Monarchs for excluded minor classes

Sandra Kingan

The Graduate Center and Brooklyn College, CUNY
December 8, 2021

Contents

(1) What is a Matroid?
(2) From Graphs to Binary Matroids
(3) Duality
(1) Minors
(0) Connectivity
(0) Monarchs in Excluded Minor Classes

- Techniques
S. R. Kingan (2018) A short proof of binary matroids with no 4-wheel minor, Australasian Journal of Combinatorics, 72(2), 201-205.
S. R. Kingan (2021). Finding monarchs in excluded minor classes of matroids, Australasian Journal of Combinatorics, 79(3), 302-326.

A unique blend of graph theory and network science for

 mathematicians and data science professionals alike.Feeturing topics such as minors, connectomss, trese, distance, spectral graph theory, sinilarity, centrallty, small-work netwoiks, scals-rtee networks, asscrtathe natworks, covert networks, graph algorithms, Bulerian circuils, Hamiltonkan cycles, colcring, hicher connectMity, planar grephs, nlows, matchings, and coveringe, Graphs and Networks contahs modern applcations for geqph theorksts and a host of untapped thecrems for network sclantists.

The book begins with applications to viclogy and the social and pollitical sciances and gradualy takes a more theorellical direction toward graph structure thecry and combinatorial optimizatlon. A beckground in linear algabra, probability, and statistics providas the proper frame of reference.

Graphs and Networks also features:

- Applications to neuroscience, cimate science, and the social and polltical sciences
- A research cuttlock integrated directly into the narrative with idees for studants interested in pursuing research projects at al lavels
- A large selection of primary and secondary sources for further reading
- Historical notes that hint at the passion and excitement behind the discoverles
- Practice problems that reinforce the concepts and encourage further irvestigation and indspendent work
S. R. Kingan is an Assoclate Prcfessor of Mathematics at Prookjyn Colisge and the Graduate Center of The City Uriversity of New York. Dr. Kingan's research interests incude graph theory, matroid theory, combinatorial algoritims, and thelr applications.

1. What is a matroid?

A graph consists of a set of points called vertices and a set of unordered pairs of points called edges.

$$
\begin{gathered}
V(G)=\{a, b, c, d, e, f\} \\
E(G)=\{a b, b c, c d, d a, a e, e f, d e, f b, f c\}
\end{gathered}
$$

The degree of a vertex is the number of edges incident to it.
A cycle is a closed path.
Example: $\{a, e, d, a\}$ or $\{a, b, c, d, a\}$

A graph is connected if there is a path from every vertex to every other vertex. Otherwise it is disconnected.

A connected acyclic graph is called a tree. In a tree with n vertices and m edges $m=n-1$.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A graph H is a subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

A spanning tree T of G is a subgraph that is a tree and $V(T)=V(G)$

Example: Spanning tree $=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ The rank of a graph on n vertices: $r(G)=n-1$.

Consider the following graph (with multiple edges):

Let E be the set of edges of the graph

$$
E=\{1,2,3,4,5,6,7\}
$$

Let \mathcal{C} be the set of cycles of the graph

$$
\mathcal{C}=\{\{1,7\},\{4,5,6\},\{1,2,3,6\},\{2,3,6,7\},\{1,2,3,4,5\},\{2,3,4,5,7\}\}
$$

H. Whitney (1935). On the abstract properties of linear dependence, Amer. J. Math. 54, 150-168.

Hassler Whitney (1907-1989)

Whitney observed that cycles of a graph satisfy:
(1) If C_{1} and C_{2} are cycles such that $C_{1} \subseteq C_{2}$, then $C_{1}=C_{2}$; and
(2) If $e \in C_{1} \cap C_{2}$, then there is a cycle C_{3} such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-e$.

Example 1:

$E=\{1,2,3,4,5,6,7\}$
$\mathcal{C}=\{\{1,7\},\{4,5,6\},\{1,2,3,6\},\{2,3,6,7\},\{1,2,3,4,5\},\{2,3,4,5,7\}\}$
The two properties again:
(1) If C_{1} and C_{2} are cycles such that $C_{1} \subseteq C_{2}$, then $C_{1}=C_{2}$; and
(2) If $e \in C_{1} \cap C_{2}$, then there is a cycle C_{3} such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-e$.

