Quintic graphs with every edge in a triangle

James Preen, Cape Breton University

Atlantic Graph Theory Seminar Series: 1st December 2021

▲□▶▲□▶▲□▶▲□▶ □ のQで

The 2-regular connected graph with the triangle property:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

A 3-regular connected graph with the triangle property:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

A 3-regular connected graph with the triangle property:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

A 3-regular connected graph with the triangle property:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

A 3-regular connected graph with the triangle property:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The 3-regular connected graph with the triangle property:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

(ロト・日本・モン・モン・モージョンのへの)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

4-regular graphs with the triangle property: Line (multi-)graphs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

4-regular graphs with the triangle property: Line (multi-)graphs

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

math**overflow** Asked January 3rd 2012 by Gordon Royle.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

math**overflow** Asked January 3rd 2012 by Gordon Royle. I think that Florian Pfender (see comment below) may have basically found the solution.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

math**overflow** Asked January 3rd 2012 by Gordon Royle. I think that Florian Pfender (see comment below) may have basically found the solution.

August 2013 - This question has now generated a JGT paper.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

math**overflow** Asked January 3rd 2012 by Gordon Royle. I think that Florian Pfender (see comment below) may have basically found the solution.

August 2013 - This question has now generated a JGT paper.

I wanted to know the 5-regular graphs where every edge lies in a triangle. Simple graphs: 1, 3, 24, 308, 4921, 98829

math**overflow** Asked January 3rd 2012 by Gordon Royle. I think that Florian Pfender (see comment below) may have basically found the solution.

August 2013 - This question has now generated a JGT paper.

I wanted to know the 5-regular graphs where every edge lies in a triangle. Simple graphs: 1, 3, 24, 308, 4921, 98829

I'm tempted to just say that this is an uncontrollable mess, but perhaps someone can figure out what to do

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Icosahedron is 5-regular, all edges in 2 triangles

Icosahedron is 5-regular, all edges in 2 triangles

Icosahedron is 5-regular, all edges in 2 triangles

A larger 5-regular graph with all edges in 1 or 2 triangles

A larger 5-regular graph with all edges in 1 or 2 triangles

A larger 5-regular graph with all edges in 1 or 2 triangles

Z-box reduction

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

How can Z-box reduction fail?

How can Z-box reduction fail?

How can Z-box reduction fail?

Some graphs have no Z-box

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Some graphs have no Z-box

Some graphs have no Z-box

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Generalising Line Graphs using Biregular Bipartite Graphs

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Generalising Line Graphs using Biregular Bipartite Graphs

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Generalising Line Graphs using Biregular Bipartite Graphs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(3,4)-Biregular Bipartite Graphs

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

(3,4)-Biregular Bipartite Graphs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(3,4)-Biregular Bipartite Graphs

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

(3,4)-Biregular Bipartite Graphs

(3,4)-Biregular Bipartite Graphs

(3,4)-Biregular Bipartite Graphs

(3,4)-Biregular Bipartite Graphs

(3,4)-Biregular Bipartite Graphs

(3,4)-Biregular Bipartite Graphs

(3,4)-Biregular Bipartite Graphs

Cut vertex reductions

Cut vertex reductions

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Cut vertex reductions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Cut vertex reductions

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Cut vertex reductions

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

・ロト・西・・田・・田・ 日・ うらぐ

Complete graph on 6 vertices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Complete graph on 6 vertices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Complete graph on 6 vertices

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆

Clique Number 5

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへぐ

Clique Number 4: If K_5 minus an edge uv is a subgraph:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Clique Number 4: Counting the vertices adjacent to edges:

 s_H is the number of vertices in $G \setminus H$ adjacent to two H vertices.

Clique Number 4: Counting the vertices adjacent to edges:

 s_H is the number of vertices in $G \setminus H$ adjacent to two H vertices.

