

DATA SCIENCE
AND ANALYTICS

WITH PYTHON

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

PUBLISHED TITLES

SERIES EDITOR
Vipin Kumar

University of Minnesota
Department of Computer Science and Engineering

Minneapolis, Minnesota, U.S.A.

AIMS AND SCOPE
This series aims to capture new developments and applications in data mining and knowledge
discovery, while summarizing the computational tools and techniques useful in data analysis.
This series encourages the integration of mathematical, statistical, and computational meth-
ods and techniques through the publication of a broad range of textbooks, reference works,
and handbooks. The inclusion of concrete examples and applications is highly encouraged. The
scope of the series includes, but is not limited to, titles in the areas of data mining and knowledge
discovery methods and applications, modeling, algorithms, theory and foundations, data and
knowledge visualization, data mining systems and tools, and privacy and security issues.

ACCELERATING DISCOVERY: MINING UNSTRUCTURED INFORMATION FOR
HYPOTHESIS GENERATION
Scott Spangler

ADVANCES IN MACHINE LEARNING AND DATA MINING FOR ASTRONOMY
Michael J. Way, Jeffrey D. Scargle, Kamal M. Ali, and Ashok N. Srivastava

BIOLOGICAL DATA MINING
Jake Y. Chen and Stefano Lonardi

COMPUTATIONAL BUSINESS ANALYTICS
Subrata Das

COMPUTATIONAL INTELLIGENT DATA ANALYSIS FOR SUSTAINABLE
DEVELOPMENT
Ting Yu, Nitesh V. Chawla, and Simeon Simoff

COMPUTATIONAL METHODS OF FEATURE SELECTION
Huan Liu and Hiroshi Motoda

CONSTRAINED CLUSTERING: ADVANCES IN ALGORITHMS, THEORY,
AND APPLICATIONS
Sugato Basu, Ian Davidson, and Kiri L. Wagstaff

CONTRAST DATA MINING: CONCEPTS, ALGORITHMS, AND APPLICATIONS
Guozhu Dong and James Bailey

DATA CLASSIFICATION: ALGORITHMS AND APPLICATIONS
Charu C. Aggarawal

DATA CLUSTERING: ALGORITHMS AND APPLICATIONS
Charu C. Aggarawal and Chandan K. Reddy

DATA CLUSTERING IN C++: AN OBJECT-ORIENTED APPROACH
Guojun Gan

DATA MINING: A TUTORIAL-BASED PRIMER, SECOND EDITION
Richard J. Roiger

DATA MINING FOR DESIGN AND MARKETING
Yukio Ohsawa and Katsutoshi Yada

DATA MINING WITH R: LEARNING WITH CASE STUDIES, SECOND EDITION
Luís Torgo

DATA SCIENCE AND ANALYTICS WITH PYTHON
Jesus Rogel-Salazar

EVENT MINING: ALGORITHMS AND APPLICATIONS
Tao Li

FOUNDATIONS OF PREDICTIVE ANALYTICS
James Wu and Stephen Coggeshall

GEOGRAPHIC DATA MINING AND KNOWLEDGE DISCOVERY,
SECOND EDITION
Harvey J. Miller and Jiawei Han

GRAPH-BASED SOCIAL MEDIA ANALYSIS
Ioannis Pitas

HANDBOOK OF EDUCATIONAL DATA MINING
Cristóbal Romero, Sebastian Ventura, Mykola Pechenizkiy, and Ryan S.J.d. Baker

HEALTHCARE DATA ANALYTICS
Chandan K. Reddy and Charu C. Aggarwal

INFORMATION DISCOVERY ON ELECTRONIC HEALTH RECORDS
Vagelis Hristidis

INTELLIGENT TECHNOLOGIES FOR WEB APPLICATIONS
Priti Srinivas Sajja and Rajendra Akerkar

INTRODUCTION TO PRIVACY-PRESERVING DATA PUBLISHING: CONCEPTS AND
TECHNIQUES
Benjamin C. M. Fung, Ke Wang, Ada Wai-Chee Fu, and Philip S. Yu

KNOWLEDGE DISCOVERY FOR COUNTERTERRORISM AND
LAW ENFORCEMENT
David Skillicorn

KNOWLEDGE DISCOVERY FROM DATA STREAMS
João Gama

LARGE-SCALE MACHINE LEARNING IN THE EARTH SCIENCES
Ashok N. Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser

MACHINE LEARNING AND KNOWLEDGE DISCOVERY FOR
ENGINEERING SYSTEMS HEALTH MANAGEMENT
Ashok N. Srivastava and Jiawei Han

MINING SOFTWARE SPECIFICATIONS: METHODOLOGIES AND APPLICATIONS
David Lo, Siau-Cheng Khoo, Jiawei Han, and Chao Liu

MULTIMEDIA DATA MINING: A SYSTEMATIC INTRODUCTION TO
CONCEPTS AND THEORY
Zhongfei Zhang and Ruofei Zhang

MUSIC DATA MINING
Tao Li, Mitsunori Ogihara, and George Tzanetakis

NEXT GENERATION OF DATA MINING
Hillol Kargupta, Jiawei Han, Philip S. Yu, Rajeev Motwani, and Vipin Kumar

RAPIDMINER: DATA MINING USE CASES AND BUSINESS ANALYTICS APPLICATIONS
Markus Hofmann and Ralf Klinkenberg

RELATIONAL DATA CLUSTERING: MODELS, ALGORITHMS,
AND APPLICATIONS
Bo Long, Zhongfei Zhang, and Philip S. Yu

SERVICE-ORIENTED DISTRIBUTED KNOWLEDGE DISCOVERY
Domenico Talia and Paolo Trunfio

SPECTRAL FEATURE SELECTION FOR DATA MINING
Zheng Alan Zhao and Huan Liu

STATISTICAL DATA MINING USING SAS APPLICATIONS, SECOND EDITION
George Fernandez

SUPPORT VECTOR MACHINES: OPTIMIZATION BASED THEORY, ALGORITHMS,
AND EXTENSIONS
Naiyang Deng, Yingjie Tian, and Chunhua Zhang

TEMPORAL DATA MINING
Theophano Mitsa

TEXT MINING: CLASSIFICATION, CLUSTERING, AND APPLICATIONS
Ashok N. Srivastava and Mehran Sahami

TEXT MINING AND VISUALIZATION: CASE STUDIES USING OPEN-SOURCE TOOLS
Markus Hofmann and Andrew Chisholm

THE TOP TEN ALGORITHMS IN DATA MINING
Xindong Wu and Vipin Kumar

UNDERSTANDING COMPLEX DATASETS: DATA MINING WITH MATRIX
DECOMPOSITIONS
David Skillicorn

DATA SCIENCE
AND ANALYTICS

WITH PYTHON

Jesús Rogel-Salazar

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A C H A P M A N & H A L L B O O K

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20170517

International Standard Book Number-13: 978-1-498-74209-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If
any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.
copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identifi-
cation and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
http://www.copyright.com/
http://www.copyright.com/
http://www.copyright.com

To A. J. Johnson and Prof. Bowman

Thanks to Alan M Turing for

opening up my mind

http://taylorandfrancis.com

ix

Contents

1 Trials and Tribulations of a Data Scientist 1

1.1 Data? Science? Data Science! 2

1.1.1 So, What Is Data Science? 3

1.2 The Data Scientist: A Modern Jackalope 7

1.2.1 Characteristics of a Data Scientist and a Data Science Team 12

1.3 Data Science Tools 17

1.3.1 Open Source Tools 20

1.4 From Data to Insight: the Data Science Workflow 22

1.4.1 Identify the Question 24

1.4.2 Acquire Data 25

1.4.3 Data Munging 25

1.4.4 Modelling and Evaluation 26

1.4.5 Representation and Interaction 26

1.4.6 Data Science: an Iterative Process 27

1.5 Summary 28

x j. rogel-salazar

2 Python: For Something Completely Different 31

2.1 Why Python? Why not?! 33

2.1.1 To Shell or not To Shell 36

2.1.2 iPython/Jupyter Notebook 39

2.2 Firsts Slithers with Python 40

2.2.1 Basic Types 40

2.2.2 Numbers 41

2.2.3 Strings 41

2.2.4 Complex Numbers 43

2.2.5 Lists 44

2.2.6 Tuples 49

2.2.7 Dictionaries 52

2.3 Control Flow 54

2.3.1 if... elif... else 55

2.3.2 while 56

2.3.3 for 57

2.3.4 try... except 58

2.3.5 Functions 61

2.3.6 Scripts and Modules 65

2.4 Computation and Data Manipulation 68

2.4.1 Matrix Manipulations and Linear Algebra 69

2.4.2 NumPy Arrays and Matrices 71

2.4.3 Indexing and Slicing 74

data science and analytics with python xi

2.5 Pandas to the Rescue 76

2.6 Plotting and Visualising: Matplotlib 81

2.7 Summary 83

3 The Machine that Goes “Ping”: Machine Learning and Pattern

Recognition 87

3.1 Recognising Patterns 87

3.2 Artificial Intelligence and Machine Learning 90

3.3 Data is Good, but other Things are also Needed 92

3.4 Learning, Predicting and Classifying 94

3.5 Machine Learning and Data Science 98

3.6 Feature Selection 100

3.7 Bias, Variance and Regularisation: A Balancing Act 102

3.8 Some Useful Measures: Distance and Similarity 105

3.9 Beware the Curse of Dimensionality 110

3.10 Scikit-Learn is our Friend 116

3.11 Training and Testing 119

3.12 Cross-Validation 124

3.12.1 k-fold Cross-Validation 125

3.13 Summary 128

xii j. rogel-salazar

4 The Relationship Conundrum: Regression 131

4.1 Relationships between Variables: Regression 131

4.2 Multivariate Linear Regression 136

4.3 Ordinary Least Squares 138

4.3.1 The Maths Way 139

4.4 Brain and Body: Regression with One Variable 144

4.4.1 Regression with Scikit-learn 153

4.5 Logarithmic Transformation 155

4.6 Making the Task Easier: Standardisation and Scaling 160

4.6.1 Normalisation or Unit Scaling 161

4.6.2 z-Score Scaling 162

4.7 Polynomial Regression 164

4.7.1 Multivariate Regression 169

4.8 Variance-Bias Trade-Off 170

4.9 Shrinkage: LASSO and Ridge 172

4.10 Summary 179

5 Jackalopes and Hares: Clustering 181

5.1 Clustering 182

5.2 Clustering with k-means 183

5.2.1 Cluster Validation 186

5.2.2 k-means in Action 189

data science and analytics with python xiii

5.3 Summary 193

6 Unicorns and Horses: Classification 195

6.1 Classification 196

6.1.1 Confusion Matrices 198

6.1.2 ROC and AUC 202

6.2 Classification with KNN 205

6.2.1 KNN in Action 206

6.3 Classification with Logistic Regression 211

6.3.1 Logistic Regression Interpretation 216

6.3.2 Logistic Regression in Action 218

6.4 Classification with Naïve Bayes 226

6.4.1 Naïve Bayes Classifier 232

6.4.2 Naïve Bayes in Action 233

6.5 Summary 238

7 Decisions, Decisions: Hierarchical Clustering, Decision Trees and

Ensemble Techniques 241

7.1 Hierarchical Clustering 242

7.1.1 Hierarchical Clustering in Action 245

7.2 Decision Trees 249

7.2.1 Decision Trees in Action 256

xiv j. rogel-salazar

7.3 Ensemble Techniques 265

7.3.1 Bagging 271

7.3.2 Boosting 272

7.3.3 Random Forests 274

7.3.4 Stacking and Blending 276

7.4 Ensemble Techniques in Action 277

7.5 Summary 282

8 Less is More: Dimensionality Reduction 285

8.1 Dimensionality Reduction 286

8.2 Principal Component Analysis 291

8.2.1 PCA in Action 295

8.2.2 PCA in the Iris Dataset 300

8.3 Singular Value Decomposition 304

8.3.1 SVD in Action 306

8.4 Recommendation Systems 310

8.4.1 Content-Based Filtering in Action 312

8.4.2 Collaborative Filtering in Action 316

8.5 Summary 323

9 Kernel Tricks up the Sleeve: Support Vector Machines 327

9.1 Support Vector Machines and Kernel Methods 328

data science and analytics with python xv

9.1.1 Support Vector Machines 331

9.1.2 The Kernel Trick 340

9.1.3 SVM in Action: Regression 343

9.1.4 SVM in Action: Classification 347

9.2 Summary 353

Pipelines in Scikit-Learn 355

Bibliography 361

Index 369

http://taylorandfrancis.com

xvii

List of Figures

1.1 A simplified diagram of the skills needed in data

science and their relationship. 8

1.2 Jackalopes are mythical animals resembling a jackrabbit

with antlers. 10

1.3 The various steps involved in the data science

workflow. 23

2.1 A plot generated by matplotlib. 84

3.1 Measuring the distance between points A and

B. 107

3.2 The curse of dimensionality. Ten data instances placed

in spaces of increased dimensionality, from 1 dimension

to 3. Sparsity increases with the number of

dimensions. 112

3.3 Volume of a hypersphere as a function of the

dimensionality N. As the number of dimensions

increases, the volume of the hypersphere tends to

zero. 115

3.4 A dataset is split into training and testing sets. The

training set is used in the modelling phase and the

testing set is held for validating the model. 122

xviii j. rogel-salazar

3.5 For k = 4, we split the original dataset into 4 and use

each of the partitions in turn as the testing set. The

result of each fold is aggregated (averaged) in the final

stage. 126

4.1 The regression procedure for a very well-behaved

dataset where all data points are perfectly aligned. The

residuals in this case are all zero. 142

4.2 The regression procedure for a very well-behaved

dataset where all data points are perfectly aligned. The

residuals in this case are all zero. 143

4.3 A scatter plot of the brain (gr) versus body mass (kg)

for various mammals. 145

4.4 A scatter plot and the regression line calculated for the

brain (gr) versus body mass (kg) for various

mammals. 152

4.5 A scatter plot in a log-log scale for the brain (gr) versus

body mass (kg) for various mammals. 156

4.6 A log-log scale figure with a scatter plot and the

regression line calculated for the brain (gr) versus body

mass (kg) for various mammals. 158

4.7 A comparison of the simple linear regression model

and the model with logarithmic transformation for the

brain (gr) versus body mass (kg) for various

mammals. 159

4.8 A comparison of a quadratic model, a simple linear

regression model and a model with logarithmic

transformation fitted to the brain (gr) versus body mass

(kg) for various mammals. 167

data science and analytics with python xix

4.9 Using GridSearchCV we can scan a set of parameters to

be used in conjunction with cross-validation. In this

case we show the values of λ used to fit a ridge and

LASSO models, together with the mean scores obtained

during modelling. 178

5.1 The plots show the exact same dataset but in different

scales. The panel on the left shows two potential

clusters, whereas in the panel on the right the data may

be grouped into one. 185

5.2 A diagrammatic representation of cluster cohesion and

separation. 188

5.3 k-means clustering of the wine dataset based on

Alcohol and Colour Intensity. The shading areas

correspond to the clusters obtained. The stars indicate

the position of the final centroids. 191

6.1 ROC for our hypothetical aircraft detector. We contrast

this with the result of a random detector given by the

dashed line, and a perfect detector shown with the

thick solid line. 204

6.2 Accuracy scores for the KNN classification of the Iris

dataset with different values of k. We can see that 11

neighbours is the best parameter found. 209

6.3 KNN classification of the Iris dataset based on sepal

width and petal length for k = 11. The shading areas

correspond to the classification mapping obtained by

the algorithm. We can see some misclassifications in the

upper right-hand corner of the plot. 210

6.4 A plot of the logistic function g(z) = ez

1+ez . 213

xx j. rogel-salazar

6.5 A heatmap of mean cross-validation scores for the

Logistic Regression classification of the Wisconsin

Breast Cancer dataset for different values of C with L1

and L2 penalties. 222

6.6 ROC curves obtained by cross-validation with k = 3 on

the Wisconsin Breast Cancer dataset. 225

6.7 Venn diagrams to visualise Bayes’ theorem. 228

7.1 A dendrogram is a tree-like structure that enables us to

visualise the clusters obtained with hierarchical

clustering. The height of the clades or branches tells us

how similar the clusters are. 243

7.2 Dendrogram generated by applying hierarchical

clustering to the Iris dataset. We can see how three

clusters can be determined from the dendrogram by

cutting at an appropriate distance. 247

7.3 A simple decision tree built with information from

Table 7.1. 251

7.4 A comparison of impurity measures we can use for a

binary classification problem. 254

7.5 Heatmap of mean cross-validation scores for the

decision tree classification of the Titanic passengers for

different values of maximum depth and minimum

sample leaf. 262

7.6 Decision tree for the Titanic passengers dataset. 264

7.7 Decision boundaries provided by a) a single decision

tree, and b) by several decision trees. The combination

of the boundaries in b) can provide a better

approximation to the true diagonal boundary. 268

data science and analytics with python xxi

7.8 A diagrammatic view of the idea of constructing an

ensemble classifier. 269

7.9 ROC curves and their corresponding AUC scores for

various ensemble techniques applied to the Titanic

training dataset. 282

8.1 A simple illustration of data dimensionality reduction.

Extracting features {u1, u2} from the original set

{x1, x2} enables us to represent our data more

efficiently. 290

8.2 A diagrammatic scree plot showing the eigenvalues

corresponding to each of 6 different principal

components. 294

8.3 A jackalope silhouette to be used for image

processing. 296

8.4 Principal component analysis applied to the jackalope

image shown in Figure 8.3. We can see how retaining

more principal components increases the resolution of

the image. 298

8.5 Scree plot of the explained variance ratio (for 10

components) obtained by applying principal

component analysis to the jackalope image shown in

Figure 8.3. 299

8.6 Scree plot of the explained variance ratio obtained by

applying principal component analysis to the four

features in the Iris dataset. 301

8.7 An illustration of the singular value

decomposition. 305

8.8 An image of a letter J (on the left) and its column

components (on the right). 307

xxii j. rogel-salazar

8.9 The singular values obtained from applying SVD in a

an image of a letter J constructed in Python. 309

8.10 Reconstruction of the original noisy letter J (left most

panel), using 1-4 singular values obtained from

SVD. 310

9.1 The dataset shown in panel a) is linearly separable in

the X1 − X2 feature space, whereas the one in panel b) is

not. 329

9.2 A linearly separable dataset may have a large number

of separation boundaries. Which one is the

best? 331

9.3 A support vector machine finds the optimal boundary

by determining the maximum margin hyperplane. The

weight vector w determines the orientation of the

boundary and the support vectors (marked in black)

define the maximum margin. 333

9.4 A comparison of the regression curves obtained using a

linear model, and two SVM algorithms: one with a

linear kernel and the other one with a Gaussian

one. 346

9.5 Heatmap of the mean cross-validation scores for the a

support vector machine algorithm with a Gaussian

kernel for different values of the parameter C. 350

9.6 A comparison of the classification boundaries obtained

using support vector machine algorithms with different

implementations: SVC with a linear, Gaussian and

degree-3 polynomial kernels, and LinearSVC. 353

xxiii

List of Tables

2.1 Arithmetic operators in Python. 40

2.2 Comparison operators in Python. 56

2.3 Standard exceptions in Python. 60

2.4 Sample tabular data to be loaded into a Pandas

dataframe. 77

2.5 Some of the input sources available to Pandas. 81

3.1 Machine learning algorithms can be classified by the

type of learning and outcome of the algorithm. 98

4.1 Results from the regression analysis performed on the

brain and body dataset. 149

4.2 Results from the regression analysis performed on the

brain and body dataset using a log-log

transformation. 158

6.1 A confusion matrix for an elementary binary

classification system to distinguish enemy aircraft from

flocks of birds. 199

6.2 A diagrammatic confusion matrix indicating the

location of True Positives, False Negatives, False

Positives and True Negatives. 200

xxiv j. rogel-salazar

6.3 Readings of the sensitivity, specificity and fallout for a

thought experiment in a radar receiver to distinguish

enemy aircraft from flocks of birds. 203

7.1 Dietary habits and number of limbs for some

animals. 250

7.2 Predicted classes of three hypothetical binary base

classifiers and the ensemble generated by majority

voting. 269

7.3 Predicted classes of three hypothetical binary base

classifiers with high correlation in their

predictions. 271

7.4 Predicted classes of three hypothetical binary base

classifiers with low correlation in their

predictions. 271

8.1 Films considered in building a content-based filtering

recommendation system. 313

8.2 Scores provided by users regarding the three features

used to describe the films in our database. 313

8.3 Utility matrix of users v books used for collaborative

filtering. We need to estimate the scores marked with

question marks. 318

xxv

Preface

This book is the result of very interesting discussions,

debates and dialogues with a large number of people at

various levels of seniority, working at startups as well as

long-established businesses, and in a variety of industries,

from science to media to finance. The book is intended to be

a companion to data analysts and budding data scientists

that have some working experience with both programming

and statistical modelling, but who have not necessarily

delved into the wonders of data analytics and machine

learning. The book uses Python1 as a tool to implement and 1 Python Software Foundation
(1995). Python reference manual.
http://www.python.orgexploit some of the most common algorithms used in data

science and data analytics today.

It is fair to say that there are a number of very useful tools

and platforms available to the interested reader such as the

excellent open source R project2 or proprietary ones like 2 R Core Team (2014). R: A
language and environment for
statistical computing. http:

//www.R-project.org

SPSS® or SAS®. They are all highly recommended and they

have their strengths (and weaknesses). However, given the

experience I have been lucky to have had in implementing

and explaining algorithms, I find Python to be a very

malleable tool. This reminds me of a conversation with an

http://www.R-project.org
http://www.R-project.org
http://www.python.org

xxvi j. rogel-salazar

experienced analyst at a big consultancy firm who

mentioned that doing any machine learning or data science

related task in Python was impossible. I politely disagreed. We shall show in this book that

doing machine learning or data

science with Python is indeed

possible.

It is true though that there may be more suitable tools for

certain tasks, but it would be a truly Herculean labour to

present them all in one single volume. With that in mind,

the choice of using Python throughout this book suggested

itself: Python is a popular and versatile scripting and

object-oriented language, it is easy to use and has a large

active community of developers and enthusiasts, not to

mention the richness of the iPython/Jupyter Notebook, as

iPython/Jupyter Notebook is a

flexible web-based computational

environment that combines code,

text, mathematics and plots in

a single document. Visit http:

//ipython.org/notebook.html

well as the fact that it has been used by both business and

academia for some time now.

The main purpose of the book is to present the reader with

some of the main concepts used in data science and

analytics using tools developed in Python such as

Scikit-learn3, Pandas4, Numpy5 and others. The book is 3 Pedregosa, F., G. Varoquaux,
A. Gramfort, V. Michel, et al.
(2011). Scikit-learn: Machine
learning in Python. Journal of
Machine Learning Research 12,
2825–2830

4 McKinney, W. (2012). Python
for Data Analysis: Data Wrangling
with Pandas, NumPy, and IPython.
O’Reilly Media
5 Scientific Computing Tools
for Python (2013). NumPy.
http://www.numpy.org

intended to be a bridge to the data science and analytics

world for programmers and developers, as well as graduates

in scientific areas such as mathematics, physics,

computational biology and engineering, to name a few. In

my experience, the background and skills acquired by the

readers I have in mind are a great asset to have. However, in

many cases the bigger picture is somewhat blurred due to

the sharp specialisms required in their day-to-day activities.

This book thus serves as a guide to exploit those skills in the

data science and analytics arena. The book focusses on

showing the concepts and ideas behind popular algorithms

and their use, but it does not get into the details of their

http://ipython.org/notebook.html
http://ipython.org/notebook.html
http://www.numpy.org

data science and analytics with python xxvii

implementation in Python. It does, however, use open

source implementations of those algorithms.

The examples contained in this volume have been tested

in Python 3.5 under MacOS, Linux and Windows 7, and

the code can be run with minimal changes in a Python

2 distribution. For reference, the versions of some of the

packages used in the book are as follows:

• Python - 3.5.2

• Pandas - 0.19.1

• NumPy - 1.11.2

• Scikit-learn - 0.18

• StatsModels - 0.6.1

In particular I have chosen to use the Anaconda Python

distribution6 provided by Continuum Analytics as it offers 6 Continuum Analytics (2014).
Anaconda 2.1.0. https://store.

continuum.io/cshop/anaconda/installations in all of the three computer systems mentioned

above, plus having the advantage of offering a rich

ecosystem of libraries readily available directly from the

distribution itself, and most importantly it is available to all.

There are a few other ways of obtaining Python as well as

other versions of the software: For instance directly from the

Python Software Foundation, as well as distributions from
Python Software Foundation

https://www.python.org

Enthought Canopy, or from package managers such as Enthought Canopy https://www.

enthought.com/products/epd/Homebrew. Anaconda offers an easy environment to install

Homebrew http://brew.shand maintain the software, with minimum hassle for the

user. I assume that the reader is working with the computer

via scripts as well as interactively in a shell.

https://www.enthought.com/products/epd/
https://store.continuum.io/cshop/anaconda/
http://brew.sh
https://www.enthought.com/products/epd/
https://www.python.org
https://store.continuum.io/cshop/anaconda/

xxviii j. rogel-salazar

The book shows the use of computer code by enclosing it in

a box as follows:

> 1 + 1 # Example of computer code

2

We have made use of a diple (>) to denote the command

line terminal prompt shown in the Python shell. Please

note that the same commands can be used in the iPython

interactive shell or iPython/Jupyter notebook, although

the look and feel may be quite different. As you may have

already noticed, the book uses margin notes, such as the

one that appears to the right of this paragraph, to highlight This is an example of the margin

notes used throughout this book.certain areas or commands, as well as to provide some

useful comments.

The book is organised in a way that individual chapters are

sufficiently independent from each other so that the reader

is comfortable using the contents as a reference rather than

a textbook. Inevitably, there will be occasions where certain

topics make reference to other parts of the book and I will

point out when that may be the case. I would also like to

take this opportunity to mention that the implementations

presented are by no means the only or best way to do things.

Programming is pretty similar to the creative process of Programming is a creative process,

and as such there is more than one

way to do things.
writing: The fact that you have a set of words does not

imply that we all write reports in a poetic manner. I would

be delighted to hear from you all about the implementations

and changes you make to the code presented here. Do get in

touch!

data science and analytics with python xxix

We start in Chapter 1 with a discussion of what data science The data science workflow is

discussed on Chapter 1.and analytics are, from the point of view of the process and

results obtained. We pay particular attention to the data

exploration process as well as the data munging that needs

to be carried out prior to the application of algorithms and

analysis.

In Chapter 2 we take the opportunity to remind us of some A Python primer is given in

Chapter 2.important features of the Python language. The aim is to

revisit some important commands and instructions that

provide the base for the rest of the book. This will also

give us the opportunity to revise some commands and

instructions used in later chapters.

In Chapter 3 we cover basic elements of machine learning, Chapter 3 covers the basics

of machine learning, pattern

recognition and artificial

intelligence.

pattern recognition and artificial intelligence that underpin

the algorithms and implementations we will use in the rest

of the book.

By the time Chapter 4 is reached we will have the necessary Chapter 4 covers various

regression algorithmsfoundations to implement regression analysis using Python

via both StatsModels and Scikit-learn. The main points in

the usage of generalised linear models for regression are

covered in this chapter.

In Chapter 5 we talk about clustering techniques, whereas Chapters 5 and 6 cover clustering

and classification techniques,

respectively.
Chapter 6 covers classification algorithms. These two

chapters are central to the data science workflow: Clustering

enables us to assign labels to our data in an unsupervised

manner; in turn we can use these labels as targets in a

classification algorithm.

xxx j. rogel-salazar

In Chapter 7 we introduce the use of hierarchical clustering, Chapter 7 deals with hierarchical

clustering decision trees and

ensemble techniques
decision trees and talk about ensemble techniques such

as bagging and boosting. It is worth pointing out that

ensemble techniques have become a common tool among

data scientists and you are highly recommended to check

this section out.

Dimensionality reduction techniques are discussed in

Chapter 8. There we will cover algorithms such as principal Chapter 8 talks about

dimensionality reduction.component analysis and singular value decomposition. As

an application we will talk about recommendation systems.

Last but not least, in Chapter 9 we will cover the support Chapter 9 deals with support

vector machines.vector machine algorithm and the all important Kernel trick

in applications such as regression and classification.

The book was made possible, as I mentioned before, thanks

to discussions, presentations and exchanges with colleagues

both in academia as well as in business. I am very grateful

for their input and suggestions. I would also like to thank

my editor at CRC Press, Randi Cohen, as well as the

technical reviewers for their comments and suggestions.

Finally, the encouragement that my family and friends have

given me to take up yet another writing project has been

invaluable. This goes to you all!

London, UK Dr Jesús Rogel-Salazar

February 2017

xxxi

Reader’s Guide

This book is intended to be a companion to any jackalope

data scientist from beginners to seasoned practitioners. The Read Chapter 1 to understant the

Jackalope reference.material covered here has been developed in the course

of my interactions with colleagues and students and is

presented in a systematic way that builds upon previous

material presented.

I highly recommend reading the book in a linear manner.

However, I realise that different readers may have different

needs, therefore here is a guide that may help in reading

and/or consulting this book:

• Managers and readers curious about Data Science:

– Start by reading Chapter 1 where you will learn what

Data Science is all about

– Follow that by reading Chapter 3 where an

introduction to machine learning awaits you

– Make sure you understand those two chapters inside-

out; they will help you to understand your jackalope

data scientists.

xxxii j. rogel-salazar

• Beginners:

– If you do not have a background in programming,

start with Chapter 2, where a swift introduction to

Python is presented

– Follow that by reading Chapter 1 and Chapter 3 to

understand more about what Data Science is and the

principles of machine learning.

• Readers familiar with Python:

– You can safely skip Chapter 2 and go directly to

Chapter 4

• Seasoned readers may find it easier to navigate the book

by themes or subjects

– Regression is covered in Chapter 4, including:

* Ordinary least squares

* Multivariate regression

* LASSO and Ridge regression

* Support vector machines for regression are covered

in Section 9.1.3

– Clustering:

* K-means is covered in Chapter 5

* Hierarchical Clustering is covered in Section 7.1

– Classification is generally covered in Chapter 6

including:

* KNN

* Logistic regression

* Naïve Bayes

data science and analytics with python xxxiii

* Support vector machines for classification are

covered in Section 9.1.4

– Decision Trees and Ensemble Techniques are

discussed in Chapter 7

– Recommendation Systems are introduced in Section

8.4

– Text manipulation examples are provided in Section

6.4.2 where tweets are used as the main data source.

– Image manipulation examples are provided in

Sections 8.2.1 and 8.3.1

http://taylorandfrancis.com

xxxv

About the Author

Dr Jesús Rogel-Salazar is a Lead Data Scientist with

experience in the field working for companies such as

AKQA, IBM Data Science Studio, Dow Jones and others.

He is a visiting researcher at the Department of Physics at

Imperial College London, UK and a a member of the School

of Physics, Astronomy and Mathematics at the University of

Hertfordshire, UK. He obtained his doctorate in Physics at

Imperial College London for work on quantum atom optics

and ultra-cold matter.

He has held a position as senior lecturer in mathematics

as well as a consultant and data scientist in the financial

industry since 2006. He is the author of the book Essential

Matlab and Octave, also published with CRC Press. His

interests include mathematical modelling, data science

and optimisation in a wide range of applications including

optics, quantum mechanics, data journalism and finance.

http://taylorandfrancis.com

1

1

Trials and Tribulations of a Data Scientist

The ever increasing availability of data requires

the use of tools that enable businesses and researchers to

draw conclusions and make decisions based on the evidence

provided by the data itself. From performing a regression

analysis to determining the relationship between data

features, or improving on recommendation systems used

in e-commerce, data science and analytics are used every Data science and analytics is used

every day by all of us.day by all of us. This book is intended to provide those

interested in data science and analytics a perspective into

the subject matter using Python, a popular programming Python will be used throughout

the book, get well acquainted with

it!
language available for various platforms and widely used

both in business and academia.

In this chapter we will cover what data science is and how

it is related to various disciplines from mathematics to

business intelligence and from programming to design.

We will discuss the characteristics that make a good data

scientist and the composition of a data science team. We

will also provide an overview of the typical workflow in a

2 j. rogel-salazar

data science and analytics project and shall see the trials and

tribulations in the work cycle of a data scientist.

1.1 Data? Science? Data Science!

The use of data as evidence in support for decision

making is nothing new. You only have to take a look at

the original meaning of the word statistics as the analysis Statistics was originally

understood as the analysis and

interpretation of information

about states.

and interpretation of information relating to states such

as economic and demographic data. Nowadays, the word

statistics is either understood as a branch of mathematics

that deals with the collection, analysis, interpretation and

presentation of data; or more colloquially as a fact or figure

obtained from a study based on large quantities of data.

Simply take a look at the news on any given day and you

will surely get to hear about statistics, proportions and

percentages, all in support (or not) of a new initiative, plan

or recommendation. The power of data is all around us and

we use it all the time.

Now, what about the word science? Well, you may

remember from your school days that science is a system Science is organised knowledge.

that enables the organisation of knowledge, based on

testable evidence and predictions. Notice that key word

evidence mentioned there again.

No surprises here so far, right? From a very simplified

point of view, the scientific method makes use of data and

their analysis to acquire, correct and integrate knowledge.

Nonetheless, data science is not just simply the direct use

However, Data Science 6= Data +

Science

data science and analytics with python 3

of statistics, or the systematisation of data. How shall we

understand that much loved combination of the words data

and science?

1.1.1 So, What Is Data Science?

Data science and analytics are rapidly gaining

prominence as some of the more sought after disciplines

in academic and professional circles. In a nutshell, data

science can be understood as the extraction of knowledge

and insight from various sources of data, and the skills Data science skills range from

programming to design, and from

mathematics to storytelling.
required to achieve this range from programming to design,

and from mathematics to storytelling.

There is no doubt that the term data science is a true

neologism of our time. The term has started being used and,

to a certain extent, even abused. As we have mentioned

before data science is rather more than the sum of data on
In the case of defining data

science, the whole is indeed

greater than the parts.
the one hand and science on the other one, although it is

inevitably related to both concepts.

Currently, data science can be considered a budding field

with applications in a wide range of areas and industries, as

well as in academic research. It is fair to say that it is elusive

to define this emerging field, and throughout this book we

shall consider data science and analytics as a portmanteau for In this book we will use a practical

definition for data science as a

combination of overlapping tasks

related to data with the aim to

derive actionable decisions.

a number of overlapping tasks related to data - from

collection, provision and preparation, analysis and

visualisation, curation and storage - that exploit tools from

empirical sciences, mathematics, business intelligence,

machine learning and artificial intelligence. The aim of these

4 j. rogel-salazar

tasks is to enable effective, pragmatic and most importantly

actionable decisions.

The motivation for data science and analytics in deriving

valuable insights from data is great, and widely welcomed

by businesses. However, this is a very challenging task. Careful storage and analysis of

data delivers a very competitive

edge.
Companies such as Google, Netflix and Amazon have

demonstrated that careful storage and analysis of data

delivers a very competitive edge. These days there are easier

and cheaper ways to collect large amounts of data than ever

before, and mobile is becoming a ubiquitous presence. This

has allowed companies, particularly start-ups, to develop

in-house data science capabilities.

Typical examples of data science products are better Some examples of data science

outputs make it easier to clarify

what the discipline does. This list

is by no means exhaustive.

explained by the questions they aim to answer; these

questions are the drivers to the acquisition and selection of

the appropriate data to be interrogated in order to provide

insight into an area of interest. I am sure you can come up

with a few of examples relevant to you, but here are some

that come to mind:

• What product will sell better in conjunction with another Market basket analysis

popular product?

• Who will be declared Prime Minister (or President, or Predictive analytics

winner; depending on the flavour of the government

system of interest) in the next general election?

• How can customers be encouraged to spend a longer E-commerce

time in an online portal?

• Are there any discernible patterns that allow us to
Clustering analysis and market

segmentation

data science and analytics with python 5

characterise different groups of sales agents, customers or

businesses?

• What advertisement should be placed on what site? Advertising and marketing

• Given the interests of a customer, what other products Recommendation systems

can be recommended to them?

• What are the latest developments and breakout reports in Social media analysis

newspapers and social media that may affect the industry

of interest?

• Given someone’s interests and hobbies, who may be Online services

suitable potential partners?

• How can we keep potentially sensitive information Cybersecurity

protected and react proactively to information we store?

• How can we distinguish valid, relevant documents such Classification analysis

as emails (ham), from invalid, irrelevant ones (spam)?

• How to determine if a retail transaction is valid or not? Fraud prevention

• What is the demand for a particular service at a Demand forecasting

particular time or place?

These are not questions that decision-makers, businesses

and industries, large and small, have recently started

formulating. So, why the resurgence in seeking answers to

them? The main answer is the availability of potentially The availability of large volumes

of data has enabled data science to

flourish.
useful data, big or small, together with the impact of

technology, computer science and statistics in everyday life.

Out of the ingredients mentioned above, accessible datasets

may be the most important one since without them the

insight provided by technology alone is rather limited. After

all, the plural of anecdote is not data. Having said that, it is The plural of anecdote is not data.

6 j. rogel-salazar

important to note that this does not mean that every single

data science case to be tackled falls into the category of

so-called big data, particularly when we take into account

that the adjective big can be used in a relative manner. We

shall expand on this point later on in Section 1.3.1.

Note that this book is about data

science, not necessarily about big

data.

One important thing to bear in mind about the outputs of

data science and analytics is that in the vast majority of

cases they do not uncover hidden patterns or relationships

as if by magic, and in the case of predictive analytics they Predictive analytics do not tell us

the future; instead they allow us to

forecast.
do not tell us exactly what will happen in the future.

Instead, they enable us to forecast what may come. In other

words, once we have carried out some modelling there is

still a lot of work to do to make sense out of the results

obtained, taking into account the constraints and

assumptions in the model, as well as considering what an

acceptable level of reliability is in each scenario.

Similarly, there is the tacit prerequisite of having accurate, For data to be useful it should be

available and it has to be timely.timely data that can be readily utilised to make sense out

of the modelling results, and reflect the state-of-the-art

in an application. It is therefore imperative that decision

makers as well as IT and business stakeholders take time to

understand the information that will be needed, as well as

being prepared to realise that certain data may not be fit for

their purpose. It is indeed disheartening to come to terms Realising that data may not be

fit for answering the questions at

hand is a difficult but important

thing to bear in mind.

with the fact that some data may not have the necessary

features to be used in building a prediction, for example.

Nonetheless, it is better to realise that is the case at an early

stage, rather than relying on unsuitable results to make

important decisions that impact the business.

data science and analytics with python 7

Even if data science may not yet be considered a

well-defined subject, the number of academic and training

programmes being offered by universities and at various The need for capable data

scientists in industry has seen

a healthy increase in recent times.
workplaces has seen a healthy increase. This is a natural

result of the need that exists for well-informed, capable

experts that we get to call data scientists. So what do data

scientists do and what do they look like? It will all shall be

uncovered.