Example 2: Let A be a matrix over a field.

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]_{\mathbf{F}_{2}} \\
& \mathbf{E}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}\}
\end{aligned}
$$

Independent sets of columns of A

		\{1, 2, 3\}	$\{2,4,5\}$	$\{1,2,3,4\}$	$\{2,4,6,7\}$
\{1,2\}	\{3,4\}	\{1,2, 4\}	$\{2,4,6\}$	$\{1,2,3,5\}$	$\{2,5,6,7\}$
\{1\} $\{1,3\}$	\{3,5\}	\{1,2, 5 \}	$\{2,4,7\}$	$\{1,2,4,5\}$	$\{3,4,5,7\}$
\{2\} \{1, 4\}	$\{3,6\}$	$\{1,2,6\}$	$\{2,5,6\}$	$\{1,2,4,6\}$	$\{3,4,6,7\}$
\{3\} 11,5 \%	\{3,7\}	$\{1,3,4\}$	$\{2,5,7\}$	$\{1,2,5,6\}$	$\{3,5,6,7\}$
\{4\} 11	(3,7)	$\{1,3,5\}$	$\{2,6,7\}$	$\{1,3,4,5\}$ $\{1,3,4,6\}$	
\{5\}		$\{1,3,6\}$	$\{3,4,5\}$	$\{1,3,5,6\}$	
$\{6\}$	$\{4,6\}$	$\{1,4,5\}$ $\{1,4,6\}$	$\{3,4,6\}$ $\{3,4,7\}$	$\{2,3,4,5\}$	
$\{7\}^{\{2,4\}}$	\{4, 7\}	$\{1,4,6\}$ $\{1,5,6\}$	$\{3,4,7\}$ $\{3,5,6\}$	$\{2,3,4,6\}$	
$\{2,5\}$	$\{5,6\}$	\{2,3,4\}	\{3,5,7\}	$\{2,3,4,7\}$	
$\{2,6\}$	$\{5,7\}$	$\{2,3,5\}$	$\{3,6,7\}$	$\{2,3,5,6\}$	
$\{2,7\}$	$\{6,7\}$	$\{2,3,6\}$	$\{4,5,7\}$	$\{2,3,5,7\}$	
		$\{2,3,7\}$	$\{4,6,7\}$		

A maximal independent set is called a basis.
A minimal dependent set is called a circuit.

Whitney observed that (linearly) independent sets of columns of a matrix satisfy the following properties:
(1) If I_{2} is an independent set and $I_{1} \subseteq I_{2}$, then I_{1} is independent; and
(2) If $\left|I_{1}\right|<\left|I_{2}\right|$, then there exists $e \in I_{2}-I_{1}$ such that $I_{1} \cup e$ is independent.

Reason: Suppose $I_{1} \cup e$ is dependent for all $e \in I_{2}-I_{1}$.
Let S be the span of $I_{1} \cup I_{2}$.

$$
\operatorname{dim}(S) \geq\left|I_{2}\right|
$$

By assumption S is contained in the span of I_{1}. So $\operatorname{dim}(S) \leq\left|I_{1}\right|$.

$$
\left|I_{2}\right| \leq \operatorname{dim}(S) \leq\left|I_{1}\right|<\left|I_{2}\right|
$$

This is a contradiction

Whitney proved that these two axioms systems are equivalent. Let E be a set and \mathcal{C} be a set of subsets of E such that
(1) If $C_{1} \subseteq C_{2}$, then $C_{1}=C_{2}$; and
(2) If $e \in C_{1} \cap C_{2}$, then there is a cycle C_{3} such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-e$; and
(3) $\phi \notin \mathcal{C}$

Then (E, \mathcal{C}) is a matroid. Members of \mathcal{C} are called circuits (cycles).
Let E be a set and \mathcal{I} be a set of subsets of E such that
(1) If I_{2} is an independent set and $I_{1} \subseteq I_{2}$, then I_{1} is independentt;
(2) If $\left|I_{1}\right|<\left|I_{2}\right|$, then there exists $e \in I_{2}-I_{1}$ such that $I_{1} \cup e$ is independent; and
(3) $\phi \in \mathcal{I}$

Then (E, \mathcal{I}) is a matroid. Members of \mathcal{I} are called independent sets.
In a graph, the independents sets are acylic subgraphs.