X-box reduction not possible when $H := K_4$ and $s_H = 3$:

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Clique Number 4: Counting the vertices adjacent to edges:

 s_H is the number of vertices in $G \setminus H$ adjacent to two H vertices.

X-box reduction not possible when $H := K_4$ and $s_H = 3$:

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Clique Number 4: Problems when $s_H = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Clique Number 4: When *K*⁴ **has three aloof triangles:**

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Clique Number 4: When *K*⁴ **has three aloof triangles:**

▲□▶▲圖▶★≧▶★≧▶ 差 のへで

Clique number 3: the wheel with 5 vertices

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

5-regular graphs with the triangle property

Many triangles incident with an edge

How many vertices adjacent to both ends of an edge?

Many triangles incident with an edge

How many vertices adjacent to both ends of an edge?

Many triangles incident with an edge

How many vertices adjacent to both ends of an edge?

Many triangles incident with an edge

5-regular graphs with the triangle property

Triple edges part 1

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Similarly, we can deal with

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

・ロト・日本・ キャー モー うくの

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

but if there are no common neighbours of u_1 and u_2 , we cannot reduce.

5-regular graphs with the triangle property

Aloof triangles with a double edge

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Aloof triangles with a double edge

Aloof triangles with a double edge

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

5-regular graphs with the triangle property

Double edges in non-aloof triangles

5-regular graphs with the triangle property

Double edges in non-aloof triangles

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 = ∽ � � �

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@
No double edges and two triangles adjacent to a Z-box

Pentagonal wheel reduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶▲圖▶★≧▶★≧▶ 差 のへで

Atoms which remain

Atom	Configuration	Degree 5	Degree 3	Degree 2
A_1	Å	0	0	3

Atoms which remain

Atom	Configuration	Degree 5	Degree 3	Degree 2
A_1	Å	0	0	3
A_2	X	0	4	0

Atoms which remain

Atom	Configuration	Degree 5	Degree 3	Degree 2
A_1	Å	0	0	3
A_2	X	0	4	0
A_3	Å	0	2	1

Atom	Configuration	Degree 5	Degree 3	Degree 2
A_1	Å	0	0	3
A_2	X	0	4	0
A_3		0	2	1
A_7		2	0	2

Atom	Configuration	Degree 5	Degree 3	Degree 2
A_1	Å	0	0	3
A_2	X	0	4	0
A_3	Å	0	2	1
A_7	\sim	2	0	2
A_4	\land	2	0	1

Atom	Configuration	Degree 5	Degree 3	Degree 2
A_1	Å	0	0	3
A_2	X	0	4	0
A_3	Å	0	2	1
A_7		2	0	2
A_4	\land	2	0	1
A_{10}		3	1	0

Atom	Configuration	Degree 5	Degree 3	Degree 2
A_1	Å	0	0	3
A_2	X	0	4	0
A_3	\bigtriangleup	0	2	1
A_7	\checkmark	2	0	2
A_4	\land	2	0	1
A_{10}		3	1	0
A_{11}		3	1	0

Reductions for A_{10} (or A_{11} analogously)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Reductions for A_{10} (or A_{11} analagously)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Reductions for A_{10} (or A_{11} analogously)

▲□▶▲圖▶★≧▶★≧▶ 差 のへで

Reductions for A_{10} (or A_{11} analogously)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Reductions for A_{10} (or A_{11} **analagously**)

Reductions for A_4 are more numerous, but similar.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Reduction for K_4 with aloof triangles

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Reduction for K_4 with aloof triangles

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Small Foundational Graphs

All foundational connected quintic graphs with the triangle property and at least eight vertices are constructed from a line graph of a cubic graph H, with a perfect matching M, by adding a second edge to H for every edge in M.

Small Foundational Graphs

All foundational connected quintic graphs with the triangle property and at least eight vertices are constructed from a line graph of a cubic graph H, with a perfect matching M, by adding a second edge to H for every edge in M.

A simple graph with the property but fewest possible triangles

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで