{s} is graceful.

- Example: Suppose we want to label C_{5}^{4}.
- First, consider the Skolem sequence (1, 1, 3, 4, 2, 3, 2, 4), which we used to label C_{3}^{4}.
- Next take the triples of the form $\left(0, a_{i}, b_{i}\right)$, we get $(0,1,2)$, $(0,5,7),(0,3,6)$, and $(0,4,8)$.
- We will turn these triples into 5-tuples by replacing each edge incident with the central vertex (0) by two edges.
- Now consider the Skolem sequence $(8,6,4,2,7,2,4,6,8,3,5,7,3,1,1,5)$.
- We replace each triple $\left(0, a_{i}, b_{i}\right)$ by $\left(0, b_{a_{i}}+4, a_{i}, b_{i}, b_{b_{i}}+4\right)$, from this sequence. We get $(0,19,1,2,10),(0,20,5,7,16)$, $(0,17,3,6,12)$, and $(0,11,4,8,13)$.

This construction relies on the existence of the sequences and the interaction between them.

$p(\bmod 4)$	0	1	2	3
$1^{\text {stt }}$ sequence	S, p	$\mathrm{~S}, p$	hS, p	hS, p
$2^{\text {nd }}$ sequence	$\mathrm{S}, 2 p$	$\mathrm{hS}, 2 p$	$\mathrm{hnS}, 2 p+1$	$\mathrm{nS}, 2 p+1$

Theorem

C_{5}^{p} is graceful when $p \equiv 0,3(\bmod 4)$ and near graceful when $p \equiv 1,2(\bmod 4)$.

Variable Windmills

- A variable windmill is a graph created from a set of windmills $\mathcal{W}=\left\{G_{1}^{t_{1}}, G_{2}^{t_{2}}, \ldots, G_{k}^{t_{k}}\right\}$.
- To create this variable windmill, identify the set of central vertices from the windmills in \mathcal{W}.
- We denote this variable windmill by $G_{1}^{t_{1}} G_{2}^{t_{2}} \ldots G_{k}^{t_{k}}$.

Variable Windmills

This is the variable windmill $C_{3}^{3} C_{4}^{1}$.

This is the main theorem for $C_{3}^{t} C_{4}^{s}$ windmills. There are several different construction techniques we use to get this.

Theorem
$C_{3}^{t} C_{4}^{s}$ is graceful when $t \equiv 0,1(\bmod 4)$ and near graceful when $t \equiv 2,3(\bmod 4)$

- Example for $t \geq s \geq 1$: Suppose we want to label $C_{3}^{4} C_{4}^{2}$.
- First, consider the 2 -fold Skolem sequence ($1,1,1,1,2,2,2,2$) and the Skolem sequence $(1,1,3,4,2,3,2,4)$.
- Next take the quadruples of the form $\left(0, b_{i}+4, i, d_{i}+4\right)$ from the 2 -fold Skolem sequence and the triples of the form $\left(0, a_{i}+12, b_{i}+12\right)$ from the Skolem sequence. We get $(0,6,1,8),(0,11,2,12),(0,13,14),(0,17,19),(0,15,18)$, and $(0,16,20)$.
- These are the vertex labels we want.
$C_{3}^{t} C_{4}^{s}$

- Example for $s>3 t+1$ and $t \geq 4$: Suppose we want to label $C_{3}^{4} C_{4}^{15}$.
- Consider the 2 -fold Skolem-like sequence
$(1,1,19,17,15,13,11,9,7,18,16,14,12,10,8,7,9,11,13, \rightarrow$
$15,17,19,8,10,12,14,16,18,19,17,15,13,11,9,7,18,16, \rightarrow$
$14,12,10,8,7,9,11,13,15,17,19,8,10,12,14,16,18, \rightarrow$
$1,1,2,2,2,2$)
- Take the quadruples of the form $\left(0, b_{i}+4, i, d_{i}+4\right)$. We get
(0, 6, 1, 60)
(0, 63, 2, 64)
(0, 20, 7, 46)
(0, 27, 8, 53)
$(0,21,9,47)$
$(0,28,10,54)$
$(0,22,11,48)$
$(0,29,12,55)$
$\begin{array}{lll}(0,23,13,49) & (0,30,14,56) & (0,24,15,50) \\ (0,25,17,51) & (0,32,18,58) & (0,26,19,52)\end{array}$
- Use the Skolem sequence $(1,1,3,4,2,3,2,4)$ and get triples of the form $\left(0, a_{i}+64, b_{i}+64\right)$. We get $(0,65,66)$, $(0,67,69),(0,65,68)$, and $(0,66,70)$.
- These are the vertex labels we want.
- We can manipulate the 2-fold Skolem-like sequence in this example to give us graceful labellings for $C_{3}^{4} C_{4}^{16}, C_{3}^{4} C_{4}^{17}$, and $C_{3}^{4} C_{4}^{18}$.
- We leave the red part as is, call it S.
- For $C_{3}^{4} C_{4}^{16}$, use $(1,1, S, 1,1,2,3,2,3,3,2,3,2)$ and shift the triples by 68 (4 more).
- For $C_{3}^{4} C_{4}^{17}$, use $(1,1, S, 4,4,1,1,4,4,2,3,2,3,3,2,3,2)$ and shift the triples by 72 (8 more).
- For $C_{3}^{4} C_{4}^{18}$, use $(1,1, S, 4,4,1,1,4,4,2,2,2,2,5,3,5,3,3,5,3,5)$ and shift the triples by 76 (12 more).
- We can't include 6 as it is already used as a vertex label.

We also have some partial results for $C_{3}^{t} C_{5}^{p}$. These all come from the same constructive technique.

Theorem

For $t \geq 2 p+1, C_{3}^{t} C_{5}^{p}$ is
graceful when $(t, p) \equiv(0,0),(0,3),(1,0),(3,3)(\bmod 4)$ and near graceful when $(t, p) \equiv(0,1),(0,2),(1,2),(3,1)(\bmod 4)$.

- Example: Suppose we want to label $C_{3}^{9} C_{5}^{4}$.
- Recall that we already labelled a C_{5}^{4} with $(0,19,1,2,10)$, $(0,20,5,7,16),(0,17,3,6,12)$, and $(0,11,4,8,13)$.
- Each of these is of the form $\left(0, b_{a_{i}}+4, a_{i}, b_{i}, b_{b_{i}}+4\right)$. We replace these by quintuples of the form
$\left(0, b_{a_{i}}+4+27, a_{i}, b_{i}, b_{b_{i}}+4+27\right)$. We get $(0,46,1,2,37)$, $(0,47,5,7,43),(0,44,3,6,39)$, and ($0,38,4,8,40$).
- Now consider the Langford sequence of order 9 with defect 5 , $(13,11,9,7,5,12,10,8,6,5,7,9,11,13,6,8,10,12)$.
- From this get the triples of the form $\left(0, a_{i}+13, b_{i}+13\right)$. We get $(0,18,23),(0,22,28),(0,17,24),(0,21,29),(0,16,25)$, $(0,20,30),(0,15,26),(0,19,31),(0,14,27)$.
- These are the vertex labels we want.
$C_{3}^{t} C_{5}^{p}$

We can use this mechanism (of shifting the labels on the C_{5} 's to get a gap that we can then fill) to label other windmills.

- Example: Suppose we want to label $K_{2,4} C_{5}^{4}$.
- We already labelled C_{5}^{4} with $(0,19,1,2,10),(0,20,5,7,16)$, $(0,17,3,6,12)$, and $(0,11,4,8,13)$.
- This time shift the quintuples by 8 ,

$$
\begin{aligned}
& \left(0, b_{a_{i}}+4+8, a_{i}, b_{i}, b_{b_{i}}+4+8\right) . \text { We get }(0,27,1,2,18) \text {, } \\
& (0,28,5,7,24),(0,25,3,6,20), \text { and }(0,19,4,8,21) .
\end{aligned}
$$

- We can label $K_{2,4}$ avoiding the already used vertex and edge labels using vertex labels $\{0,17\}$ for one partite set and $\{9,10,11,12\}$ for the other.
$G C_{5}^{p}$

We also have some partial results for $C_{3}^{t} C_{6}^{h}$. These all come from the same constructive technique.

Theorem

Let $h \leq 2 t+1$ and $t+2 h=5 q+r$, where $0 \leq r \leq 4$. Also let $q \equiv$ $k(\bmod 4)$, where $0 \leq k \leq 3 . C_{3}^{t} C_{6}^{h}$ is graceful when $(r, k)=$ $(0,0),(0,1),(1,0),(1,3),(2,2),(2,3),(3,1),(3,2),(4,0),(4,1)$ and near graceful otherwise.

$n=t+2 h$	Graceful	Near graceful
$5 k$	$k \equiv 0,1(\bmod 4)$	$k \equiv 2,3(\bmod 4)$
$5 k+1$	$k \equiv 0,3(\bmod 4)$	$k \equiv 1,2(\bmod 4)$
$5 k+2$	$k \equiv 2,3(\bmod 4)$	$k \equiv 0,1(\bmod 4)$
$5 k+3$	$k \equiv 1,2(\bmod 4)$	$k \equiv 0,3(\bmod 4)$
$5 k+4$	$k \equiv 0,1(\bmod 4)$	$k \equiv 2,3(\bmod 4)$

- Example: Suppose we want to label $C_{3}^{2} C_{6}^{3}$.
- We can label C_{3}^{8} using the triples of the form $\left(0, i, b_{i}+8\right)$ from the Skolem sequence $(8,6,4,2,7,2,4,6,8,3,5,7,3,1,1,5)$.
- We get $(0,1,23),(0,2,14),(0,3,21),(0,4,15),(0,5,24)$, $(0,6,16),(0,7,20),(0,8,17)$.
- We pair up six of these triples and convert each pair $\left(0, i, b_{i}+8\right)$ and $\left(0, j, b_{j}+8\right)$ to the 6-tuple $\left(0, b_{i}+8, i, i+j, j, b_{j}+8\right)$.
- We convert $(0,2,14)$ and $(0,7,20)$ to $(0,14,2,9,7,20)$; $(0,3,21)$ and $(0,8,17)$ to $(0,21,3,11,8,17) ;(0,4,15)$ and $(0,6,16)$ to $(0,15,4,10,6,16)$.
- These 6-tuples and the remaining triples are the vertex labels we want.

Thank you!