1.2 The Data Scientist: A Modern Jackalope

The new term used to describe the person that deals

with the seemingly disparate array of tasks described above

may seem to be yet another, more fashionable way to

describe a statistician or a business analyst. However, we

can certainly agree that there is a gap between the latter two,

and that the skills required by a data scientist involve A data scientist requires the

knowledge of mathematics and

computer science, but also a good

business background.

aspects that include both statistics and a strong business

acumen, but also foundations in computer science,

mathematics, modelling and programming, not to mention

good communication skills. A simplified diagram of these

skills and their relationship is shown in Figure 1.1.

In that sense a data scientist role goes beyond the collection

and reporting on data; it must involve looking at a business The role of a data scientist

goes beyond the collection and

reporting on data.
application or process from multiple vantage points and

determining what the main questions and follow-ups are, as

well as recommending the most appropriate ways to employ

the data at hand.

8 j. rogel-salazar

Figure 1.1: A simplified diagram
of the skills needed in data science
and their relationship.In terms of characteristics, a data scientist has an inquisitive

mind and is prepared to explore and ask questions, examine

assumptions and analyse processes, test hypotheses and Not only does a data scientist

need an inquisitive mind, but also

good communication skills.
try out solutions and, based on evidence, communicate

informed conclusions, recommendations and caveats to

stakeholders and decision makers.

In other words, a data scientist is a true new Renaissance

woman or man. No wonder that despite being branded

the sexiest job of the 21st century, as well as the increasing

demand for these individuals, it is hard to find people

data science and analytics with python 9

with the right skills to fill in these roles. This has lead to No wonder data scientists have

been dubbed Unicorns.branding data scientists as Unicorns.

To a certain extent, the symbolism of a Unicorn as a creature

that is beautiful, mysterious and difficult to tame or even

capture may be applicable to describe a data scientist.

However, in my opinion, it may not be totally appropriate

Branding data scientists as

Unicorns is a result of the quixotic

expectations businesses and

industries have and thus is not

appropriate.
given the fact that, as majestic as Unicorns can be, they are

way too common as far as popular culture goes.

The shortage that businesses experience when trying to

attract data scientists is more likely due to the fact that they

have created internal expectations for the role and that no

single individual can fulfil, thus appealing to the magical

nature of a common mythical beast. They have created their

idea of the Data Scientist Unicorn, and unfortunately the

fascination prevails.

To tackle the prevailing image, I am convinced that the use

of a new symbol is needed. And a silly one at that! There A new allegory is needed to tackle

the unrealistic image of a data

scientist.
is an allegory I usually propose to colleagues and those

that talk about the data science Unicorn. It seems to me to

be a more appropriate one than the existing image: It is

still another mythical creature, less common perhaps than

the Unicorn, but more importantly with some faint fact The Jackalope is the one we

propose.about its actual existence: a Jackalope. You can see an artistic

rendition of a couple of Jackalopes in Figure 1.2.

A Jackalope is said to be a strange beast that looks like a

jackrabbit with a pair of stag horns. It is described to be A Jackalope is a mythical being

similar to a jackrabbit with a pair

of stag horns.
a shy but clever and cunning animal, and if threatened it

can be dangerous. If you are ever in the Mountain West in

10 j. rogel-salazar

Figure 1.2: Jackalopes are mythical
animals resembling a jackrabbit
with antlers.the United States you may stumble into Jackalope heads

mounted as trophies; but of course that is not the only

place where Jackalopes are endemic; there are tales of the

Hasenbock in Austria1 or you may hear the Huichol stories 1 Toelken, B. (2013). The Dynamics
of Folklore. University Press of
Coloradoin Mexico about how the tátSu (rabbit) lost its antlers to the

kaukamali (deer)2. 2 Zingg, R., J. Fikes, P. Weigand,
and C. de Weigand (2004). Huichol
Mythology. University of Arizona
PressNo need to explain that a Jackalope is indeed an imaginary,

mythical being, much like the Unicorn, but it seems to be a

better metaphor for the data scientist. We can argue that it is

data science and analytics with python 11

rather difficult at best, and impossible at worst, getting hold It is indeed difficult to get hold of

a Unicorn.of a single individual that is able to be an all rounded ninja

programmer, with vast expertise in mathematics, statistics

and probability, plus knowledge of computer science and

well-versed in business. This offers no solution to businesses

interested in getting the benefit of exploiting the available

data.

Well, if you cannot get them in the wild, make them up If you cannot get data scientists in

the wild, make them up.from various parts - in the best style of Dr Frankenstein and

his monster - and that is where the image of the Jackalope

comes handy. In 1932 Douglas Herrick did indeed put

together his creation when he stuck a pair of deer horns on

a dead jackrabbit and mounted it as a trophy3. The rest is 3 Martin, D. (2003, Jan 19th).
Douglas Herrick, 82, Dies; Father
of West’s Jackalope. The New York
Times

history, as the Converse County city of Douglas, Wyoming

became the Jackalope capital of the United States.

Furthermore, you do not have to get a fake hunter’s trophy

to see a Jackalope. As I mentioned before, there is faint fact

to the existence of horned rabbits. That is definitely more Plus, there is a faint fact to the

existence of horned rabbits.than one can say about a one-horned horses. This is thanks

to the existence of a virus, the cottontail rabbit papilloma

virus (CRPV), which makes infected rabbits grow bone-like

structures in their skulls4. The virus was discovered in 4 Zimmer, C. (2012). Rabbits with
Horns and Other Astounding Viruses.
Chicago Shorts. University of
Chicago Press

the 1930s by Richard E. Shope and was the first example a

cancer caused by a virus.

The use of this allegory is proposed to show how silly it

is to simply employ wishful thinking in the pursuit of

exploiting data and hoping that a single individual will

come to the rescue. What I am trying to say is that one

12 j. rogel-salazar

should think optimistically about the prospect of finding It is possible to find capable data

scientists if we are prepared to be

realistic about our expectations.
capable data scientists if we are prepared to be realistic

about distinguishing mythological aspirations from messy

reality.

What I propose is that the best way to tackle the data

science needs of a business - a startup or a large

conglomerate - is to put together a rangale of jackalope data

scientists, than daydreaming of a bliss of non-existant I propose therefore to put together

a rangale of jackalope data

scientists.
Unicorns. After all, there are indeed better chances of seeing

a Jackalope-like animal than a Unicorn, right?

The next question is thus related to how the rangale of data

scientists should be put together, what roles they should Not only is it important to know

what qualities a data scientist

should have, but also what role

they are expected to play and

what tools they will use to do their

jobs.

have and what resources to provide them with. These points

are perhaps not easy to answer, as they depend to a large

extent on the area in a business where the insight is being

sought, and for what purpose (see Section 1.4). Nonetheless,

there are some general guidelines that can be taken into

account when tackling the data scientist conundrum.

1.2.1 Characteristics of a Data Scientist and a Data

Science Team

It seems that everyone loves, or would love to have,

a data scientist, and as we have seen, the wishful list of

desired characteristics makes it more difficult for businesses

to choose among otherwise capable candidates. Everyone would like to have

their own data scientist and

knowing what is important for the

business needs is a major aspect to

consider.

The analogy that comes to mind is that of the everlasting

dating puzzle where everyone is waiting for Princess or

data science and analytics with python 13

Prince Charming, but is unable to find “the one”. For a data

scientist to be considered “the one” the skills required

include those discussed in the previous section and

summarised in Figure 1.1.

Let us pause for a moment before we tackle the subject at

hand and consider what the purpose of the data science

team is or will be. This is a crucial step in building that

team as these objectives will help identify the important

traits that the data scientists are expected to have.

Furthermore, having a clear idea of how they will fit in the Having a clear idea of how a

potential data scientist will fit in

the organisation and what they

will work on is important.

organisation and what problems they are expected to solve

will aid in defining the size of the team and the type of

expertise needed. It is not uncommon to hear of

organisations that are interested in riding the data science

wave, but do not have a clear goal regarding the purpose of

their data science journey.

With the objective of the data science team in mind, it

becomes much easier to decide what is relevant in a

particular case. In general, what makes a good data scientist

is a linear combination of some of the following traits:

Some important traits in a data

scientist.

• Curiosity

• Grasp of machine learning

• Data product building and management

• Effective communication of data insights

• Programming and data visualisation abilities

• Knowledge of statistics and probability (other

mathematical areas are welcome)

14 j. rogel-salazar

• Healthy skepticism, in the scientific tradition: Carry out

experiments, test hypotheses, etc

The important thing to realise here is that the linear

combination of the features mentioned above do not

necessarily have to be equally weighted, and that is the The features mentioned do not

have to be combined in equal

measures.
main reason for the persistance of the Unicorn fallacy we

have been discussing. Should your data scientists lack some

more developed branches in their antlers, all you need to do

is give them a helping hand and provide them with

colleagues that will help in developing those skills, but

more importantly cover the gap in those desirable features.

In other words, much like Mr Herrick, put together your

very own Jackalope team with people who have a

broad-range of generalist interests, but a deep expertise in a

certain area or two.

The sensible thing to do is to start with a solid core and not

let the list above let you get carried away. In other words, Start a data science team with a

solid core, perhaps made out of

more than one person.
setting the foundations of the data science team is similar

to having strong foundations in a building; without them

the whole tower may collapse in an instant. Furthermore,

use this core to your advantage and bank some of the easy

wins to start with. The three pillars in this data science

triumvirate I am referring to may include, with variations in

the titles, the following main roles:

The data science triumvirate.

• Data Science Project Manager

• Lead or Principal Data Scientist

• Data Architect

data science and analytics with python 15

Having a person that is able and experienced in managing

technical teams is an important role to have in the mix. The

main idea is to cover the fact that many a data scientist

is far more interested in tackling questions and problems

head on, rather than dealing with managing a project from

end to end. One way to help them deliver is to have a

knowledgeable individual that is able, on the one hand, First, a Data Science Project

Manager is needed.to keep track of how projects are going, attend meetings

and manage relationships. On the other hand, they should

have a general understanding of techniques, algorithms and

technology to be able to liaise with the team effectively. The

project manager does not have to be a ninja programmer,

but should be able to understand what the rest of the team

are working on and the challenges they may be facing.

The second figure in the triumvirate is that of the principal

data scientist. Not only is it necessary to have a good project

manager, but also have someone with a strong background

in a quantitative field: Physics, mathematics, computer Followed by a Lead Data Scientist.

science, etc. Ideally the academic credentials this person

would speak for themselves. In terms of programming, this

person may not be a developer in the full sense of the word,

however, they should have a firm background in coding and

solving problems with the use of technology. An important

ingredient of the role is to be able to act as an advisor or

guide to other data scientists and analysts in the team.

The third pillar in the team is the data architect, who will

provide expertise in terms of data structures, databases,

software engineering and computational capability. It is

important for the data architect to be able to disentangle the

16 j. rogel-salazar

data resources that the business may (or may not) have, and

be able to use their expertise to assess what data is available, And finally a Data Architect

completes the trio.when it is available, and manage the constraints that the

business, regulation and security impose on the workflow.

Ideally, the data architect would be interested in quantitative

topics, but most importantly their programming skills must

be spot on. Note that the data architect will use the same

technology that the data scientists employ in their day-to-

day activities.

Finally, there are four aspects that are important to

remember when considering putting together that data

science team. First, consider who the main stakeholders of Clear reporting lines are also

important.the data science team are, and clarify the lines of reporting.

Remember that everyone wants their own data scientist, and

confusing or conflicting messages can lead to undesired

results.

Second, for data scientists to be able to work independently

and (more importantly) productively it is important for

them to be able to navigate the stack entirely. This enables Having appropriate tools to work

with is paramount.extracting relevant data with appropriate tools (see Section

1.3). A data science team without strong IT skills or

engineering support will have a hard time doing the job

they do best.

Third, once data has been identified for tackling a problem,

proper interpretation is not necessarily easy, and

misrepresentation of the results can be very damaging. It is It is necessary to have appropriate

expertise to interpret and rework

results.
not uncommon to see the use of tools such as machine

learning algorithms to be seen as a black box; in practice,

data science and analytics with python 17

knowing the capabilities, limitations and trade-offs requires

experience.

Fourth, have the product always in mind: Not only is it

important to have the right IT and statistics/machine

learning skills, but also the team has to have a clear idea of Also have a clear idea of the final

product and communicate results

clearly.
the final product of their efforts, as well as their target

audience. You may be able to come up with the most

amazing models and results, but they may not be of much

use if the product is of no interest to stakeholders or if the

data scientist fails to communicate the results to them.

Consider as well the tools used to present results; in other

words, there may be technology out there that lets the data Appropriate technology for

presenting and delivering results

is also important.
scientist dazzle his/her target audience, but if that audience

is not able to even access the technology, then you have lost

the battle before starting.

A point in case in my experience is the use of great

JavaScript libraries such as D3. I am an advocate for their

use as they can be effective and even great fun to use.

However, they only work on “modern” browsers and

unfortunately a large number of institutions out there only

support old browsers unsuitable to render the created assets.

This becomes a relevant point when considering the

deployment of solutions (dashboards, reports, etc.).

1.3 Data Science Tools

With our newly acquired data science team and the

individual high-calibre data scientists and analysts that

18 j. rogel-salazar

compose it, we are able to keep abreast of the the latest

developments in the field of analytics and data science,

and are able to extract actionable insights from our data.

However, not only do we need to be flexible, agile and The tools chosen need to enable us

to be flexible agile and expert.expert, we are also required to have the right tools and

infrastructure to enable the team to fulfil the objectives

agreed with the team sponsors. To that end, there are a

number of considerations that we would need to think

about in helping the team decide on the tools needed as

well as some other points such as:

Some considerations when

choosing appropriate tools.

• Regulatory and security requirements of hosting and

manipulating the data

• Locations of data sources - and related subjects such as

whether we would need/have immediate access to them,

or would get them in batches for upload

• Responsiveness requirements for queries - e.g. Real-time

v Fixed Reporting

• Volume of queries/searches to be run

• Format of the data source

• Quality of the data

The security consideration above is usually a big question

for any business that requires their data to be in a particular

Security of the data is very

important.

jurisdiction and does not plan to create their own cloud

service. For instance, Google to date will not guarantee that

data will stay in Europe, for example.

Data science and analytics is all about data, statistical

analysis and modelling. It is therefore important to have the

data science and analytics with python 19

technology that enables those functions. A data warehouse, A data warehouse, ETL software,

statistical, modelling and data-

mining tools are necessary.
ETL software, statistical, modelling and data-mining tools

are necessary. Similarly, an appropriate hardware and

network environment are required (perhaps even in the

cloud).

The technologies used in the analytics arena have evolved

at a fast pace in the last few years, and a number of open

source projects, with lots of support have emerged, for

instance:

• Data Framework: MapReduce, BigQuery, Hadoop, Spark. Data framework technologies

Hadoop is probably the most widely deployed (if

sometimes under-utilised) framework to process data.

Hadoop is an open source implementation of the

MapReduce programming model from Google. Other

technologies are aimed at processing streaming data,

such as S4 and Storm. BigQuery (by Google) is a web

service that enables interactive analysis of massive

datasets and can be used in conjunction with MapReduce.

Enterprise versions of Hadoop are available from vendors

such as HortonWorks. More recently the use of Spark has

captivated the imagination of the big data connoisseurs

• Streaming data collection: Kafka, Flume, Scribe. The Streaming data collection

technologiesmodels may be different but the aim is similar: Collect

data from many sources, aggregate it and feed it to a

database, or a system like Hadoop, or other clients

• Job scheduling: Azkaban and Oozie manage and Job scheduling technologies

coordinate complex data flows

• Big Data Query languages: Pig and Hive are languages Big data query languages

for querying large non-relational datastores. Big data

20 j. rogel-salazar

frameworks such as MapReduce and Hadoop can be

made more “user friendly” with them. Hive is very

similar to SQL. Pig is a data-oriented scripting language

• Data stores: Voldemort, Cassandra, Neo4j and HBase. Data stores

These are data stores designed for good performance on

very large datasets

1.3.1 Open Source Tools

The model of developing tools whose source code is

made available for contribution has shifted the environment

for their deployment both in small and large enterprises.

The collaborative nature of the various projects provides a

pool of knowledge and quality assurance that is difficult

to beat. A rich and wide set of tools in the open source There are many open source tools

that can be readily used in the

data science workflow.domain has contributed to the expansion of data science.

They include tools that process large datasets as well as data

visualisation, together with prototyping tools:

• Python: Data manipulation, prototyping, scripting, and We will be using Python in this

book.the main focus in this book

• Apache Hadoop: Framework for processing big data

• Apache Mahout: Scalable machine-learning algorithms

for Hadoop

• Spark: Cluster-computing framework for data analytics

• The R Project for Statistical Computing: Data R is a noteworthy software

package widely used by the data

science community.
manipulation and graphing

• Julia: High-performance technical computing

data science and analytics with python 21

• GitHub, Subversion: Software and model management

tools

• Ruby, Perl, OpenRefine: Prototyping and production

scripting languages

As mentioned above, Hadoop is rapidly becoming

ubiquitous for processing massive datasets. The framework

is scalable for distributed data processing, but as remarked Not all data science is about big

data.in Section 1.1.1, in my view not all data science problems

require big data processing. The Hadoop “hype” has caused

many organisations to deploy MapReduce-like systems that

are effectively used to dump data - without a big picture of

the information management strategic plan or without

understanding how all the pieces of a data analytics

environment fit together.

R is seen as the programming language for statistical

computing. It is not characterised by the beauty of its code,

but the results are great. The number of packages that is

available in the R repository (CRAN) makes it very flexible.

The use of scripting languages such as Python provide a

professional platform for application development and

deployment. It is very well suited for prototyping and In recent times, Python has seen

a resurgence thanks to the data

science scene.
testing new ideas. Furthermore it supports various data

storage and communication formats, such as XML and

JSON, plus there is a large number of open source libraries

for scientific computing and machine learning.

Python has a number of very useful libraries such as SciPy,

NumPy and Scikit-learn. SciPy extends Python into the

22 j. rogel-salazar

domain of scientific programming. It supports various

functions, including parallel programming tools, integration,

ordinary differential equation solvers, and even extensions Python is a well supported

language with a wide variety of

modules and libraries.
for including C/C++ code within Python code. Scikit-learn

is a Python-based machine learning package including

many algorithms for supervised learning (support for vector

machines, naïve Bayes), unsupervised learning (clustering

algorithms), and other algorithms for dataset manipulation.

It is for these reasons that we will use Python in the rest of

this book.

1.4 From Data to Insight: the Data Science Workflow

As we have seen above, the role of a data scientists is

an interesting one, and at times a challenging one. Not

only do we need the right combination of skills (either in a

team or an individual), but also the right tools and business The workflow of the data science

expert is worth discussing too.questions. In this section we will address the steps that a

data science project may follow. It is important to emphasise

that although we may categorise and separate the various

steps, the workflow is not necessarily a linear one as we

shall see.

With our newly acquired data science team and the right

combination of skills, we are ready to tackle out first

assignment, and it is now when key measurements of

success for the project should be identified. Furthermore, it

is important to realise from the start that in the vast majority

of cases there will not be a unique, final answer. It is thus The data science process is

iterative.better to frame the problem as an iterative process where a

data science and analytics with python 23

better solution is reached on each iteration. The various

steps in the data science workflow include:

• Question identification

• Data acquisition

• Data munging The steps in the data science

workflow
• Model construction

• Representation

• Interaction

Figure 1.3: The various steps
involved in the data science
workflow.

24 j. rogel-salazar

The fact that they have been listed in that order does not

mean that they have to be followed one after the other. In The workflow outlined above

is not necessarily followed in

sequence.
some cases you may start, for example, with an internal

dataset and immediately create some plots even before

cleaning the data. Also, once you have started the project,

you may move between steps in every iteration. Figure 1.3

shows a diagram of the steps mentioned above, note that

they do not necessarily follow one another in the order

listed above.

1.4.1 Identify the Question

There is no such a thing as insight without a clear and

concise question, as well as having a way to measure the

success or failure of the answer obtained after running your

favourite machine learning algorithms. It is not a matter

Without a clear question, there is

no insight.

of getting a dataset and simply massaging it and creating

some plots. On the contrary, let the questions point out the

potential datasets that may be useful in answering them and

to what extent.

Another important thing to bear in mind is the fact that

although we may encapsulate a problem in a single

question, in many cases it is much easier to break it down Breaking down the problem into

smaller questions is useful.into smaller parts that can be tackled in a more

straightforward manner. Furthermore, at every iteration

there may be more, smaller or larger, follow-up questions

that will also require answers. Remember that it is an

iterative process!

data science and analytics with python 25

1.4.2 Acquire Data

Once you have a problem to tacke, the first thing that

needs doing is figuring out if you or your organisation has

the appropriate data that may be used to answer the

question. If the answer is no, you will need to find Identify appropriate sources of

suitable and useful data.appropriate sources for suitable data externally - web, social

media, government, repositories, vendors, etc. Even in the

case where the data is available internally, the data may be

in locations that are hard to access due to technology, or

even for regulatory and security reasons.

1.4.3 Data Munging

If there is no insight without a question, then there There is no data without data

munging.is no data without data munging. Munging, or wrangling

data is actually the most time-consuming task in the data

science workflow. According to the New York Times’ Steve

Lohr data scientists may spend anything between 50 and 80

percent of their time doing “data janitor work”5 and I can 5 Lohr, S. (2014, Aug 17th). For
Big-Data Scientists, ’Janitor Work’
Is Key Hurdle to Insights. The New
York Times

definitely attest to that.

Data preparation is key to the extraction of valuable insight

and although some may prefer to concentrate only on the

much more fun modelling part, the fact that you get to

know your dataset inside out while munging it implies that

any new or follow-up questions can probably be attained

with less effort.

26 j. rogel-salazar

1.4.4 Modelling and Evaluation

Having a clean dataset to feed to a machine learning or

statistical model is a good start. Nonetheless, the question

remains regarding what the most appropriate algorithm Every model needs to be

evaluated.to use is. A partial answer to that question is that the best

algorithm depends on the type of data you have, as well

as its completness. It also depends on the question you

decided to tackle. Once the model has been run through the

so-called training dataset the next thing to do is to evaluate For more in training and testing

datasets, see Section 3.11.how effective and accurate the model is against the testing

dataset and decide if the model is suitable for deployment.

1.4.5 Representation and Interaction

They say that a picture is worth a thousand words, and

it does stand to reason that the vast majority of us get
Data visualisation is more of

an art than a science, but an

important one nonetheless.
further information from a couple of well presented plots

than by looking at rows and rows of data. Data visualisation

is more of an art than a science, and much has been written

(or drawn) about by brilliant designers and data journalists.

Simply take a look at the great images produced by David

McCandless in his book Information is Beautiful6 or the 6 McCandless, D. (2009). Information
is Beautiful. Collins

visualisations produced by Manuel Lima in Visual

Complexity7. 7 Lima, M. (2011). Visual Complexity:
Mapping Patterns of Information.
Princeton Architectural Press

You do not have to produce such artistic beauties, but make

sure that the data representation that you decide to use is

accurate, simple, and provides clarification to the story you

want to communicate. In some cases, there is the possibility

data science and analytics with python 27

of telling the story in a way that the reader/viewer is able

to interact with the data representation, for instance in the

form of dashboards, reports or interactive plots. These may

be fun to use, but the same principles of accuracy, simplicity

and clarity do apply.

1.4.6 Data Science: an Iterative Process

The simple fact that a machine learning model has

been run on clean data does not mean that the work of

the data scientist is done and dusted. On the contrary, the

effectiveness of the model needs to be carefully monitored The effectiveness of a model needs

to be monitored.as the outcome depends on the data that is fed to them. A

simple case of garbage-in-garbage-out. Similarly, any new data

with a variety of new features may degrade the accuracy of

the initial model, and thus it becomes necessary to adjust

parameters or acquire new data.

Furthermore, even if there were such a thing as a

never-changing model, the fact is that new and follow-up
Think of this process as an

upward spiral.

questions arise naturally from the data science process. This

means that the workflow is better to be treated as an

upward spiral where constant iterations provide

improvement and new insights.

I would like to close this chapter with a few questions that

the data scientist team and their stakeholders should always

have in mind:

• What data was used and why?

• Where was the data acquired from and who owns it?

28 j. rogel-salazar

• Was the entire dataset used? Is a sample representative of

the entire population?

• Were there any outliers? Have they been considered in

the analysis?

• What assumptions were made when applying the

model/algorithm? Are they easily relaxed/strengthened?

• What does the result of the model mean to the

process/business/product?

Some questions to always bear

in mind during any data science

project.

1.5 Summary

In this chapter we addressed some crucial aspects

that will enable us to implement and acquire that elusive

mythical being called a data scientist. We have provided

a working definition for the term data science and have

described how it is a rapidly evolving multi-disciplinary

field encompassing areas in mathematics, computer science,

statistics and business expertise.

We mentioned a few examples of data science products and

have seen that the main motivation for data science and

analytics is deriving valuable and actionable insights from

data. Our discussion pointed out that in order to fulfil that

motivation, a data scientist with the appropriate skills is

needed. Unfortunately, understanding about this subject has

created expectations that point at the data scientist role as

one akin to the mythical Unicorn. We argued that a better

understanding of the role indicates that we should perhaps

data science and analytics with python 29

use a different allegory: A Jackalope. It is still a mythical

being, but the fact that you can put one together out of

different parts (as in a team), or the hint that there may be a

scientific explanation for their potential existence provides a

more hopeful panorama for many businesses interested in

exploiting their data.

We continued our discussion with the three main pillars that

would sustain a productive data science team, namely a

data science project manager, a lead or principal data

scientist and a data architect. We saw that not only is the

team composition important, but also the tooling provided

to carry out their tasks in a productive manner. We

concluded this chapter by outlining the steps in a simplified

data science workflow and explained their importance as

part of what should be seen as an iterative process.

In the next chapter we will provide a brief refresher of some

important concepts of using Python. This will enable us

to have a point of reference for the rest of the book where

Python will be used to implement a variety of algorithms

that form part of the Jackalope’s bag of tricks.

http://taylorandfrancis.com

31

2

Python: For Something Completely Different

There is no shortage of programming languages and

paradigms. With that in mind it may seem surprising that

what started up as a “hobby programming project” by Python started up as a hobby

programming project.Guido van Rossum in 1989 has taken on a life of its own,

with a very active community, used in a wide variety of

applications. Its success is perhaps due to the compactness

of its code, or the fact that is open source, or even the

variety of toolsets. Whatever the reason, Python is a great

tool to have under your jackalope data scientist belt.

Python is not named so after the nonvenomous snakes

whose family includes some of the largest in the World.

Instead it is named after the famous British comedy troupe

Monty Python, and it was created to be appealing to Unix/C We have to thank Monty Python

for the name of this flexible

programming language.
coders. Today, Python’s emphasis on code readability and

expressive syntax has made it into a general-purpose, high-

level, object-oriented programming language available

in multiple platforms and with a plethora of supporting

packages and modules.

32 j. rogel-salazar

> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break

the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation

to guess.

There should be one -- and preferably only one --

obvious way to do it.

Although that way may not be obvious at first

unless you’re Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain,

it’s a bad idea.

If the implementation is easy to explain,

it may be a good idea.

Namespaces are one honking great idea

-- let’s do more of those!

“Pythonic” coding style guidelines

are followed by so-called

Pythonistas.

data science and analytics with python 33

Perhaps some of the most defining features of the language

include the use of indentation for grouping statements, The use of indentation is an

important feature of Python.together with was has become to be known as the

“pythonic” coding style, i.e. style guidelines and idioms

used by veteran Python programmers, aka Pythonistas.

These guiding principles can be read in any Python

installation by importing the this module. These aphorisms,

compiled by the long time pythonista Tim Peters, are shown

in the code listing printed above.

This book assumes some knowledge of general

programming principles and a level of familiarity with

Python. Nonetheless, in this chapter we will briefly review We will assume a certain

familiarity with programming

principles and with Python in

particular.

some of the concepts and idiosyncrasies of the language that

will be used throughout the book. If you are a seasoned

Python programmer, you may want to skip this chapter and

move on to the next one. If, however, you are interested in a

refresher, then go ahead and read the following pages, you

might find something completely different. For those of you

that are beginning their Python journey, this chapter may

whet your appetite to learn more. There are plenty of

resources to quench your thirst1,2. 1 Downey, A. (2012). Think Python.
O’Reilly Media
2 Langtangen, H. (2014). A Primer
on Scientific Programming with
Python. Texts in Computational
Science and Engineering. Springer
Berlin Heidelberg

2.1 Why Python? Why not?!

We mentioned above that Python emphasises code

readability, and this in turn has an impact on productivity:

Not only is a data scientist able to create scripts to be

executed as a batch, but also is able to start an interactive

console (iPython shell for instance) or notebook

34 j. rogel-salazar

(iPython/Jupyter notebook - see Section 2.1.2). Interactive sessions are available

through the iPython shell and the

Jupyter notebook.
Furthermore, the Python ecosystem is supported by various

packages that extend and enhance the language.

For example, the NumPy module provides functions that NumPy provides numerical

functions to be used with Python.enable the manipulation of numeric arrays and matrices.

The SciPy module enables functionality usually expected

in scientific computing such as optimisation, linear algebra

routines, Fourier transformation, etc.

The support that Python has for hierarchical modularity

makes it possible for programmers and developers to build

further functionality. A good example is the Pandas The Pandas package enables data

manipulation and analysis.package, which extends the NumPy arrays into dataframes

for ease of data manipulation and analysis (see Section 2.5).

We will be using Pandas in the rest of the book. Similarly, in

this book we will extensively use packages such as Other popular packages are

Matplotlib, Statsmodels and

Scikit-learn.
Matplotlib, Statsmodels and Scikit-learn which implement

plotting, statistical models and machine learning algorithms,

respectively.

It is true that Python is an interpreted language and as such

code may be often slower than compiled code tailored to a

particular machine architecture. In that respect, although Python is an interpreted language,

in other words, code is read and

executed line-by-line.
the source code in Python is interpreted on the fly, the main

advantage is flexibility. This is an important point in the

data science workflow as we are interested in the balance

between implementation time versus execution: In many

cases we are more interested in getting to grips with the

raw data rather than in fine-tuning the execution time for a

particular machine.

data science and analytics with python 35

That brings us to another advantage: Since Python code

is not compiled, we have portability. Scripts developed in Python code is flexible and

portable.one environment can be executed in any other one with

the appropriate installation. Python is fast enough for the

vast majority of the computational tasks in a data science It is fast enough for the typical

data science workflowworkflow: It is important to get the logic right in the first

place and, if needed, make the execution faster later.

For the purposes of this book, I assume that a suitable

Python installation is available to you. Furthermore, I will

also assume that the installation is for version Python 3.x We will be working with version 3

of the Python distribution.rather than Python 2.x. I would like to point out that

although version 2 is widely used, more and more users are

adopting version 3. Please note that there may be some

packages that have not been updated to suit the

incompatibilities between the two versions. I hope that in

the near future these inconsistencies are ironed out and the

community eventually moves to version 3.x.

In particular, I find that the Anaconda distribution3, built by 3 Continuum Analytics (2014).
Anaconda 2.1.0. https://store.

continuum.io/cshop/anaconda/Continuum Analytics, is robust and complete enough for

our purposes. Furthermore, they have suitable distributions

for Windows, MacOS and Linux. You can obtain an

installation package from http://continuum.io/ and follow

the steps provided by the distribution. Please note that any

other Python 3.x installation with the appropriate packages

is equally suitable in order to follow the discussions in the

rest of the book. I will explicitly mention any modules or

packages that are required so that the more seasoned user is

able to use pip, easy-install, homebrew or any other

installation method they are comfortable with.

https://store.continuum.io/cshop/anaconda/
http://continuum.io/
https://store.continuum.io/cshop/anaconda/

36 j. rogel-salazar

2.1.1 To Shell or not To Shell

We have seen above that Python is an interpreted

language and as such it is possible to interact with the

different commands that have to be executed during the

course of a session. Similarly, it is also possible to write all

the commands first and execute them in a more

conventional development workflow. Both approaches have Python shell enables interactivity.

You can also develop scripts

to be executed without user

intervention.

their advantages and disadvantages, and fortunately you do

not have to choose one over the other as Python is flexible

enough to enable you to do both.

If you are interested in interacting with the code as you are

writing it then starting, for instance, an iPython shell will

allow you to type a command and immediately send it to The interactive shell lets you

assess the results of each

command you send to the

interpreter.

the interpreter for execution. You can then take the output

and continue your analysis. This way of working lets us

see the results of the commands as we are working. It is

an excellent way of prototyping code to be implemented in

longer projects.

Unfortunately, working in this way makes the code

somewhat ephemeral unless you save the commands that

you are issuing to the interpreter. If you are interested in

keeping track of your development and execute a series of

commands repeatedly, then you can save those commands Python scripts let you save the

series of commands that form a

program. They are saved with the

.py extension.

in a text file to create a Python script which by convention

has a “.py” extension. The execution of these scripts does

not require a Python shell and instead can be executed

directly from the command line using the following syntax:

data science and analytics with python 37

python myscript.py

where we are assuming that the script called myscript.py is The command above is launched

directly from the terminal; no

need for the Python/iPython shell.
saved in the local path. The use of Python scripts makes it

easier to launch longer jobs that do not need input from a

user to be executed.

In this book we will take the approach of using an

interactive shell (code is compatible with Python/iPython

shells) so that we are able to use the output given by the

interpreter to explain the different steps we are taking.

These individual commands can then be saved in a suitable

script that can be run later. We will thus present code as

follows:

> 42 + 24

66

Notice that the diple, >, represents the Python shell prompt

In this book we will present code

as used from the Python shell for

ease of presentation.

where the next line of code is expected. Furthermore, if the

command sent to the interpreter expects a printed result, the

shell will automatically display it. For ease of explanation,

in cases where we do not expect a result, or the discussion

requires us to break down the code, we will show it in a

script style. In other words, no shell prompt will be shown:

In cases where we do not expect a

result we will not show the shell

prompt.

a = 42 + 24

38 j. rogel-salazar

Comments in Python are indicated with the use of the hash

symbol, #. The interpreter will ignore any commands that A comment in Python is entered

with the hash symbol, #.follow until the end of the line. In the example below we

enter a comment after carrying out a division operation

Python 3> 2/3 # Python 3

0.6666666666666666

Please note that the behaviour in Python 2 is different, as

the operation above will result in an integer divison:

Python 2> 2/3 # This integer division returns 0

0

Since we have passed two integers to the interpreter, Python

carries out an integer division, returning only the integer

part. If we want a real division we can do the following:

> 2/3.0

> 2/float(3)

In Python 2 we can import the functionality from Python 3.x

You can avoid integer division by

casting integers into floats.

with the __future__ module as follows:

Python 2> from __future__ import division

> 2/3

0.6666666666666666

Alternatively you can use the
__future__ module.

data science and analytics with python 39

2.1.2 iPython/Jupyter Notebook

We have seen how the interactive shell in Python allows

us to assess the results of the code we are executing. That

may be good enough for a number of tasks, but sometimes

it may be desirable to present the code in a way that is

easier to interact with, not just for the original programmer,

but also with other members of a team or general audience.

The iPython/Jupyter notebook is a great way to do this.

Not only does it let you run your code in the same way The iPython/Jupyter notebook lets

us interact with the code and also

add rich media, text and maths.
as the interactive shell and add comments to your code,

but also enables you to document your code, calculations

and processing all within a web-based interface. In this

book, we have made a conscious decision not to use the

iPython/Jupyter notebook for printing purposes, however I

would encourage you to make use of it whenever you can.

The iPython/Jupyter notebook supports the inclusion of

text, mathematical expression and inline graphics as well

as other rich media such as websites, images, video, maths,

etc. At its core, a notebook is a JSON document with the A notebook is a JSON document,

keeping with the general

portability principle of Python.
extension .ipynb, which makes the files very light and

highly portable. The web interface is very handy, and if

required, the notebook can be exported to a number of

formats such as HTML, LATEX, PDF, Markdown or even raw

Python. Furthermore, the Jupyter project aims to exploit the

parts of the code that are not specific to Python and extend

their use to other programming languages.

40 j. rogel-salazar

2.2 Firsts Slithers with Python

We have already had the opportunity to interact with

the iPython shell and have seen some simple operations

such as addition (+) and division (/). We can continue our

exploration of the programming language as an interactive

calculator. As we would expect, the rest of the arithmetic

operations are supported by Python as shown in Table 2.1.

Notice that the exponentiation in Python is represented

with two stars, **. So far we have used integers and floating
Exponentiation is denoted with **

in Python.

point numbers in the examples presented. It is therefore

natural to ask what other types are supported by Python.

Operation Operator

Addition +
Subtraction -
Multiplication *
Division /
Exponentiation **

Table 2.1: Arithmetic operators in
Python.

2.2.1 Basic Types

An important fact to remember about Python is that it

is a dynamically typed language. In other words, we do not

need to declare variables before we use them and it is not

necessary to specify their type. Furthermore, each and every

variable that we create is automatically a Python object.

Python is a dynamically typed

language: We do not need to

specify the variable type in

advance.

data science and analytics with python 41

2.2.2 Numbers

As we saw in the previous section, Python supports two

types of numbers: Integers and floating point numbers. So Python supports integers and

floating point numbers.we can assign the value of an integer to a variable as follows:

> Universe = 42

Notice that assignation does not require Python to print

anything as a response. We can check the type of an object

with the command type:

> type(Universe)

int

The command type lets us see the

type of an object.

Python will let us know what type of object we are dealing

with; in this case the object Universe is of type integer. Let

us see an example for a floating point number:

> Universe2 = 42.0

> type(Universe2)

float

2.2.3 Strings

A string is effectively a sequence of characters. In

Python, strings can be defined with the use of either single

(’ ’) or double quotes (‘‘ ’’) as follows:

42 j. rogel-salazar

> string1 = ’String with single quotes’

> string2 = ‘‘String with double quotes’’

> type(string1)

str

In the example above we have requested the type of the

Strings in Python can be defined

with single or double quotes.

variable string1, and as expected, Python tells us that

indeed it is a string.

We can ask Python to print a string as follows:

In Python 2 the print statement

does not require the brackets.

> print(string2)

String with double quotes

The + operator is overloaded for strings and it results in the

concatenation of these objects:

> dead, parrot = ‘‘Norwegian’’, ‘‘Blue’’

> print(dead + ’ ’ + parrot)

Norwegian Blue

Concatenation of strings can be

achieved with the + symbol.

In the example above we have also demonstrated the way in

which Python is able to deal with simultaneous assignation

in a single line. In other words, the string “Norwegian” is Python is able to carry out

multiple assignation in a single

line. This is part of a Pythonic

programming style!

assigned to the variable dead and the string “blue” to the

variable parrot. Note that mixing operators between strings

and numbers is not allowed, and an error will be thrown

if they are. Instead you will have to convert a number to a

string using the str function.

data science and analytics with python 43

Strings are immutable objects in Python and this means Strings in Python are immutable.

that we cannot change individual elements of a string. We

shall discuss more about immutable objects in the context of

tuples in Section 2.2.6.

2.2.4 Complex Numbers

Python also supports complex numbers, and it denotes

the imaginary number i =
√
−1 as j, and so for a number n, In Python, the imaginary number i

is denoted with the letter j.
nj is interpreted as a complex number.

Let us see an example: If we want to define the complex

number z = 2 + 3i we simply tell Python the following:

> z = 2 + 3j

> print(’The real part is {0}, \

the imaginary part is {1}’ \

.format(z.real, z.imag))

The real part is 2.0, the imaginary part is 3.0

Please note that although the numbers used in the example

above are integers, Python recasts them as floating point

numbers to suit the complex number object. In the piece

of code shown above we have also demonstrated the fact

that we can use the backslash (\) to break a line for code

readability.

The backslash allows us to break a

line.

Remember that each and every entity in Python is an object.

Each object has a number of possible actions they are able to

44 j. rogel-salazar

perform, i.e. methods. In the example above we have called The method of an object can be

invoked by following the name of

object with a dot (.) and the name

of the method.

the real and imag methods associated with a complex

number object to obtain the real and imaginary parts

respectively. Another use of a method is shown in the

example above for a string, in this case the format method

to tell Python how to format the printing of a string.

2.2.5 Lists

A list is pretty much self-explanatory: It is a sequence

of objects, and these objects can be either of the same type

or not. We denote a list with square brackets, []. Lists
A list is denoted by square

brackets [].

are mutable objects and therefore it is possible to change

individual elements in a list:

numbers = [1, 3.14, 2.78, 1.61]

expect = [‘‘Spanish’’, ‘‘Inquisition’’]

mixed = [10, 8.0, ’spam’, 0, ’eggs’]

It is possible to refer to elements of a list using an index that

corresponds to their position in the list:

We can refer to elements in a list

with an index.

> print(numbers[0])

1

> print(numbers[1:3])

[3.14, 2.78]

Indexing in Python starts with the number zero and thus Indexing in Python starts at zero.

the first element of the numbers list is referred to as

data science and analytics with python 45

numbers[0]. Also, we can refer to a sub-sequence of the list

using the colon notation as start:end, where start refers to

the first element we want to include in the sub-sequence

and end is the last element we want to consider in the slice.

Remember that Python interprets the slicing operation up

to, but not including, the last item in the sequence. In the

example above, Python reads from index 1 and up to index

3, but not including 3. That is why only the second and

Slicing refers to the subsetting of

an array-like object such as lists

and tuples.

third elements of the numbers list are returned.

Since lists are mutable objects it is possible for us to change

elements in a list:

We are able to change the elements

of a list because they are mutable

objects.

> expect[0] = ’nobody’

> print(expect)

[’nobody’, ’Inquisition’]

We can also add elements to a list with the append method:

append lets us add elements to a

list.

> numbers.append(1.4142)

> print(numbers)

[1, 3.14, 2.78, 1.61, 1.4142]

The new element, 1.4142, is added to the numbers list at the

end, increasing the length of the list by one element.

46 j. rogel-salazar

Concatenation of lists is easily achieved with the + operator:

The + symbol lets us carry out list

concatenation.

> print(numbers + expect)

[1, 3.14, 2.78, 1.61, 1.4142, ’nobody’,

’Inquisition’]

Notice that if the two lists are numerical, the result using

the + operator is again the concatenation of the list elements,

not the sum.

Another useful method of a list is sort, which does exactly

The sort method allows us to sort

a list in place.

what we would expect: It allows us to sort the list’s values.

This method will also enable us to see the difference

between mutable and immutable objects in our discussion

about tuples (Section 2.2.6).

Let us define a list to work with:

> List1 = [3, 6, 9, 2, 78, 1, 330, 587, 19]

> print(List1)

[3, 6, 9, 2, 78, 1, 330, 587, 19]

We can now invoke the sort method as follows:

As we can see using sort with a

list results in the elements being

ordered in ascending order.

> List1.sort()

> print(List1)

[1, 2, 3, 6, 9, 19, 78, 330, 587]

data science and analytics with python 47

There are a couple of things to note here. First, we have

called the sort method using the dot (.) notation. When

executing the first line in the code above, the interpreter

does not return any values, and that is a good sign: It

means that the method executed correctly.

In order to see what happened we issue the second

command, which lets us print the contents of List1. As

shown above, the elements of the list are now ordered.

This takes us to the second point to note. Since lists are

mutable, we can change them and in this case the sort Since lists are mutable, we are

able to change their elements. In

this case sorting the elements for

instance.

method has changed the elements in List1 to be in

ascending order. We have sorted the list in place. There was

no need to create a copy of the list and sort it.

Objects in Python also have functions associated with them.

Lists are no exception and in this particular case there is a Lists have a sorted function.

sorted function too. The difference is that a function will

create a new object. Let us take a look:

> List1 = [3, 6, 9, 2, 78, 1, 330, 587, 19]

> print(sorted(List1))

[3, 6, 9, 2, 78, 1, 330, 587, 19]

So far so good, nothing has changed, we end up with a

sorted list. However, let us take a look at the List1 object

one more time:

48 j. rogel-salazar

> print(List1)

[3, 6, 9, 2, 78, 1, 330, 587, 19]

As you can see, the object was not changed! Instead, what The sorted function creates a

new object with the elements of

the original list, but in ascending

order.

the sorted function has done is create a new object with the

contents of List1 in ascending order.

We could have assigned the result of the function to a new

variable and thus create an object that can be referred to at a

later stage.

Incidentally, if you require the elements in descending order

all you have to do is pass the reverse parameter to either

the method:

> sorted(List1, reverse=True)

[587, 330, 78, 19, 9, 6, 3, 2, 1]

or the function:

> List1.sort(reverse=True)

> print(List1)

[587, 330, 78, 19, 9, 6, 3, 2, 1]

A very useful pythonic way of constructing lists without the List comprehension is useful when

we need to create a list out of

operating on elements of another

sequence.

need of a full-blown loop is the so-called list comprehension.

A typical usage is in the creation of lists whose elements

data science and analytics with python 49

are the result of some operations applied to each member

of another sequence or iterable. For example, let us create a

string with a sentence:

> sentence = ’List comprehension is useful’

> print(sentence)

Lists comprehension is useful

We can use the string above to create a list of lists with each

word in the sentence in capital and lower-case letters, as

well as determining the length of the word. And we can do

all this in a single line of code:

> words = [[word.upper(), word.lower(), \

len(word)] for word in sentence.split()]

> print(words)

[[’LIST’, ’list’, 4],

[’COMPREHENSION’, ’comprehension’, 13],

[’IS’, ’is’, 2],

[’USEFUL’, ’useful’, 6]]

We are using the string methods

split(), upper() and lower() to

separate the words in the sentence,

and convert them to upper- and

lower-case.

2.2.6 Tuples

A tuple may be seen as a list by another name: They are

also sequences of objects, and they may be of mixed type

too. They are indeed closely related to lists and apart from

50 j. rogel-salazar

the fact that they are defined with round brackets, (), the Tuples are defined with round

brackets ().main difference is that tuples are immutable.

As we have mentioned above, immutable objects cannot be

Tuples are immutable objects.
changed. In other words, we cannot add or remove elements

and thus, unlike lists, they cannot be modified in place. Let

us take a look at some tuples:

> numbers_tuple = (1, 3.14, 2.78, 1.61)

> expect_tuple = (‘‘Spanish’’, ‘‘Inquisition’’)

> mixed_tuple = (10, 8.0, ’spam’, 0, ’eggs’)

As you can see the only change in the definitions above,

compared to the lists in Section 2.2.5, is the use of the round

brackets. As with lists, the elements of a tuple can be

referred to by their index:

Tuples can also be sliced with the

help of an index.

> mixed_tuple[4]

’eggs’

> mixed_tuple[0:3]

(10, 8.0, ’spam’)

Let us see what happens when we try to change one of the

elements of a tuple:

We are not able to change

elements of a tuple as they are

immutable objects.

> expect_tuple[0]=’nobody’

TypeError: ’tuple’ object does not support item

assignment

data science and analytics with python 51

This shows that there are manipulations that are not

possible to be done with a tuple. What about sorting? Well,

the sorted function still works. Let us define a tuple as

follows:

> Tuple1 = (3, 60, 18, 276, 87, 0, 9, 4500, 67)

> print(Tuple1)

(3, 60, 18, 276, 87, 0, 9, 4500, 67)

We can now apply the sorted function to the tuple:

> print(sorted(Tuple1))

[0, 3, 9, 18, 60, 67, 87, 276, 4500]

Not too bad, right?, but have you noticed something odd?

The result of the sorted function

on a tuple is a list.

Well, it seems that the result is not a tuple anymore, but a

list! We can see that thanks to the square brackets, and we

can make sure of this by using the type command:

> type(sorted(Tuple1))

list

This is the result of tuples being immutable: The only

way to allow for the elements of the tuple to be ordered is

by using the mutable nature of a list. Similarly, since the

Since tuples are immutable we

cannot change their elements in

place.

elements of a tuple cannot be changed, there is no point in

having a sort method. Let us have a look:

52 j. rogel-salazar

> Tuple1.sort()

AttributeError: ’tuple’ object has no attribute

’sort’

As stated by the error returned by

Python, tuples do not have a sort

attribute.

2.2.7 Dictionaries

We are all familiar with the concept of a dictionary:

If we are interested in finding the meaning of a new or

unknown word, we simply open up a book (or access a

webpage) that lists words in a specified order (alphabetically, In the analogy with actual

dictionaries, keys are equivalent

to words and values are the

definitions.

for instance). This enables us to search for the word we

are interested in. A dictionary in Python serves the same

purpose and it is composed of keys and values.

A Python dictionary is defined with the use of curly We define a dictionary with curly

brackets { }.brackets, { }. Furthermore, the key-value pairs are

separated by a colon (:) as follows:

> dictio = {‘‘eggs’’:1, ‘‘sausage’’:2,\

‘‘bacon’’:3, ‘‘spam’’:4}

> print(dictio)

{’bacon’: 3, ’eggs’: 1, ’sausage’: 2, ’spam’: 4}

The keywords in a dictionary can be any immutable Python

object including numbers, strings and tuples. The value

associated with a particular key can be changed by

The keys can be any immutable

object: numbers, strings or tuples

for example.

reassigning the new value to the element of the dictionary

data science and analytics with python 53

with the relevant entry. For instance, in our example above

we can see that the value to the key spam is 4:

> print(dictio[’spam’])

4

We can change the value of this key by simply reassigning

any new value. We can for example reassign the value

associated to the spam key:

The values in a dictionary can be

modified.

> dictio[’spam’]=’Urggh’

> print(dictio[’spam’])

’Urggh’

This can be done repeatedly:

> dictio[’spam’]=’Lovely spam’

> print(dictio[’spam’])

’Lovely spam’

The modification can be done as

many times as required.

It is possible to access the keys and values in the form

of straight lists with the aid of the keys() and values()

methods:

A list of dictionary keys can be

obtained with the keys() method.

Similarly, values() returns a list

of values in a dictionary.

> print(dictio.keys())

dict_keys([’spam’, ’bacon’, ’eggs’, ’sausage’])

> print(dictio.values())

dict_values([’Lovely spam’, 3, 1, 2])

54 j. rogel-salazar

We can also obtain the key-value pairs in the form of a list

of tuples with the items() method:

> print(dictio.items())

dict_items([(’spam’, ’Lovely spam’), (’bacon’, 3),

(’eggs’, 1), (’sausage’, 2)])

Finally, it is possible to get rid of key-value pairs with the

use of the del function:

We can remove entries from a

dictionary with del.

> del dictio[’bacon’]

> print(dictio)

{’sausage’: 2, ’eggs’: 1, ’spam’: ’Lovely spam’}

2.3 Control Flow

Not only is it important to understand the types and

objects that are available in any programming language, but

also how to control the flow of a programme to be able to

follow the logic behind the way in which the programme

itself is organised, in other words, the order in which the

individual statements are executed.

In particular it is important to mention that in Python Whitespace is a meaningful

character in Python.the whitespace is a meaningful character as it enables the

definition of blocks of code by having the same level of

indentation. Let us see some typical structures to control the

flow of a programme in Python.

data science and analytics with python 55

2.3.1 if... elif... else

Conditional branching enables us to perform

different actions depending on the result of boolean

operations. If a condition is met, then we apply an

operation, otherwise a different action is performed. In

Python we can do this as follows:

The if... elif... else... lets

us test various conditions and

create branches for our code.

if condition1 :

block of code executed

if condition1 is met

elif condition2 :

block of code executed

if condition2 is met

...

elif conditionN :

block of code executed

if conditionN is met

else:

block of code executed

if no conditions are met

As you can see, each block of code is indented at the same

level. Also, notice that it is possible to nest various

conditions with the help of the elif reserved word. The

conditions are logical expressions that can test for scalar The conditions to test are logical

expression that evaluate to True or

False.
comparison and thus we can use any of the comparison

operators listed in Table 2.2. Let us see an example:

56 j. rogel-salazar

Operation Operator

Equal ==
Different !=
Greater than >
Less than <
Greater or equal to >=
Less or equal to <=
Object identity is

Negated object identity is not

Table 2.2: Comparison operators in
Python.

> Age = 40

if Age > 50:

print(’A wise person’)

else:

print(’Such a youngster’)

Such a youngster

Finally, remember that the conditions are tested one by one

in the order they are provided in the code. If a condition is

met, the rest of the tests are not executed.

2.3.2 while

A while loop is used when we need to repeat a block of

code until a condition is no longer met. The structure of a

while loop in Python is:

while logical_test:

block of code to be executed

don’t forget to update the test variable

data science and analytics with python 57

An important thing to remember is that at the very

beginning of the while loop, the logical test must evaluate to The while loop requires a logical

test at the beginning of the block.
True, otherwise the block of code is never executed. Also, in

order to avoid infinite loops we need to update the control

variable inside the block of code.

We can see how this works by counting down from 10:

Note that countdown -= 1 is

a shorthand for countdown =

countdown - 1.

> countdown = 10

while countdown >= 0:

print(countdown)

countdown -= 1

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

2.3.3 for

Typically, a while loop is used in cases when we do

not know in advance how many times the block of code

A for loop is useful when we

know how many times the code

needs to be repeated.

will need to be executed. If we know how many iterations

are needed, we can use a for loop. In Python, a for loop

iterates over a sequence: a list, tuple or a string for example.

for item in sequence:

block of code to be

executed

This is the same basic structure

used in list comprehension.

The example we used for the while loop in Section 2.3.2 can

be written with a for loop as follows:

58 j. rogel-salazar

> countdown_list = [10, 9, 8, 7, 6, \

5, 4, 3, 2, 1, 0]

for x in countdown_list:

print(x)

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

We could simplify the example above by avoiding the

explicit definition of the list and instead define a range:

range enables us to define a

sequence of numbers as an object.

This means that the values are

generated as they are needed.

> for x in range(10,-1,-1):

print(x)

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

In the example above we used the range(start, end,

step) function to generate a sequence of numbers from

start to end-1 in steps given by step. In Python 2, similar

behaviour is obtained with the xrange function.

2.3.4 try... except

It is not unusual to have syntactically correct blocks

of code with statements that in certain cases may cause an

error during execution. These errors are not necessarily

fatal in the execution of a programme and instead they

are anomalous or exceptional cases that require special

processing.

Syntactically correct code may

cause errors during execution.

Instances such as those described above are called exceptions

and when they happen, we are interested in catching them

data science and analytics with python 59

and taking appropriate action, for example by generating an

error message. This is what is known as exception handling.

In Python this can be done with the try...except structure:

Exception handling in Python can

be done with the try... except

structure.

try:

Block of code that may raise an

exception

except Exception1:

Block of code to run if Exception1

is raised

except Exception2:

Block of code to run if Exception2

is raised

...

except:

Block of code to run if an unlisted

exception is raised

In the structure above exception1, exception2,... are For further information about

standard exceptions see https:

//docs.python.org/2/library/

exceptions.html

standard exceptions that Python knows about and that are

detailed in the appropriate documentation; we list some

common ones in Table 2.3.

For example, we can try to calculate the reciprocal of the

elements of a list and print each of the values. However, if

the sequence contains the number zero, we can try to catch

the exception with ZeroDivisionError:

https://docs.python.org/2/library/exceptions.html
https://docs.python.org/2/library/exceptions.html
https://docs.python.org/2/library/exceptions.html

60 j. rogel-salazar

Standard Exception Meaning

ArithmeticError Arithmetic error
FloatingPointError Floating point operation failure
IOError I/O operation error
IndexError Sequence subscript out of range
KeyError Dictionary key not found
TabError Inconsistent use of tabs/spaces
UnicodeError Unicode-related error
ZeroDivisionError Division by zero

Table 2.3: Standard exceptions in
Python.

> try:

for x in range(3,-1,-1):

print(‘‘The reciprocal of {0} is {1}’’.\

format(x, 1.0/x))

except ZeroDivisionError:

print(‘‘Divide by zero? \

You can’t do that!!’’)

The reciprocal of 3 is 0.333333333333

The reciprocal of 2 is 0.5

The reciprocal of 1 is 1.0

Divide by zero? You can’t do that!!

We are using the

ZeroDivisionError exception

to handle this particular exception.

As you can see, instead of getting an error message and

the interpreter halting programme execution, the exception

is handled nicely by the code after the appropriate except

entry.

data science and analytics with python 61

2.3.5 Functions

Now that we have covered some of the elementary

control flow structures in Python, we can start combining

them into logical blocks to carry out specific tasks. In A function is a good way to write

code that can be repeated, and

whose outcome typically depends

on inputs provided.

particular we can construct pieces of code that can be

repeated when necessary and whose outcome depends on

the input parameters provided. In other words, we are

talking about functions.

A function in Python has the following syntax:

def my_function(arg1, arg2=default2,... \

argn=defaultn):

’’’ Docstring (optional) ’’’

instructions to be executed

when executing the function

return result # optional

Notice that the function definition starts with the reserved

The function definition starts with

the word def. Remember that

code needs to be indented.

word def and the code inside the function is indicated with

appropriate indentation.

The input parameters for the function are the dummy

variables arg1, arg2,... , argn and as you can see

it is possible to define default values for some of these

parameters. Parameters with default values must be defined

last in the argument list.

62 j. rogel-salazar

The second line in the function definition is called the

documentation string and its purpose is to describe the A documentation string enables us

to provide information about what

a function does. Make sure you

use it!

actions that are performed by the function. Finally, notice

that it is not necessary for a function to return a result.

Let us define a function to calculate the area of a rectangle

sides a and b:

def rect_area(a, b=1.0):

’’’Calculate the area of a rectangle’’’

return a*b

We are defining a default value for

the parameter b.

Notice that the parameter b has been given the default value

of 1. If we were to call this function with only one

parameter, the function will know how to handle the

calculations and use the default values when needed.

> c = rect_area(20, 2)

> print(c)

40

We can use the function by calling

it in the same any other in-built

Python function is.

In the first line of code above, we are calling the rect_area

function with two parameters, such that we assign the

value 20 to a and override the default value of b with 2. As

expected the area calculated is 40. Let us try providing only

one single value to the function:

data science and analytics with python 63

> c2 = rect_area(42.4)

> print(c2)

42.4

Here we have only passed the value 42.4 to the function. In

this case the value is assigned to a and the default value of

b = 1 is used in the calculation.

We can include control flow structures in our programmes

to make them more useful and flexible. Let us for instance

implement a simple function to calculate the factorial of a

number:

A function can use any of the

other control flow structures of the

language.

*= and -= indicate repeated

operations with the left-hand-side

value.

def factorial(n):

’’’Return the factorial of n’’’

f = 1

if n<=1:

return f

else:

while n>0:

f *= n

n -= 1

return f

When we pass a number smaller or equal than the one

the function expects, it returns the value 1, and when the

number is greater than 1 the factorial is calculated with a

while loop. Let us use the function:

64 j. rogel-salazar

> print(factorial(-3))

1

> print(factorial(5))

120

There may be times when it is more convenient to define a

simple function on-the-fly, without having to resort of a full

def structure. In these cases we can exploit the use of the

so-called lambda functions:

A lambda function in Python is

an anonymous function created at

runtime.

lambda arg1, arg2, ... : statement

where, as before, arg1, arg2,... are the input parameters

and statement is the code to be executed with the input

provided.

For example, if we needed to calculate the cube of a list of

numbers we could try the following code:

In this case the object g is a

lambda function that can be called

as any other function in Python.

x = [1, 3, 6]

g = lambda n: n**3

So far nothing too strange: We have initialised a list with

the numbers 1, 3 and 6, and then defined a lambda function

that calculates the cube of the argument n. We can now

apply this function, for example:

data science and analytics with python 65

> [g(item) for item in x]

[1, 27, 216]

Lambda functions may seem very simple, but it is that

simplicity that provides their strength, as it shown above.

This can be seen employed for instance in the

implementations of PySpark, the Python API for Spark, an
Lambda functions are very useful

in frameworks such as Spark.

open-source cluster computing framework.

2.3.6 Scripts and Modules

With the flexibility provided by the possibility of

controlling the flow of a set of instructions, and the

repeatability offered by constructing our own functions, it

becomes imperative to be able to store programmes in a way

that enable us to use and reuse code.

In Python we are able to do this by saving the instructions

that make up a programme in a plain text file saved with

the extension .py. Furthermore, if we use the interactivity
Python scripts have the extension

.py whereas notebooks have the

extension .ipynb.

provided by the iPython/Jupyter notebook, it is also

possible to save our notebooks in a JSON formatted

notebook with the extension .ipynb.

It is then possible to execute a Python script from the

command line by calling Python followed by the name of

the script to be executed. For instance, we can create a script

defining a main function and a call to it. We can save the

function in a script called firstscript.py with the

following contents:

66 j. rogel-salazar

def main():

’’’Print the square of a list of

numbers from 0 to n’’’

n = input(‘‘Give me a positive number’’)

x = range(int(n)+1)

y = [item**2 for item in x]

print(y)

main()

In this case we are asking the user for a number n with the

We are defining a main function

in this programme and calling

simply with the command main().

command input. We then use this number to calculate a

sequence given by the square of the numbers from 0 to n
Notice that we have used n+1 for

xrange.

and assign it to the variable y. Finally we simply print the

list stored in y.

Remember that we have saved the script above, but we have

not executed it. We can do this by typing the following

command in a terminal in the appropriate path:

In this case we have given the

value n = 4 as an input.

> python firstscript.py

Give me a positive number: 4

[0, 1, 4, 9, 16]

This is perhaps not the most advanced algorithm to

implement, but we can surely see the possibilities. In

particular, we can see how we can create scripts to add

data science and analytics with python 67

further functionality to our code and as such the concept of

a module becomes natural.

A module is a file or collection of files containing related

Python functions and objects to achieve a defined task. A module is a file containing

related Python functions to

achieve a specific task.
These modules enable us to extend the capabilities of the

language, and create programmes that enable us to carry

out specific tasks. Any user is able to create their own

modules and packages and make them available to others.

Some of these modules are readily available for us to be

used and once appropriate installation is done all we need

to do is import them whenever we need to use them.

For example, we can use the math module to access some The math module contains some

common mathematical functions.common mathematical functions. Let us create for instance

a script that implements a function to calculate the area of a

circle. In this case we will need the mathematical constant π

to carry out the calculations:

import math

def area_circ(r):

return math.pi * r**2

r=3

Area = area_circ(r)

print(‘‘The area of a circle with ’’ \

‘‘radius {0} is {1}’’.format(r, Area))

We can use the value of π with

math.pi.

68 j. rogel-salazar

Running the programme will result in the following output:

> python area_circ.py

The area of a circle with radius 3 is 28.2743338

Notice that we need to tell the Python interpreter that

the constant π is part of the math module by using the

syntax math.pi. In the example above we are importing all

the functions of the math module. This can be somewhat In some cases it may be more

efficient to load only the needed

functionality from a module.
inefficient in cases where only specific functionality is

needed. Instead we could have imported only the value of π

as follows:

from math import pi

A large number of modules are available from the Python

Standard Library and more information can be found

in https://docs.python.org/2/library/. In the rest of

the book we will deal with a few of these modules and

packages.

2.4 Computation and Data Manipulation

With the programming structures discussed so far

we are ready to take up a large number of tasks, not only in

data science, but in more general settings. In our particular Data manipulation and

computation is a very important

step in the data science and

analytics workflow.

case, as we shall see in the rest of the book, computation

with data and its manipulation can be managed more

https://docs.python.org/2/library/

data science and analytics with python 69

effectively and easily with the aid of linear algebra. In this

section we will address some basic concepts in both data

manipulation and linear algebra with Python.

2.4.1 Matrix Manipulations and Linear Algebra

As we have mentioned above, linear algebra enables

us to carry out computational tasks with data in a very

effective way. It also provides a compact notation to express Linear algebra provides us with an

efficient and compact way to carry

out complex calculations.
the type of manipulations we need to do to our data, from

pre-processing to presenting results. The use of vectors

and matrices is therefore a very important area to cover.

Vectors and matrices are arrays of numerical objects with

a defined set of operations such as addition, subtraction,

multiplication, etc.

An m× n matrix is a rectangular array of numbers having

m rows and n columns. In particular when m = 1 we have

a column vector and when n = 1 we have a row vector. In

general, a matrix A can be represented as follows:

A matrix can be thought of as

a collection of row (or column)

vectors.A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

 . (2.1)

A Python object that may come to mind when thinking

about using arrays is the list. For example, we can create
See Section 2.2.5 for a discussion

about lists.

two lists as follows:

70 j. rogel-salazar

a = [1, 2, 3, 4, 5]

b = [20, 30, 40, 50, 60]

However, remember that Python considers these objects

as lists and that each type of object has a defined set of

operations. For instance, if we tried to add these two arrays

in the mathematical sense we will find that Python returns

an unexpected answer:

Using the + symbol with lists

results in concatenation.

> a + b

[1, 2, 3, 4, 5, 20, 30, 40, 50, 60]

Instead of adding the elements of each of the two vectors, We covered list concatenation in

Section 2.2.5.Python concatenated the lists. This works because Python

has overloaded the + symbol, but an error would be

returned if we tried to use subtraction or multiplication.

> a - b

TypeError: unsupported operand type(s)

for -: ’list’ and ’list’

It is clear that a list is a good start for the operations we

Using other arithmetic symbols

with lists results in an error.

need to execute, and the use of the programming

capabilities of Python would enable us to build functions to

define mathematical operations on lists to construct arrays. Some useful Python modules for

array calculations are NumPy and

SciPy.
However, although it may be a very good programming

practice, rather than building our own functions for this

purpose, we can instead exploit the modules that are

data science and analytics with python 71

available to us within Python such as SciPy which provides

an ecosystem for mathematics, science, and engineering,

and in particular NumPy, a package that supports

N-dimensional arrays.

2.4.2 NumPy Arrays and Matrices

NumPy extends the types supported by Python with the

definition of arrays to describe a collection of objects of the

same type. The dimension of a NumPy array is defined by a NumPy extends the types in

Python by including arrays.tuple of N positive integers called the shape of the array. We

can think of arrays as an enhancement on lists and as such

we can create arrays with the help of lists:

We define a NumPy array

with np.array, where np is a

convenient alias used for the

NumPy package.

import numpy as np

A = np.array([1, 2, 3, 4, 5])

B = np.array([20, 30, 40, 50, 60])

C = A + B

In the small piece of code above we are importing the

NumPy package and using the alias np to refer to the

module. With the aid of the array command in NumPy we

transform a list into an array object. If we were to print the

content of the array C we would obtain the following:

The use of the + symbol with the

arrays defined above results in

their addition as expected.

> C

array([21, 32, 43, 54, 65])

72 j. rogel-salazar

Notice that in this case Python has indeed added the arrays

element by element as expected. In the example above

we could have simply used the list definitions from the

previous section and written the following:

A = np.array(a)

B = np.array(b)

As we have mentioned above, NumPy extends the

functionality of lists in Python to be able to carry out vector

arithmetics such as:

These are some of the vector

operations that are supported by

NumPy arrays.

• Vector addition: +

• Vector subtraction: -

• Element-wise multiplication: *

• Scalar product: dot()

• Cross product: cross()

You may have noticed that we have been referring to vector

operations, but what about matrices? NumPy supports

matrices too.

M1 = np.matrix([[2, 3], [-1, 5]])

M2 = np.matrix([[1, 2], [-10, 5.4]])

In this case we are using the command matrix to define the

We can define matrices with the

help of np.matrix.

objects and the result of the multiplication is as expected:

data science and analytics with python 73

> M1 * M2

matrix([[-28. , 20.2],

[-51. , 25.]])

An alternative for defining NumPy matrices is to use the

We can multiply NumPy matrices

with the usual multiplication

symbol.

mat command to recast NumPy arrays.

A widely used operation in linear algebra is the

transposition of a matrix. This can be readily accomplished

with the use of the transpose command:

> M2.transpose()

matrix([[1. , -10.],

[2. , 5.4]])

Finally, with the SciPy package we can use the linalg

methods that will enable us to do some typical linear Linear algebra methods are

included in linalg inside SciPy.algebra computations such as matrix inversion:

We can invert a matrix with the

.inv method.

Matrix multiplication with arrays

can be done with the dot()

function.

from numpy import array, dot

from scipy import linalg

x = array([[1, 1], [1, 2], [1, 3], [1, 4]])

y = array([[1], [2], [3], [4]])

n = linalg.inv(dot(x.T, x))

k = dot(x.T, y)

coef = dot(n,k)

74 j. rogel-salazar

In the code above we have defined a couple of arrays, x and

y. We have then calculated n = (xTx)−1 with the help of

the .inv command from the linear algebra module. Note

that the command .T in the code returns the transpose of a

matrix. We then calculated k = xTy, and finally coe f = nk =

(xTx)−1xTy.

We shall come back to this

calculation in the context of

regression in Chapter 4.

> print(coef)

[[-3.55271368e-15]

[1.00000000e+00]]

We have deliberately called the result coe f , as we can think

of the result of this simple calculation as the coefficients of

a linear regression using the arrays x and y. We will come

back to this result in Chapter 4.

2.4.3 Indexing and Slicing

As it is the case with lists, it is possible to access the

contents of an N-dimensional array by indexing and/or

slicing the array. We can do this using the usual notation Arrays and matrices can be

indexed and sliced with the usual

colon notation for lists and tuples.
start:end:step which will extract the appropriate elements

starting at start in steps given by step and until end−1.

> a = np.arange(10)

> print(a[2:6]); print(a[1:9:3])

[2 3 4 5]

[1 4 7]

data science and analytics with python 75

In the example above we are selecting first the elements

from 2 and up to but not including 6. We then ask for the

elements from 1 through to 8 in steps of 3.

The same notation can be used with arrays of more

dimensions. Let us see an example:

The same applies to arrays of

more than 1 dimension.

With the shape command we can

see the dimensions of matrices

and arrays.

> b = np.array([np.arange(4),2*np.arange(4)])

> print(b.shape)

(2,4)

The array b above is a 2× 4 array as can be seen from the

shape command. We can select all the elements in row zero

as follows:

We are using the colon notation

to slice the array. :1 refers to the

zero-th row, whereas : indicates

all columns.

> print(b[:1, :])

[[0, 1, 2, 3]]

So far so good, but until now the arrays, matrices and

vectors that we have been dealing with have been numerical.

However, in many situations the data that we have to deal

with is not necessarily all numbers of a single type. There is The arrays we have discussed so

far have all been numerical. In

many cases we need to deal with

different data types and Python

can still help.

therefore a need to find a way to accommodate the

manipulation of disparate data types, including categorical

and text data. In cases like that the capabilities of NumPy

are restricted, nonetheless Python can still help as we shall

see in the next section.

76 j. rogel-salazar

2.5 Pandas to the Rescue

You may be thinking that we have lost the plot and

that in the style of the Monty Python troupe we are simply

listing animal names as part of a sketch. You would be

wrong, as Pandas is actually a powerful library that enables

Python to work with structured datasets using panel data

or dataframes. Pandas4 started life as a project by Wes 4 McKinney, W. (2012). Python
for Data Analysis: Data Wrangling
with Pandas, NumPy, and IPython.
O’Reilly Media

McKinney in 2008 with the aim of enabling Python to be a

more practical statistical computing environment.

Pandas is a great addition to the Python stack: It allows us

to manipulate indexed structured data with many variables,

including work with time series, missing values and

multiple datasets. In Pandas, a 1D array is called a series, Pandas is a powerful library that

enables us to carry out complex

data manipulation in a very

straightforward manner.

whereas dataframes are collections of series. The rich

assortment of data types that can be held by a dataframe,

together with the manipulations that it enables, makes

Pandas an indispensable tool for the jackalope data scientist.

In some sense, we can think of a Pandas series as an

extension of a NumPy array, and indeed we can use them to

initialise a series:

A typical alias for the Pandas

library is pd.

import numpy as np

import pandas as pd

array1 = np.array([14.1, 15.2, 16.3])

series1 = pd.Series(array1)

data science and analytics with python 77

We could also have used a list or a tuple for initialisation. A

very useful feature of Pandas is the ability of using indices

and column names to refer to data. Let us consider the data

shown in Table 2.4 for some animals detailing their number

of limbs and dietary habits:

Animal Limbs Herbivore

Python 0 No
Iberian Lynx 4 No
Giant Panda 4 Yes
Field Mouse 4 Yes
Octopus 8 No

Table 2.4: Sample tabular data
to be loaded into a Pandas
dataframe.

We can load this data into Python by creating lists with the

appropriate information about the two features describing

the animals in the table.

We can load data into a Pandas

dataframe with lists, dictionaries,

arrays, tuples, etc.

features = {’limbs’:[0,4,4,4,8],\

’herbivore’:[’No’,’No’,’Yes’,’Yes’,’No’]}

animals = [’Python’, ’Iberian Lynx’,\

’Giant Panda’, ’Field Mouse’, ’Octopus’]

df = pd.DataFrame(features, index=animals)

Note that we have defined the features limbs and herbivore

from Table 2.4 as a dictionary, where the keys will be the

names of the columns in our Pandas dataframe, and the

values correspond to the entries in the table. Similarly, we

are defining a list called animals that will be used as an

index to identify each of the rows in the table.

78 j. rogel-salazar

We can have a look at the first three entries in the dataframe

df with the command head:

> df.head(3)

herbivore limbs

Python No 0

Iberian Lynx No 4

Giant Panda Yes 4

As we mentioned above, we can refer to the column data by

The head method lets us see the

first few rows of a dataframe.

Similarly, tail will show the last

few rows.

the name given to the column. For instance, we can retrieve

the data about the number of limbs of rows 2 through to 4

using the following command:

We can view the contents of a

dataframe column by name, and

the data can be sliced with the

usual colon notation.

df[’limbs’][2:5]

Giant Panda 4

Field Mouse 4

Octopus 8

Notice that we have referred to the name of the column as

a string. Furthermore, we have use slicing to select the data

required. Similarly, the information about a single row can

be obtained by locating the correct index:

The content of a row can be

retrieved with the .loc method.

df.loc[’Python’]

herbivore No

limbs 0

data science and analytics with python 79

There is a number of very useful commands in Pandas

that facilitate various tasks to understand the contents

in a dataframe. For example, we can get a description of

the various columns. If the data is numeric, the describe

method will give us some basic descriptive statistics such as

the count, mean, standard deviation, etc:

The describe method provides

us with descriptive statistics of

numerical data.

> df[’limbs’].describe()

count 5.000000

mean 4.000000

std 2.828427

min 0.000000

25% 4.000000

50% 4.000000

75% 4.000000

max 8.000000

Whereas if the data is categorical it provides a count, the

number of unique entries, the top category, etc.

> df[’herbivore’].describe()

count 5

unique 2

top No

freq 3

We can also obtain useful

information of categorical data

with describe.

It is very easy to add new columns to a dataframe. For

example, we can add a class to our data above as follows:

80 j. rogel-salazar

df[’class’]=[’reptile’,’mammal’,’mammal’,\

’mammal’,’mollusc’]

Adding columns to a Pandas

dataframe is very easy.

Pandas also allows us, among other things, to create groups

and aggregations:

Pandas allows us to group data

and create aggregations. The

method .groups contains the

grouped information, .size

returns a simple count.

> grouped = df[’class’].groupby(df[’herbivore’])

> grouped.groups

{’No’: [’Python’, ’Iberian Lynx’, ’Octopus’],

’Yes’: [’Giant Panda’, ’Field Mouse’]}

> grouped.size()

herbivore

No 3

Yes 2

We can also apply aggregation functions. Let us try to

calculate the average number of limbs for herbivores and

carnivores in our dataset:

In this case we are applying the

mean function from NumPy to

calculate the average per group in

our dataset.

> from numpy import mean

> limbs = df[’limbs’].groupby(df[’herbivore’])\

.aggregate(mean)

> print(limbs)

herbivore

No 4

Yes 4

data science and analytics with python 81

In the example above we used Python itself to input data

into a Pandas dataframe. Although this is possible for a We can import data into a Pandas

dataframe from a variety of

sources.
small dataset, in reality you may be interested to ingest data

from other sources. Fortunately Pandas has a very robust

input/output ecosystem and is able to take data from a

myriad of sources. Table 2.5 lists some of them:

Source Command

Flat file
read_table

read_csv

read_fwf

Excel file
read_excel

ExcelFile.parse

JSON
read_json

json_normalize

SQL
read_sql_table

read_sql_query

read_sql

HTML read_html

Table 2.5: Some of the input
sources available to Pandas.

Pandas is a very versatile and rich tool and we have only

touched the surface in this brief discussion. We will be Pandas is a very versatile library

and we will continue using it in

the rest of the book.
using Pandas extensively in the rest of the book and

whenever possible we will provide explanations to aid the

discussion. Nonetheless, we urge you to take a deeper look

into this great library.

2.6 Plotting and Visualising: Matplotlib

They say that a picture is worth a thousand words

and data visualisation makes the case quite emphatically.

82 j. rogel-salazar

There are a number of tools that enable data visualisation

in the context of business intelligence such as Tableau and

QlikView or Cognos. In Python, there are some really good Python is able to create plots and

graphs. Here we will cover some

of matplotlib’s functionality.
modules that support very nice visuals such as Seaborn,

or interactivity such as Bokeh. For our purposes we will

concentrate on the robustness provided by matplotlib and

its Matlab-style API called pylab.

In a good pythonic style, matplotlib is an object oriented

plotting library that can generate a variety of visualisations:

From simple plots, histograms, bar charts, scatterplots and
Matplotlib is an object oriented

plotting library. PyLab is a Matlab

and Octave inspired API for

matplotlib.
more with a few lines of code. If you are familiar with

Matlab or Octave, you will find pylab very easy to use. Let

us start by importing the modules:

import numpy as np

import matplotlib.pyplot as plt

from pylab import *

In an iPython/Jupyter notebook

you can use the magic command

%pylab inline to load NumPy

and matplotlib.