2. From Graphs to Binary Matroids

Consider the graph

It has incidence matrix
e_{1}
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\left[\begin{array}{cccccc}1 & 0 & e_{3} & e_{4} & e_{5} & e_{6} \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1\end{array}\right]$

Doing elementary row operations we get
v_{1}
v_{2}
v_{3}
v_{4}
$v_{5}$$\left[\begin{array}{cccccc}e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

A graph is a special kind of $\{0,1\}$-matrix. A binary matroid is any $\{0,1\}$ matrix.

An n-vertex graph (with rank $r=n-1$) is a substructure of K_{n}

Wikipedia
The size of K_{n} is $\binom{n}{2}$.

A (simple) binary matroid is a substructure of the rank r binary projective geometry $\mathrm{PG}(\mathrm{r}-1,2)$.

							1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	2	3	4	5	6	7	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	0	1	0	0	0	1	1	1	0	0	0	1	1	1	1
0	1	0	1	0	1	1	0	0	1	0	1	0	1	1	0	1	1	0	0	1	1
0	0	1	1	1	0	1	0	0	0	1	1	1	0	1	1	0	1	0	1	0	1

PG(4,2)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
0	0	1	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	0	1	1	1	1	0	0	0	0	1	1	1
0	0	0	1	0	1	0	1	1	0	1	1	0	0	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1
0	0	0	0	1	1	1	0	1	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0

PG(5,2)

The size of $P G(r-1,2)$ is $2^{r}-1$.

Example 4: Fano Matroid:

$$
P G(2,2)=F_{7}=\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Example 5: $P G(2,2)$ and $P G(2,3)$

Hassler Whitney (1935) "On the Abstract properties of linear dependence,"

Garrett Birkhoff (1935)
"Abstract linear dependence in lattices."

Saunders MacLane (1936) "Some interpretations of abstract linear dependence in terms of projective geometry."

3. Duality

A graph is planar if it can be drawn on the plane with no crossing edges.
A planar graph has a geometric dual.

Wikipedia
Non-planar graphs do not have geometric duals.

Every matroid has a companion matroid called its dual.

If M is a matroid on E and \mathcal{B} is the set of bases, then

$$
\mathcal{B}^{*}=\{E-B: B \in \mathcal{B}\}
$$

also satisfies the Basis Axioms and therefore gives rise to a matroid M^{*} called the dual matroid.

The dual of an n-element rank r binary matroid

$$
A=\left[I_{r} \mid D\right]
$$

over a prime field F_{p} is the rank $n-r$ binary matroid

$$
A^{*}=\left[-D^{T} \mid I_{n-r}\right] .
$$

Example: Fano Matroid:

$$
\begin{gathered}
F_{7}=\left[\begin{array}{l|lll}
I_{3} & \left.\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right] \\
F_{7}^{*}=\left[I_{4} \left\lvert\, \begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right.\right]
\end{array} .\right.
\end{gathered}
$$

4. Minors

A minor of a graph is obtained by deleting edges and contracting edges.

G

G

$\mathrm{G} \backslash e$

G/e

A minor of a graph is obtained by deleting edges and contracting edges.

The operations that reverse deletions and contractions are edge additions and vertex splits.

A graph G with an edge e added between non-adjacent vertices is denoted by $G+e$ and called a (simple) edge addition of G.

Suppose G is a 3 -connected graph with a vertex v such that $\operatorname{deg}(v) \geq 4$. To split vertex v :

- Divide $N(v)$ into two disjoint sets S and T, both of size at least 2 .
- Replace v with two distinct vertices v_{1} and v_{2}, join them by a new edge $f=v_{1} v_{2}$; and
- Join each neighbor of v in S to v_{1} and each neighbor in T to v_{2}. The resulting graph is called a vertex split of G and is denoted by $G{ }_{S, T} f$.

We can get a different graph depending on the assignment of neighbors of v to v_{1} and v_{2}. By a slight misuse of notation, we can say $G \circ f$.

A matroid M with an element e added so that e is not a loop or parallel element is denoted by $M+e$ and is called a simple single-element extension of M.

$$
A=\left[I_{r} \mid D\right] .
$$

Columns of A may be viewed as a subset of the columns of $P G(r-1,2)$.
$M+e$ is represented by $\left[I_{r} \mid D^{\prime}\right]$, where D^{\prime} is the same as D, but with one additional column corresponding to the new element e. The new column is distinct from the existing columns and has at least two non-zero elements.

Simple extension

A matroid M with an element f added so that f is not a coloop nor a series element is denoted by $M \circ f$ and called a cosimple single-element coextension of M.

$$
A=\left[I_{r} \mid D\right] .
$$

The rows of A may be viewed as a subset of the rows of $P G(n-r+1,2)$.
$M \circ f$ is represented by $\left[I_{r+1} \mid D^{\prime \prime}\right]$, where $D^{\prime \prime}$ is the same as D, but with one additional row. The new row is distinct from the existing rows and has at least two non-zero elements.

5. Higher Connectivity

A graph is 3-connected if at least 3 vertices must be removed to disconnect the graph.

Theorem

A graph that is not 3 -connected can be constructed from its 3 -connected proper minors using 1 -sums and 2 -sums.

Let M be a matroid with ground set E. For every $A \subseteq E$, the connectivity function λ is defined as

$$
\lambda(A)=r(A)+r(E-A)-r(M)
$$

M is k-connected if $\lambda(A) \geq k-1$ for $|A|,|E-A| \geq k$
M is 3-connected if $\lambda(A) \geq 2$ for $|A|,|E-A| \geq 3$

Theorem (Bixby 1972)
A matroid that is not 3-connected can be constructed from its 3 -connected proper minors using 1 -sums and 2 -sums.

6. Excluded Minor Classes

Let \mathcal{G} be a class of graphs closed under minors. We say H is a minimal excluded minor for \mathcal{G} if $H \notin \mathcal{G}$, but every proper minor of H is in \mathcal{G}

Theorem 1. (Kuratowski-Wagner 1937)

A graph is planar if and only if it has no K_{5} or $K_{3,3}$ minor.

Kuratowski, K. (1930). Sur le probleme des courbes gauches en topologie. Fund. Math. 15, 271-283.

Structure result

Corollary 2.

Let G be a simple 3-connected graph. Then G has no $K_{3,3}$ minor if and only if G is planar or $G \cong K_{5}$.

Theorem 3. (Wagner 1937)

Let G be a 3 -connected graph. Then G has no K_{5}-minor if and only if $G \cong V_{8}$ or G is the 3 -sum of 3 -connected planar graphs.

Decomposition result

$$
U_{2,4}=\left[\begin{array}{l|ll}
I_{2} & 1 & 1 \\
& 1 & 2
\end{array}\right]
$$

This matrix has entries from F_{3}.

Theorem 4. (Tutte, 1958)

A matroid is binary if and only if it has no $U_{2,4}$ minor.

$$
F_{7}=\left[\begin{array}{l|llll}
I_{3} & \left.\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]
\end{array}\right.
$$

Theorem 5. (Tutte, 1959)
A matroid is regular if and only if it has no F_{7} or F_{7}^{*} minors.
Structure results

Theorem 6. (Wagner 1960)
Let G be a simple 3 -connected graph. Then G has no $K_{5} \backslash e$ minor if and only if $G \cong K_{3,3},\left(K_{5} \backslash e\right)^{*}$ or W_{n-1} for $n \geq 4$.

Monarch result

G. A. Dirac (1963). Some results concerning the structure of graphs, Canad. Math. Bull. 6, 183-210.

Theorem 7. (Dirac 1963)

Let G be a simple 3-connected graph. Then G has no prism minor if and only if G is isomorphic to $K_{5} \backslash e, K_{5}, W_{n-1}$ for $n \geq 4, K_{3, n-3}, K_{3, n-3}^{\prime}$, $K_{3, n-3}^{\prime \prime}$, or $K_{3, n-3}^{\prime \prime \prime}$ for $n \geq 6$.

A rank r 3-connected graph in a minor closed class \mathcal{G} is called a rank r monarch for \mathcal{G} if it has no further edge additions in \mathcal{G}.

K_{5}, W_{n-1}, and $K_{3, n-3}^{\prime \prime \prime}$ are the monarchs

What other decomposition and monarch results have been classified?

H	$\|E(H)\|$	3-connected H-free graphs
K_{4}	6	\emptyset
W_{4}	8	$\left\{K_{4}\right\}$
$K_{5} \backslash e$	9	$\left\{K_{3,3}\right.$, Prism $\} \cup\left\{W_{n}\right\}$
Prism	9	$\left\{K_{5}\right\} \cup\left\{W_{n}\right\} \cup\left\{K_{3, n}\right\}^{\downarrow}$
$K_{3,3}$	9	$\left\{K_{5}\right\} \cup\{3$-connected planar graphs $\}$
Prism+e	10	$\left\{K_{5}\right.$, Prism $\} \cup\left\{W_{n}\right\} \cup\left\{K_{3, n}\right\}^{\downarrow}$
$K_{3,3}+e$	10	$\left\{K_{3,3}, K_{5}\right\} \cup\{3$-connected planar graphs $\}$
W_{5}	10	$\left\{K_{5}^{\perp}, \text { Cube, Oct, Pyramid }\right\}^{\downarrow} \cup\left\{K_{3, n}\right\}^{\downarrow}$
K_{5}	10	$\left\{V_{8}\right\} \cup\{3$-sums of 3-connected planar graphs $\}$
Cube $/ e$	11	Augmentations of graphs in $g_{3.3}$
K_{5}^{\perp}	11	$\left\{K_{5}, V_{8}\right\} \cup\{3$-sums of 3-connected planar graphs $\}$
$K_{3,3}^{\top}$	11	$\left\{K_{6}\right\}^{\downarrow} \cup\left\{K_{3, n}\right\}^{\downarrow} \cup\{3$-connected planar graphs $\}$
$K_{3,3}^{\ddagger}$	11	$\xi_{4.3} \cup\{3$-connected planar graphs $\}$
$W_{5}+e$	11	$G_{4.6} \cup\left\{W_{n}\right\} \cup\left\{K_{3, n}\right\}^{\downarrow}$
$O c t \backslash e$	11	$\left\{V_{8}, K_{5}^{\Delta}, \text { Cube }\right\}^{\downarrow} \cup 8$
$\left(W_{5}+e\right)^{*}$	11	$\left\{K_{6}, K_{4,4}, \text { Petersen }\right\}^{\downarrow} \cup g_{4.12} \cup\left\{W_{n}\right\}$

G. Ding and C. Liu (2013) Excluding a small minor, Discrete Applied Mathematics 161 355-368.

Oxley, J. G. (1987). The binary matroids with no 4-wheel minor, Trans. Amer. Math. Soc. 154, 63-75.

Theorem 9 (Oxley, 1987).

Let M be a 3-connected binary matroid. Then M has no minor isomorphic to W_{4} if and only if M is isomorphic to $U_{0,1}, U_{1,1}, U_{1,2}, U_{1,3}, U_{2,3}, W_{3}$, F_{7}, F_{7}^{*}, or $Z_{r}, Z_{r}^{*}, Z_{r} \backslash a_{r}$ or $Z_{r} \backslash c_{r}$, for $r \geq 4$.

Monarch:

$$
Z_{r}=\left[\begin{array}{cccccccc}
b_{1} & \cdots & b_{r} & a_{1} & a_{2} & \cdots & a_{r-1} & a_{r} \\
c_{r} \\
& & & & c_{r} \\
& I_{r} & 1 & \cdots & 1 & 1 & 1 \\
1 & 0 & \cdots & 1 & 1 & 1 \\
& & & 1 & \cdots & 1 & 1 & 1 \\
& & & \vdots & \ddots & \vdots & \vdots & \vdots \\
& & & 1 & \cdots & 0 & 1 & 1 \\
1 & 1 & \cdots & 1 & 0 & 1
\end{array}\right]
$$

The proof of Oxley's 1987 result classifying the matroids with no W_{4}-minor comes down to the following result:

$$
P_{9}=\left[\begin{array}{l|lllll}
I_{4} & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
& 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right] P_{9}^{*}=\left[I_{5} \left\lvert\, \begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right.\right]
$$

Theorem 9' (Oxley, 1987).

Let M be a binary non-regular 3-connected matroid. Then M has no P_{9} or P_{9}^{*} if and only if M is isomorphic to F_{7}, F_{7}^{*}, or $Z_{r}, Z_{r}^{*}, Z_{r} \backslash a_{r}$ or $Z_{r} \backslash c_{r}$, for $r \geq 4$.

