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Complex Networks

Figure: The Web Graph
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Complex Networks

Five main properties:

1. Large-scale
2. Evolving over time
3. Power law degree distribution
4. Small world property
5. Densification
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Power Law Degree Distribution

Degree Distribution: {Nk ,G : 0 ≤ k ≤ n}

Nk ,G = |{x ∈ V (G) : degG(x) = k |

Power Law: for 1 < β ∈ R, and interval of k ∈ N

Nk ,G

n
≈ k−β .



Introduction Defining the Model Results Conclusion

Small World Property

The average distance is

L(G) =


u,v∈V (G) d(u, v)

|V (G)|
2



The clustering coefficient of G is defined as follows:

C(G) =
1

|V (G)|


x∈V (G)

Cx(G), where Cx(G) =

E

G[NG(x)]


deg(x)

2

 .
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Densification

A sequence of graphs{Gt : t ∈ N} densifies over time if

lim
t→∞

|E(Gt)|
|V (Gt)|

→ ∞
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Preferential Attachement

Preferential Attachment Model: Barabasi and Albert 1999
• Fix m ∈ N
• Begin with K2

• Add a new vertex with m edges, neighbors chosen by:

degGt vs

2(mt + 1)
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ACL - Preferential Attachement

ACL PA Model: Aiello, Chung, Lu 2001
• Fix p ∈ (0, 1)
• Begin with G0 single vertex and loop
• Take a vertex step with probability p and an edge step with

probability 1 − p
• Vertex Step: Add a new vertex with edge uv with u chosen

by:
degGt u

2(mt + 1)
• Edge Step: Add edge u1u2 with both ui ’s chosen

independently by:
degGt ui

v∈Gt
deg(v)
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Structural Balance Theory

Representing adversarial relationships with (−) and friendly
relationships with (+), Structural Balance Theory says triads
seek a positive product of edge signs, called closure.
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ILT

Iterated Local Transitivity Model (ILT) (2009, Bonato, Hadi,
Horn, Prałat, Wang)

Input: G0

To form Gt at time t clone each x ∈ V (Gt−1) by adding a new
node x ′ such that

NGt (x
′) = NGt−1 [x ]
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Example of ILT

v u

u′v ′

uv

Figure: Example of one time step of ILT with G0 = K2.
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Iterated Local Anti-Transitivity

Iterated Local Anti-Transitivity Model (ILAT) (2017, Bonato,
Infeld, Pokhrel, Prałat)

Input: G0

To form Gt at time t anti-clone each x ∈ V (Gt−1) by adding new
node x∗ such that

NGt (x
∗) = V (Gt−1)\NGt−1 [x ]
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Example of ILAT

a b

cd

a b

cd

d∗ c∗

a∗ b∗

Figure: Example of one time step ILAT.
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ILM

Iterated Local Model (ILM) (2019+, Bonato, Chuangpishit,
English, Kay, M.)
Input: G0 and S = {bi}i∈N, where bi ∈ {0, 1}

To form ILMt ,S(G0) at time t :
• if bt = 1 add a clone x ′ for each x ∈ V (Gt−1) with

NGt (x
′) = NGt−1 [x ]

• if bt = 0 add an anti-clone x∗ for each x ∈ V (Gt−1) with

NGt (x
∗) = V (Gt−1)\NGt−1 [x ]
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Example of ILM

u v

u′v ′

u v

v ′u′

u′∗ v ′∗

u∗ v∗

uv

Figure: Example of ILM using G0 = K2 and S = {1, 0, ...}
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Size, Evolution, and Densification

Theorem (2019+, BCEKM) Given any graph, G0, and any
binary sequence, S, with at least one zero, then at time step t

|E(ILMt ,S(G))| = Θ


2t+β


3
2

t−β


= Θ


2β


3
2

t−β

nt



Where τ is the first index such that sτ = 0, and β is the largest
index such that sβ = 0.
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Size, Evolution and Densification

So far, ILM exhibits 3 of the 4+1 complex network properties
1. Large Scale
2. Evolving over time
5. Densification
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Low Diameter

Theorem (2019+, BCEKM) Given G ∕= K1 be a graph that is not
the disjoint union of two cliques, and a sequence with at least
two zeroes, then

diam(ILMt ,S(G)) = 3
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Low Diameter

Lemma 2 ≤ diam(G) = diam(LT(G)) and
2 ≤ radius(G) =radius(LT(G)).

Proof For any u, v ∈ V (G) with uv /∈ E(G)

distG(u, v) = distLT (G)(u, v) and distG(u, v) = distLT (G)(u′, v ′)

Similarly distLT (G)(u, v ′) = distG(u, v)

When uv ∈ E(G), distLT (G)(u′, v ′) = 2
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Low Diameter

Proof Sketch
• LAT(G) has radius at least 3 since dist(x , x∗) ≥ 3
• Lemma: If γ(G) ≥ 3 then diam(LAT(G)) ≤ 3

• We only need to consider γ(G) = 2
• Find x , y whose closed neighborhoods partition the vertex

set
• Pairs of vertices in N[x ] or in N[y ] are distance 2.
• If u ∈ N[x ] has a neighbour in N[y ]
• Otherwise, we get this picture using a counting argument

and case analysis
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Clustering

Theorem (2019+, BCEKM) Given a sequence with bounded
gaps between zeroes, and k a constant such that there are no
gaps of length k ,

C(ILMt ,S(G)) ≥ (1 + o(1))
1

22k+4 .

The clustering coefficient is bounded away from zero.
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Small World

With non-zero clustering and low diameter, ILM exhibits its 4th

and final property

4. Small World Property
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Induced Subgraphs

Theorem (2019+, BCEKM) If F is a graph, then there exists
some constant t0 = t0(F ) such that for all t ≥ t0, all graphs G,
and all binary sequences S, F is an induced subgraph of
ILMt ,S(G).
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Finite Subgraphs

Proof (sketch):
Show ILTk (K1) contains induced copy of F

• Find a t with a clique of size |V (F )|
• Iteratively delete edges of the clique to form F
• For each uv /∈ E(F ) replace with u′v ′

Show ILM2r ,S(G) contains ILTr (K1), by induction.
• One transitive step will increase the r for the induced copy

of ILT
• Two anti-transitive steps will similarily increase the induced

copy of ILT
• In any binary sequence of length 2r there exist r 0s or r 1s.
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Hamiltonicity

Theorem For G ∕= K1 and S a binary sequence with at least two
non-consecutive zeros, then ILMt ,S(G) = Gt is Hamiltonian.

Definition Let ζ(G) be the first value such that ILTζ(G) is
Hamiltonian, and let ζn be the maximum over all graphs of order
n.

Theorem For all n ≥ 3

log2(n − 1) ≤ ζn ≤ ⌈log2(n − 1)⌉+ 1
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Hamiltonicity

Proof (sketch):
• Using ∆(Gt) =

nt
2 − 1, the compliment of Gt is Hamiltonian

by Dirac’s theorem

• Four clone vertices form a clique in the HC of Gt

• Find two cycles that partition the vertex set and perform an
edge switch
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Other Structural Properties

For the model with certain restrictions on the input sequence
and graph:

• χ(G) + t − 1 ≤ χ

ILMt ,S(G)


≤ χ(G) + t

• γ(ILMt ,S(G)) ≤ 3
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Future Directions

• Graph Limits
• Domination number in remaining cases
• Randomization of the model
• Improve Clustering, still unknown for ILAT
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Thank You