Let us create a simple figure to plot the following functions:

y1 = x2, (2.2)

y2 = x3. (2.3)

With the aid NumPy we can create a vector with entries for

x and calculate y1 and y2:

The command linspace lets us

create an equally spaced vector

with a specified number of points.

x = np.linspace(-5, 5, 200)

y1 = x**2

y2 = x**3

We can create a plot using the plot command as follows:

data science and analytics with python 83

fig, ax = plt.subplots()

ax.plot(x, y1, ’r’,\

label=r‘‘$y_1 = x^2$’’, linewidth=2)

ax.plot(x, y2, ’k--’,\

label=r‘‘$y_2 = x^3$’’, linewidth=2)

ax.legend(loc=2) # upper left corner

ax.set_xlabel(r’x’, fontsize=18)

ax.set_ylabel(r’y’, fontsize=18)

ax.set_title(’My Figure’)

plt.show()

Remember that matplotlib is an object oriented library and

The commands to create a plot

are very similar to those in

programming languages such as

Octave or Matlab.

thus we are using objects to create our plots. The commands

above are very similar to those used in Matlab and Octave

and should you need to take a closer look at the syntax you

can consult other resources5. The result of the commands 5 Rogel-Salazar, J. (2014). Essential
MATLAB and Octave. Taylor &
Francisabove can be seen in Figure 2.1. Finally, it is possible to save

the plot to a file with a single command. In this case we can

create a PNG file with the following line of code:

fig.savefig(’firstplot.png’)

2.7 Summary

In this chapter we have covered some of the most

important aspects of programming with Python. We started

by looking at some of the advantages of using Python in

the data science and analytics workflow as well as covering

84 j. rogel-salazar

Figure 2.1: A plot generated by
matplotlib.

some of the general pythonista programming style used by

Python programmers.

We have seen how Python can be used as a scripting

language as well interactively in a shell such as iPython. We

can also use an enriched ecosystem with the help of the

iPython/Jupyter notebook. We also covered the different

types that are supported by the language: Numbers, strings,

complex numbers, lists, tuples, dictionaries. Similarly, we

saw how Python deals with mutable and immutable objects.

data science and analytics with python 85

We can direct the way in which a programme will execute

instructions with the help of control flow structures.

Furthermore, Python expands its functionality with a

number of modules and packages that can be readily

imported and used. In this chapter we covered some

modules such as NumPy and SciPy. With the help of the

powerful Pandas library we can carry out data analysis and

manipulation in a very straightforward manner.

Finally, matplotlib is a module that enables us to create plots

and visualisations as part of the analysis we perform. These

are by no means the only useful modules available to you as

a Python programmer, but they are some of the ones we will

use throughout of the rest of the book. We will use other

modules we have not covered here and we will explicitly

mention this in the appropriate sections.

In the next chapter we will cover important concepts from

machine learning and pattern recognition that will provide

us with the context in which data science and analytics

operate. Within that we will present another useful Python

library: Scikit-learn.

http://taylorandfrancis.com

87

3

The Machine that Goes “Ping”: Machine

Learning and Pattern Recognition

We started our discussions about data science and

analytics by stating that the use of data as evidence is

nothing new. Furthermore, we saw in Chapter 1 how data

science is a portmanteau for a number of overlapping tasks,

taking tools from empirical sciences, mathematics, business

intelligence, pattern recognition and machine learning. In

this chapter we will focus our attention on the latter two in

order to provide context to ideas explored so far and frame

the algorithms that we will discuss in the following

chapters.

3.1 Recognising Patterns

An integral part of being human is our ability to

identify structure and order in the stimuli we receive, aided

by information we have acquired previously. From that

88 j. rogel-salazar

point of view we are firmly in the realm of cognitive

psychology, where language usage, memory, creativity and

thinking are the main interests1. Needless to say, the innate 1 Eysenck, M. and M. Keane (2000).
Cognitive Psychology: A Student’s
Handbook. Psychology Pressability to recognise patterns is not unique to humans, and it

is general among animals. Do not worry, we are not about

to enter into a discussion of perceptual processes or theories

of object recognition. However, it may be useful and

illustrative to briefly consider the psychological theory of

feature analysis.

In feature analysis, we are said to recognise an object by

considering the constituent parts, or features, of the object.

We then assemble them together to determine what the

object is. For example, we know that a cat is a small fury If we know what a cat looks like,

we can recognise other cats.animal with triangular ears, long whiskers and playful

claws. When we see a cat we recognise it for what it is

because it satisfies these (admittedly simplified) rules.

This may seem a far-fetched example, were it not for the

fact that actual research work on image recognition has

been demonstrated using cat faces (and human bodies)2. 2 Le, Q. V., R. Monga, M. Devin,
G. Corrado, K. Chen, M. Ranzato,
J. Dean, and A. Y. Ng (2011).
Building high-level features using
large scale unsupervised learning.
CoRR abs/1112.6209

The field of pattern recognition is thus interested in the

systematic detection of regularities in a dataset, based on

the use of algorithms. We can then use these patterns to

take actions such as classifying objects like cats. This does

sound familiar, right?

The dataset in question may not necessarily be constrained

to the features of a cat, or the parts of a body. As a matter

of fact, exploiting patterns has been the bread and butter

of sciences such mathematics, physics or chemistry. As

data science and analytics with python 89

a brief example, think of the efforts of Tycho Brahe and

Johannes Kepler3: One methodically recording the positions 3 Gilder, J. and A. Gilder (2005).
Heavenly Intrigue: Johannes Kepler,
Tycho Brahe, and the Murder Behind
One of History’s Greatest Scientific
Discoveries. Knopf Doubleday
Publishing Group

of celestial bodies, and the other unraveling the mysteries

behind these measurements and summarising them in what

we now know as Kepler’s Laws.

Recognising patterns is indeed a useful thing to do, and as

you may imagine, it is helpful in more than one domain of

applications. As a field, pattern recognition started up as

part of science and engineering, resulting in a long list of

applications to very practical problems.

Nonetheless, engineering was not alone in developing Pattern recognition is useful

in many areas such as science,

engineering, computer science, etc.
techniques: Other areas such as computer science have also

developed capabilities to exploit regularities seen in data.

It is therefore an interesting exercise to stop looking for a

moment at individual spheres of knowledge and gaze at

where they may end up converging. We have talked here

about psychology, physics, mathematics, engineering and

computer science.

The advances of these domains of knowledge, together

with the relentless curiosity of the human mind has posed

questions with the aim to understand a variety of areas. In Self-reflection has made us turn

attention to ourselves.particular, self-reflection has made us turn the attention to

ourselves, and has made of the brain a hot area of study. It

is a topic that still has many mysteries to reveal.

An important aim in the efforts to understand ourselves is “How does the brain work’?”

A very important and difficult

question.
the explanation of how the brain works and how it is able

to be the centre of complex activity. This activity manifests

90 j. rogel-salazar

itself as creativity, cognition, learning or intelligence, for

example.

Is it possible to understand this marvellous organ? And

if so, can we replicate its functions? Enter the realm of

Artificial Intelligence!

3.2 Artificial Intelligence and Machine Learning

Artificial intelligence is a field that carries a number

of connotations: From helpful companion androids through

to sentient killer robots, and even the singularity. The key The singularity is a hypothetical

event where machines are capable

of recursive self-improvement

leading to an intelligence

explosion.

is in the allure of that second word in the compound noun:

Intelligence. What is intelligence and how can we quantify

it? The contempt is due to the first word: Artificial. Is it

possible to recreate intelligence with the aid of a machine in

such a way that the behaviour is similar to that of a person

demonstrating intelligence?

This is not a new aim: The idea of recreating a human-like

being has been the inspiration of stories such as that of the

Golem, Pinocchio or Frankenstein’s monster. It is therefore

hardly surprising that when the genius of Alan Turing4 4 Turing, A. M. (1936). On
computable numbers,
with an application to the
Entsheidungsproblem. Proceedings
of the London Mathematical
Society 42(2), 230–265

formulated the concept of a Universal Machine in 1936, the

tantalising possibility of an intelligent machine was raised.

In the so-called Turing test, Alan Turing considered playing

an “imitation game”5 where a player would have to decide 5 Turing, A. M. (1950). Computing
machinery and intelligence.
Mind 59, 433–460

which of two interlocutors is a human being and which

is a machine, based only on their written responses to the

player’s questions.

data science and analytics with python 91

If a machine could not be distinguished from the person,

then the machine could be said to be “thinking”. Indeed,

if there is no way of telling what other human beings are If we cannot tell what other

humans are thinking, there is no

reason to regard machines any

different in that respect.

thinking except by a process of comparison with one’s own

thinking, then there is no reason to regard machines any

differently.

As a field, the aim of artificial intelligence is to make

machines carry out tasks that are associated with the

intellectual processing competence of humans. It is a

Herculean labour, and one that not only involves advances Artificial intelligence aims to

make machines carry out tasks

associated with intellect.
in computer science, but also in neuroscience, psychology

and even philosophy.

Among other tasks, pattern recognition, as discussed in the

previous section, is an integral part of the various functions

that an artificial intelligent agent would have to accomplish.

The ability to recognise regularities would enable her to Or him...

continuously adapt to a variety of changing environmental

conditions. This adaptation allows a person to act and react

to their surroundings and change their behaviour through

learning. The same would be thus expected of the artificial

intelligent agent.

From that point of view, machine learning can be seen as a Machine learning is a subfield of

artificial intelligence focussed on

improving the performance of an

intelligent agent.

subfield of artificial intelligence. In that respect, machine

learning has a much humbler aim than artificial intelligence:

instead of aspiring to the ultimate sentient robot, machine

learning is interested in studying the methods that can be

used to improve the performance of an intelligent agent

over time, based on stimuli from the environment.

92 j. rogel-salazar

Notice that although this definition uses evocative language,

the stimuli may not necessarily be read in real-time or even

directly by the intelligent agent, and for that matter the

intelligent agent does not have to be necessarily artificial.

Think for example of a business manager who is interested

in understanding what marketing materials have the best

response in a certain sector of her online customers. The use

of data about the browsing habits of her customers could The use of data generated by

businesses can be used to improve

their performance.
play the role of the stimuli, and this understanding will help

improve performance in her business. It is not hard to see

why machine learning has become an essential part of data

science and analytics.

Machine learning has become ubiquitous in modern life,

for example, every time that you check your email and

identify a SPAM email in your inbox, you are providing an The use of machine learning has

become ubiquitous in modern life.extra example to an algorithm (quite possibly a naïve Bayes

classifier - see Section 6.4.2) that will adapt and learn in

order to catch similar SPAM in the future. Similarly, online

retailers are able to target products to customers based on

items that other similar customers have purchased before

with the aid of collaborative filtering. We mentioned image See Section 8.4.2 for more

information on collaborative

filtering.
recognition earlier on, and other examples include fraud

detection, advertisement placement, web search, etc.

3.3 Data is Good, but other Things are also Needed

Machine learning may offer us a substantial

advantage - and insight - into the problems and questions in

data science and analytics with python 93

our business. In that respect, all we seem to need is an

enormous amount of data at our disposal and the rest

should follow. Data is indeed an asset in this respect and Data must be treated as an asset.

given current trends, data availability may not be a problem.

However, we need to assess whether the data available is

indeed relevant to the questions we are seeking to answer.

As you can imagine, it is fairly easy to go down the route

that more data is always better. Nonetheless, it may be the

case that having access to better relevant data is preferable Having relevant data is preferable

to having so-called big-data,

particularly at early stages.
to having so-called big data. I maintain that any efforts we

can spend in improving our data are worth investigating

and investing in. After all, the patterns we are trying to

exploit can only be as good as the data we employ.

With that in mind, it is often the case that having a wide

variety of data may be more important than having a lot

of it. By the same token, being able to apply a variety of Using a variety of algorithms is

preferable to having lots of data

that is not being used.
clever algorithms may prove to be much more fruitful than

simply having rows and rows of raw data. What is more,

if the algorithms employed are scalable, adding more data

may be a straightforward task.

We mentioned above the need to have relevant data, and

the challenge there is to identify when we do indeed have

it and when we do not. If we happen to be well-versed in

Make sure you have access to

relevant subject matter expertise

too. It may prove as valuable as

the data itself.

the business domain where the data is being generated, we

may have a good chance to decide if it is relevant or not.

However, in cases where we do not have such experience,

we should be able to face this challenge by enlisting the help

of people with experience in the subject matter area. Having

94 j. rogel-salazar

that expertise at our disposal can be as valuable as the data

itself!

It is therefore recommended to have discussions and

reviews with subject matter experts from an early stage in

the process. This is particularly true in cases where the data

science team may not be fortunate enough to have such

expertise.

Additionally, if we are indeed interested in gaining insight

from the data, it is also important to discuss the results Communicating your process

and results, from the early stages

is an important component to

becoming a successful jackalope

data scientist.

of the modelling stages with subject matter experts and

decision makers. These discussions need to be organised

with the understanding that not all of the people involved

may be able to follow intricate and lengthy explanations

about the finer points of a particular machine learning

algorithm.

It is therefore important to be able to communicate

effectively about the main issues in the process in an

inclusive manner. It is only then that the actual effectiveness

of the data science process is realised.

3.4 Learning, Predicting and Classifying

The implementation of machine learning algorithms

involves the analysis of data that could be employed in the

improvement (learning) of the agent (model) and

subsequently using the results to make predictions about

quantities of interest or making decisions in the face of

uncertainty.

data science and analytics with python 95

It is important to bear in mind that machine learning is Machine learning is interested in

regularities and patterns in data.interested in the regularities or patterns of the data in order

to provide predictive and/or classifying power. This is not

necessarily the same as causality. We would need a more

thorough examination to claim causes and effects given the

data we observe.

Machine learning tasks are traditionally divided into two

camps: Predictive or supervised learning and descriptive

or unsupervised learning. Let us start with supervised We talk about two types of tasks:

supervised and unsupervised

ones.
learning: A good example of this type of task is that of

a traditional teacher-pupil situation where the teacher

presents the pupil with a number of known examples to

learn from.

Let us return to the classification of cat faces: A teacher

that knows what a cat looks like will present the pupil

with several training images of cats and other animals,

and the pupil is expected to use the features or attributes of

the images presented to learn what a cat looks like. The

teacher will have provided a label to each of the images as Supervised learning makes use of

labelled data.being of cats or not. In the testing part, the teacher will

present images of various kinds of animals, and the pupil is

expected to classify which ones show a friendly feline face.

In machine learning parlance we talk about supervised

learning when we are interested in learning a mapping

from the input to output with the help of labelled sets

of input-output pairs. Supervised learning lets us make Supervised learning lets us make

predictions.predictions based on the data that we see and thus apply

generalisations.

96 j. rogel-salazar

Each input has a number of features that can be represented

in terms of an N-dimensional vector that will help in the

task of learning the label of each of the training examples.

Think of a supervised learning task as providing an

annotated map to a mountaineer that is signing up to our Or, where there two

mountaineers? Oh well...Kilimanjaro expedition and asking her to identify similar

landscape features to those marked on the map as she walks

along.

The other type of machine learning task is unsupervised

learning. In this case, following our example of the

teacher-pupil situation, the teacher takes a Montessori-style

approach and lets the pupil develop, on her own, a rule

about what a cat (or any other animal of the pupil’s

preference) looks like, without providing any hints or labels

to the learner.

In this case, from a machine learning point of view, there In contrast, unsupervised learning

does not make use of labelled dataare no input-output pairs. Instead, we only have the

unlabelled inputs and their associated N-dimensional

feature vectors, without being told the kind of pattern that

we must look for. In that respect, an unsupervised learning

task is less well-defined than a supervised one.

That does not mean that it is less useful, on the contrary, we

can use unsupervised learning to gain a better

understanding of the data we have acquired and it can Unsupervised learning can help

us understand the structure of our

data, providing us with ways to

describe or classify data points

provide us with a description or classification of the dataset

as well as discovering interesting patterns in the data. In

other words unsupervised learning lets us represent our

data better by extracting structure from it.

data science and analytics with python 97

Under unsupervised learning, in the case of our Kilimanjaro

mountaineers, we would ask them to go on their journey

without an annotated map, and instead identify interesting
Unsupervised learning may

provide us with labels to be used

in a supervised learning task.
areas in the landscape they are able to see from the summit.

One important thing to note is that an unsupervised

learning task may enable us to assign labels to those inputs

and thus open the door to the use of predictive or

supervised learning.

We have touched upon data being labelled or not, and that

has given us some clues as to the sort of problems we can

tackle with each of them. Let us now turn our attention to

the features and labels (if they exist). In Section 3.1 we gave

an example of some of the features that would enable us to

recognise a cat. Some of those features can be quantified, for Numerical features are associated

with measurement units and

represented by numbers.
example we mentioned that it must be a small furry animal:

How small? We can associate a number to this measurement

and then we would be talking about a numerical or

continuous variable. Continuous variables are typically

associated with measurement units and we can represent

them with real numbers.

We may also have attributes that cannot be represented by a

number, and instead they provide a description of the type

of attribute we are referring to. In the example of the cat

we mentioned triangular ears, instead of round or floppy

ones. Other examples include colour (black cat, white cat),

Categorical features provide a

description of the attributes of the

data.

gender (male/female), etc. We refer to these attributes as

categorical or nominal variables, and are typically related to

a class or category.

98 j. rogel-salazar

This categorisation among the type of features and labels in

a dataset may seem superfluous. However, a further bit of This distinction between feature

types will make it easier for us to

understand the sort of machine

learning task we want to employ.

scrutiny will let us see that this innocuous grouping enables

us to identify the type of machine learning algorithms that

may be more suitable to the problems we would like to

tackle. Take a look at Table 3.1, where we provide some

quintessential machine learning algorithms that fall into

each category.

Type of learning Categorical Continuous

Supervised Regression Classification

Unsupervised
Dimensionality
reduction

Clustering

Table 3.1: Machine learning
algorithms can be classified by the
type of learning and outcome of
the algorithm.

3.5 Machine Learning and Data Science

Many problems that we would like to tackle using

machine learning tend to have high complexity. We have to

bear this in mind when trying to apply algorithms, as it is

not very likely to find a perfect practical solution.

Nonetheless, if the machine can learn so can we. Machine Remember that if the machine can

learn, so can we.learning algorithms are suitable to the solution of problems

encountered in the data science and analytics workflow

where we are interested in deriving valuable insights from

data.

Let us take for instance the case of a supervised learning

task where our ultimate aim is to find a function h(x), called

the hypothesis. This function enables us to predict values

data science and analytics with python 99

for the problem at hand based on the given input data x. In

a practical case, the inputs in the feature vector x are varied We need to decide what are the

important features to include in

our models.
and we would have to decide what the important features to

take into account are, and then include them in our model.

The optimisation of the predictor h(x) is done using training In supervised learning we know

the output y in advance.data points so that for each one of them we have input

values xtrain that correspond to an output y which is known

in advance. Learning, in this sense, is thus the effective use

of data in the task of training a model in order to

accomplish the job it was set to complete.

From this point of view, we can relate the tasks that involve

that training to the data science workflow steps we listed in The steps to follow are all framed

by the data science workflow

discussed in Section 1.4
Section 1.4: Once we have identified the task at hand, we

need to acquire relevant data, extract pertinent features and

build our model. In addition to those steps, we also have to

consider three important parts that will enable us to decide

what sort of machine learning algorithm to choose for our

problem.

With each prediction that we make, we can find the

difference between that prediction and the true output value.

We do this in order to assess how well out predictor is

performing. An important part of the process is to be able to Generalisation is an important

outcome of the model.obtain a model that is able to perform well in a general

setting, rather than memorising the intricacies of the data

provided.