Monarch:

$$
\begin{gathered}
b_{1} \\
Z_{r}= \\
\\
\\
\\
\\
I_{r} \\
\\
\end{gathered}
$$

S. R. Kingan (2018) A short proof of binary matroids with no 4-wheel minor, Australasian Journal of Combinatorics, 72(2), 201-205.

Theorem 10(SRK, 2021).

A binary 3-connected non-regular matroid M has no P_{9}^{*}-minor if and only if M is isomorphic to $F_{7}, P G(3,2), R_{16}, Z_{r}$ for $r \geq 4, \Omega_{r}$ for $r \geq 5$, or one of their 3-connected deletion-minors.

Monarchs

$$
\begin{aligned}
& F_{7}=\left[\begin{array}{l|llll}
& I_{3} & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
& 1 & 1 & 0 & 1
\end{array}\right] \\
& Z_{r}=\left[\begin{array}{ccc|cccccc}
b_{1} & \cdots & b_{r} & a_{1} & a_{2} & \cdots & a_{r-1} & a_{r} & c_{r} \\
& & & I_{r} & & 0 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 1 & 1 \\
1 & 1 & \cdots & 1 & 1 & 1 \\
& & & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
& & & 1 & 1 & \cdots & 0 & 1 & 1 \\
& & 1 & 1 & \cdots & 1 & 0 & 1
\end{array}\right] \\
& P G(3,2)=\left[\begin{array}{l|lllllllllll}
I_{4} & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
& 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
& 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

New Monarchs:

Ω_{r} with $4 r-5$ elements, where $r \geq 5$

$E X\left[M_{1}, \ldots, M_{t}\right]$: Class with no minors isomorphic to M_{1}, \ldots, M_{t}

Class	Rank r Monarch	Size
Graphs	K_{r+1}	$\binom{r+1}{2}$
Binary matroids	$P G(r-1,2)$	$2^{r}-1$
Planar graphs	$? ? ?$	$3 r-3$
Prism-free graphs (Dirac 1963)	$K_{5}, W_{r}, K_{3, p}^{\prime \prime \prime}$	$3 r-3$
Binary non-regular $E X\left[P_{9}, P_{9}^{*}\right]$ (Oxley 1989)	Z_{r}	$\binom{r+1}{2}$
Binary non-regular $E X\left[P_{9}^{*}\right]$ (SRK 2021)	Z_{r} and Ω_{r}	$\binom{r+1}{2}$

Table: Monarchs for excluded minor classes

7. Technique: Strong Splitter Theorem

The monarch Ω_{r} again:

Monarch Ω_{r} with $4 r-5$ elements, where $r \geq 5$
Let \mathcal{M} be a class of matroids closed under minors. A rank r 3-connected matroid in \mathcal{M} that has no further 3-connected extensions in \mathcal{M} is called a rank r monarch for \mathcal{M}.

Seed α_{r} with $3 r-5$ elements, where $r \geq 5$
A rank r 3-connected matroid in \mathcal{M} is called a rank r seed for \mathcal{M} if removal of any element results in a matroid that is not 3-connected or not in \mathcal{M}.

Growth pattern of the seed and monarch

Base case of the induction argument

Let \mathcal{M} be a class of matroids closed under minors.
The Strong Splitter Theorem implies that every 3-connected rank r monarch in \mathcal{M} is a simple extension of a 3-connected rank r matroid M_{r}, where M_{r} is obtained from a 3-connected rank $r-1$ matroid M_{r-1} in the following ways:
(1) $M_{r}=M_{r-1} \circ f$;
(2) $M_{r}=M_{r-1}+e \circ f$, where f is added in series to an element in M_{r-1}; or
(3) $M_{r}=M_{r-1}+\left\{e_{1}, e_{2}\right\} \circ f$, where $\left\{e_{1}, e_{2}, f\right\}$ is a triad.

There is no reason to asssume a priori that M_{r} is unique for a specific excluded minor class. However, if M_{r} happens to be unique, we get a recursive way of defining it, and consequently a recursive way of defining the corresponding rank r monarch.

Thank you for your attention!