For example, if we are interested in building an algorithm

that is able to recognise cat faces, we would like it to

perform well with new, previously unseen cats. If the

100 j. rogel-salazar

algorithm is only able to recognise Bowman, the Iberian lynx, Model evaluation must be part of

the entire process.but not Mittens, the kitty, then it is not a great algorithm to

be deployed. If, however, the algorithm is able to recognise

that a cat is a cat even if it is a drawing, a photograph or an

actual real-life cat, then the algorithm is great. We shall

come back to this point when we discuss the evaluation of

algorithms in Section 3.8.

At this point, it is pertinent to make clear that there is no There is no such thing as a perfect

model.such thing as a perfect model, just good enough ones. The

improvement in learning comes from generalising regular

patterns in the training data to be able to say something

about unobserved data points. We should therefore be

careful not to obtain a model that “memorises” the data,

also known as overfitting. We can avoid this by employing We shall discuss more about

avoiding this memorisation in

Sections 3.7 and 3.12.
techniques such as regularisation and cross-validation as we

shall see later on in this chapter.

3.6 Feature Selection

Machine learning can be a powerful tool under our

jackalope data scientist belt. Not only can it be used

together with computer science, mathematics and statistics

to help us filter and prepare our data, but also to extract

value out of it. It is therefore important to be able to We have to discern between actual

patterns and random noise.separate the valuable relationships and patterns from any

random, confounding ones. In any real application it is

inevitable to have a mix of distracting noise together with

the signals we want to exploit.

data science and analytics with python 101

Unprocessed data can thus be thought of as the raw

material that can be filtered and prepared to obtain the

insights desired. However, as it is the case with cooking, the Like in cooking, the quality of the

ingredients is as important as the

steps of the recipe.
quality of the ingredients is as important as the steps

specified in the recipe. With that analogy in mind, we need

to be able to think through the available independent

variables or features (ingredients) that will be included in

the model (recipe).

In some cases using the unprocessed, raw data may be

suitable. However, in many cases it is preferable to create

new features that synthesise important signals spread out in

the raw data. This process is known as feature selection Feature selection considers both

existing features, and the creation

of new ones.
where not only should we consider the the features readily

available, but also the creation and extraction of new

features and even the elimination of some variables too.

The careful selection of the features to be used in the

modelling helps with the understanding of the model

outcomes. It also has a large effect in the predictions

obtained from the application of machine learning

algorithms. A common way to create new features is via

mathematical transformations that make the variables Mathematical transformations

are a typical way to create new

features.
suitable for exploitation by a particular algorithm. For

instance, many algorithms rely on features having a linear

relationship, and finding a transformation that renders

nonlinear features to be represented as being linear in a

different feature space is definitely worth considering. We

will see some example of this in the next chapter and also in

Section 9.1.

102 j. rogel-salazar

It is true that knowing, a priori, the appropriate

transformations and aggregations we should make is a hard

task in and of itself. In many cases, experience with similar Experience with data

transformations is an invaluable

asset to be used.
datasets and comparable applications is invaluable.

Nonetheless, if you are starting up not all is lost.

Fortunately another common way to extract features is to

use machine learning itself.

In this case, unsupervised learning may provide a way to Unsupervised learning can also

be useful in the feature selection

process.
find useful clusters (see Section 5.1) in the data that may

point us out in the right direction. Similarly, dimensionality

reduction (see Section 8.1) can help us to determine

combinations of features that explain the variance shown in

our dataset. We shall have an opportunity to talk about

these types of algorithms later on in the book.

3.7 Bias, Variance and Regularisation: A Balancing

Act

As we have mentioned in the previous section, machine

learning algorithms enable us to exploit the regularities in

the data. Our task is therefore to generalise those

regularities and apply them to new data points that have Generalisation refers to the

performance of a model against

unseen data.
not been observed. This is called generalisation, and we are

interested in minimising the so-called generalisation error, i.e.

a measure of how well our model performs against unseen

data.

If we were able to create an algorithm that is able to recall

the exact noise in the training data, we would be able to

data science and analytics with python 103

bring our training error down to zero. That sounds great In principle we can bring our

training error down to zero.

Unfortunately this translates into a

larger generalisation error.

and we would be very happy until we receive a new batch

of data to test our model. It is quite likely that the

performance of the model is not as good as a zero

generalisation error would have us believe. We have ended

up with an overfit model: We would be able to describe the

noise in our data instead of uncovering a relationship, given

the variance in our data.

The key is to maintain a balance between the propensity of

our model to learn the wrong thing, i.e the bias, and the

sensitivity to small fluctuations in the data, i.e. the variance. The key is to maintain a balance

between bias and variance.In the ideal case scenario we are interested in obtaining

a model that encapsulates patterns in the training data,

and that at the same time generalises well to data not yet

observed. As you can imagine, the tension between both

tasks means that we cannot do both equally well and a

trade-off must be found in order to represent the training

data well (high variance) without risking overfitting (high

bias).

High-bias models typically produce simpler models that do

not overfit and in those cases the danger is that of

underfitting. Models with low-bias are typically more Another way to look at this is

in terms of complexity versus

simplicity of a model.
complex and that complexity enables us to represent the

training data in a more accurate way. The danger here is

that the flexibility provided by higher complexity may end

up representing not only a relationship in the data but also

the noise. Another way of portraying the bias-variance

trade-off is in terms of complexity v simplicity.

104 j. rogel-salazar

The tension between bias and variance, simplicity and

complexity, or underfitting and overfitting is an area in the

data science and analytics process that can be closer to a

craft than a fixed rule. The main challenge is that not only is

each dataset different, but also there are data points that we

Keeping that balance is more an

art than a science.

have not yet seen at the moment of constructing the model.

Instead, we are interested in building a strategy that enables

us to tell something about data from the sample used in

building the model.

In order to prevent overfitting it is possible to introduce

ways to penalise our models for complexity by adding extra

constraints such as smoothness, or requiring bounds in the

norm of the vector space we are working on - more on this

later on.

This process is known as regularisation, and the effects of Regularisation is the process

of introducing to our model a

penalty for complexity.
the penalty introduced can be adjusted with the use of the

so-called regularisation hyperparameter, λ.

Regularisation can then be employed to fine-tune the

complexity of the model in question. In a sense it is a way

to introduce the Occam’s razor principle to our model. Occam’s razor tells us that when

we have two competing theories

that make the same predictions,

the simpler one is preferred.Some typical penalty methods that are introduced for

regularisation are the L1 and L2 norms that we will discuss

in the following section. In Section 3.12 we will touch upon

how the hyperparameter λ can be tuned with the use of

cross-validation.

data science and analytics with python 105

3.8 Some Useful Measures: Distance and Similarity

Once we have built a set of models based on the training

data we have, it is important to distinguish a good

performing model against a less good one. So, how do we Remember that we are working

with the principle that models are

good enough.
ascertain that a model is good enough for our purposes?

The answer is that we need to evaluate the models with the

aid of a scoring or objective function.

Various machine learning algorithms have appropriate ways

to let us evaluate how much we can trust what had been

learned and how predictive the model obtained is. The

performance of a model will therefore depend on various

factors such as the distribution of classes, the cost of

misclassification, the size of the dataset, the sampling

methods used to obtain the data, or even the range of values

in the selected features. It is important to note that Evaluation measures are usually

specialised to the type of

algorithm used.
evaluation measures are usually specialised to the type of

problem and algorithm used, and the score provided will be

meaningful to the problem domain. For instance, in the case

of classification problems, the classification accuracy may

provide a more meaningful score than other measures.

In general model evaluation can be posed as a constrained

optimisation problem given an objective function. The aim Model evaluation can be posed

as a constrained optimisation

problem.
can then be presented as the problem of finding a set of

parameters that minimises that objective function. This is a

very useful way to tackle the problem as the evaluation

measure can be included as part of the objective function

itself. For example, consider the case where we are

106 j. rogel-salazar

interested in finding the best line of fit given a number of

data points: A perfect fit would be found in the case where We will discuss regression in

Chapter 4.the data points align flawlessly in a straight line. As you can

imagine, that is very rarely the case.

Instead of expecting the unexpected, we can evaluate how

well a line fits the data when we take into account the

difference between the location of a point and its

corresponding prediction as obtained from the model. If we

minimise that distance then we can evaluate and compare

various calculated predictions. This particular evaluation In regression, the minimisation

of the sum of squares error is a

typical evaluation measure.
measure used in regression analysis is known as the sum of

squared residuals (SSR) and we will discuss it in more detail

in Chapter 4.

As we can see, the concept of distance arises naturally as

a way to express the evaluation problem, and indeed a

number of conventional evaluation procedures rely on

measures of distance. Consider the points A and B in a Various evaluation measures rely

on measures of distance.two dimensional space shown in Figure 3.1. Point A has

coordinates p(p1, p2) and point B has coordinates q(q1, q2).

We are interested in calculating the distance between these

two points. This can be achieved in different ways and we

are familiar with some of these, such as the Euclidean and

the Manhattan distances.

• Euclidean distance: This corresponds to the ordinary

distance calculated using the straight line that joins

points A and B; in two dimensions it corresponds to the

distance given by the Pythagorean theorem. Given the

Remember the Pythagoras

theorem?

coordinates of each of the two points in question we can

data science and analytics with python 107

Figure 3.1: Measuring the distance
between points A and B.

obtain the distance between A and B as:

dE =
√
(q1 − p1)2 + (q2 − p2)2 =

√
x2 + y2, (3.1)

where the distances x and y are shown in Figure 3.1. It is

possible to extend this definition to n dimensions:

This is the well known Euclidean

distance.
dE =

√
(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2,

=

√
n

∑
i=1

x2
i , (3.2)

where xi is the distance along the i-th dimension. The We also call it the L2-norm.

Euclidean distance is also known as L2-norm.

• Manhattan distance: It is easy to see why this distance

measure gets this name if we think of the distance that a

yellow cab would cover while travelling along the streets

To measure the Manhattan

distance think of a yellow New

York taxi cab and its journey

through the island.

in Manhattan. Apart from Broadway, the cab cannot

move diagonally in the street-avenue grid. Instead, it can

only move North-South and East-West. In the case of

points A and B in Figure 3.1, the Manhattan distance is

108 j. rogel-salazar

given by

dM = |(q1 − p1) + (q2 − p2)| = |x + y|. (3.3)

For an n-dimensional space we can extend the above

definition as:

dM = |(q1 − p1) + (q2 − p2) + · · ·+ (qn − pn)| ,

=

∣∣∣∣∣ n

∑
i=1

xi

∣∣∣∣∣ , (3.4)

The Manhattan distance is also known as L1-norm.

The Manhattan distance is also

known as the L1-norm.

From a geometrical point of view the idea of measuring the

distance between two points makes intuitive sense.

Furthermore, if the distance is zero we can argue that the

two points are effectively the same one, or at the very least

similar to one another. This idea of similarity is therefore Another important concept,

related to that of distance, is

similarity.
another useful tool in the development of evaluation

measures, particularly in the case where features are not

inherently amenable to being placed in a geometric space.

Given two points A and B, the similarity measure d must

satisfy a certain number of general conditions:

1. Must be positive: d(A, B) ≥ 0

2. If the measure is zero, the points A and B are equal and

vice versa: d(A, B) = 0←→ A = B

3. Must be symmetrical: d(A, B) = d(B, A)

4. Must satisfy the triangle inequality: d(A, B) + d(B, C) ≥
d(A, C)

data science and analytics with python 109

The two distance measures we discussed above can be used

to gauge similarity, however there are a number of other Although distance is useful,

similarity can be measured in

other ways too.
useful ways to do this, for example the cosine and Jaccard

similarities:

• Cosine similarity: This similarity measure is commonly

used in text mining tasks, for example. In these cases the

words in the documents that comprise the corpora to be

mined correspond to our data features. The features can

be arranged into vectors and our task is to determine if

any two documents are similar or not. Cosine similarity

Please note that the cosine

similarity is a measure of

orientation and not magnitude.

is based on the calculation of the dot product of the

feature vectors. It is effectively a measure of the angle θ

between the vectors: If θ = 0, then cos θ is 1 and the two

vectors are said to be similar. For any other value of θ the

cosine similarity will be less than 1. The cosine similarity

of vectors v1 and v2 is given by:

sc(v1, v2) = cos(θ) =
v1 · v2

|v1||v2|
, (3.5)

where |vi| corresponds to the usual Euclidean norm to

measure the magnitude of the vector vi.

• Jaccard similarity: The Jaccard similarity measure With Jaccard similarity we can

compare unordered collections of

objects.
provides us with a way to compare unordered collections

of objects, i.e. sets. We define the Jaccard similarity in

terms of the elements that are common to the sets in

question. Consider two sets A and B with cardinalities

|A| and |B|. The common elements of both sets are given

by the intersection A ∩ B. In order to give us an idea of the

relative size of the intersection compared to the sets, we

110 j. rogel-salazar

divide the former by the union of the sets. This can be

expressed as follows:

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| . (3.6)

In the case of document similarity for example, two

identical documents will have a Jaccard similarity of 1 The comparison of documents is

a good candidate for the use of

Jaccard similarity.
and those completely dissimilar a value of 0.

Intermediate values correspond to various degrees of

similarity.

There are other distance and similarity measures that can There are other ways to measure

distance and similarity, these are

some of the most useful/common

ones.

be used. The choice will depend to a great extend on the

type of problem to tackle as well as the algorithms and

techniques to be used to solve the problem. In the following

chapters we will address specific algorithms and evaluation

measures that are appropriate to each of them.

3.9 Beware the Curse of Dimensionality

We have been referring to data features as an integral

part of the ingredients we will use with our machine

learning algorithms. Once we identified the features to be

included in our model we can consider them as the different The features selected to be

included in our model can

be considered as the different

dimensions our data inhabit.

dimensions along which our data instances can be placed:

For a single feature we have a one-dimensional space, two

features can be represented in two dimensions, etc.

It follows that as we increase the number of features, the

number of dimensions that our model must include is

data science and analytics with python 111

increased too. Not only that, but we will also increase

the amount of information required to describe the data

instances, and therefore the model.

As the number of dimensions increases, we need to consider As the number of dimensions

increases, we need to use more

data points to avoid overfitting.
the fact that more data instances are required, particularly if

we are to avoid overfitting. The realisation that the number

of data points required to sample a space grows

exponentially with the dimensionality of the space is usually

called the curse of dimensionality6, a term used by Richard 6 Bellman, R. (1961). Adaptive
Control Processes: A Guided Tour.
Rand Corporation. Research
studies. Princeton U.P

Bellman in the context of dynamic programming, and a

great way to describe this issue!

The curse of dimensionality becomes more apparent in

instances where we have datasets with a number of features

much larger than the number of data points. We can see

why this is the case when we consider the calculation of The problem becomes more

apparent when we consider the

distance between data points in

higher dimensional spaces.

the distance between data points in spaces with increasing

dimensionality.

Let us consider, without loss of generality, that we have a set

of M = 10 data instances belonging to three different classes.

We are interested in finding the closest neighbour to each

of the data points and, in this case, assess if they belong to

the same class or not. This is a very simple classification

task. We can simplify the discussion by considering the use

of a unit length measurement and counting the number Let us count the number of data

points that fall within one unit

length measurement.
of data points that fall within it. We are depicting this

situation in Figure 3.2 where we show the ten data instances,

represented with a triangle, an open circle and a plus sign,

in 1, 2 and 3 dimensions.

112 j. rogel-salazar

x1

x1

x2

x1

x2

x3

Figure 3.2: The curse of
dimensionality. Ten data instances
placed in spaces of increased
dimensionality, from 1 dimension
to 3. Sparsity increases with the
number of dimensions.

In a one-dimensional space, the unit measurement is given

by a line. In the example shown in Figure 3.2 we can see

a space with three unit intervals, so the sample density is
10
3 . In other words we have about 3.333... data points per

interval and thus finding a near neighbour and assessing its

class is certainly possible.

In the two-dimensional case, we would have to search an

area of 3× 3 = 9 unit squares and in this case the sample

density is 10
9 , or an average of 1.111... data points per square. As the number of dimensions

increases, the distance between

data points becomes larger and

larger. We end up with very

sparse spaces.

In this case it is less likely to find a neighbour of a given

data instance within the unit square where the data point of

interest is located. Finally, in the 3D case we have a feature

space of 3× 3× 3 = 27 unit cubes and the sample density

is 10
27 or 0.111... on average. In this case our search for a

data science and analytics with python 113

neighbour within a cubic square becomes more difficult as

most of the feature space is effectively empty. We say that

the space is sparse.

It is easy to see that as we keep adding features

(dimensions), our space becomes sparser. It is due to this

sparsity that we require a larger and larger number of data

It is due to this sparsity that we

require a larger and larger number

of data instances.

instances when dealing with higher-dimensions. For

example, if we were interested in carrying out our

classification task using one feature with a range of values

between 0 and 1, and we wanted our dataset to cover 25% of

this range, we would need 25% of the complete population.

By adding another feature we would require 50% of the

population (0.52 = 0.25) and with three features we would

need 63% of the population (0.633 ' 0.25).

We may think that simply adding more data is the

appropriate solution to dispel the curse of dimensionality.

However, as we saw above, it is important to remember that

the number of data instances needed grows exponentially

with the number of dimensions. In practice we very rarely The number of data instances

needed grows exponentially with

the number of dimensions.have access to an infinite amount of data. Furthermore,

using too many features actually results in overfitting.

Following our classification example above with three

categories (triangle, open circle and plus sign), it is much

easier to find various ways to classify the data instances

into separate classes when considering higher number of

features. This is a great thing to start with, but we must be

careful to avoid overfitting, or even getting carried away

with false patterns. Furthermore, the sparsity in a higher

Sparsity in higher dimensional

space is not homogeneous.

114 j. rogel-salazar

dimensional space is not homogeneous, and it turns out that

the space around the origin is much more sparse than in the

corners of the hyper-space.

In order to understand this issue let us consider a 2D space

to start with. The mean of the feature space is at the centre

of a unit square. If we wanted to search the space within

one unit distance from the centre, we would be searching

in the area given by a circle of unit radius (circumscribed Data instances further away from

the centre of a unit circle are

more difficult to classify. This is

aggravated in higher dimensions.

by the square). Any data instances that fall outside the area

of this circle turn out to be closer to the edges of the square

and become more difficult to classify as their feature values

are more distant to those in the centre (the mean). Let us

now consider this situation in N dimensions:

• The volume of a unit hypercube of N dimensions is

1N = 1

• The volume of a unit hypersphere of N dimensions7 is: 7 DLMF (2015). NIST Digital
Library of Mathematical Functions.
http://dlmf.nist.gov/, Release
1.0.10 of 2015-08-07V(N) =

πN/2

Γ
(

N
2 + 1

) rN , (3.7)

where the radius r = 1 for the unit hypersphere and Γ(·)
is the gamma function.

In Figure 3.3 we show how the volume of the hypersphere

tends to zero as the dimensionality N increases.

Nonetheless, the volume of the hypercube remains fixed.

This means that in higher-dimensional spaces, most of the In higher-dimensional spaces,

most of the data is in the corners

of the hypercube.
data is actually in the corners of the hypercube that defines

the feature space, making the classification task more

difficult to achieve.

http://dlmf.nist.gov/

data science and analytics with python 115

Figure 3.3: Volume of a
hypersphere as a function of
the dimensionality N. As the
number of dimensions increases,
the volume of the hypersphere
tends to zero.

The curse of dimensionality is a very real thing and there is

not much that can be done to eliminate it completely.

Eliminating the curse of

dimensionality completely is

not an easy task.

However, it is possible to minimise it, for instance by

carefully checking that low-dimensional methods are

effective in higher dimensions. Avoiding the curse of

dimensionality can be done by increasing the amount of

data, but even before going down that route it is worth

considering if the features used are indeed a suitable

collection.

In that respect, apart from a careful feature selection process, Dimensionality reduction aims

to transform data from a higher-

dimensional space into one with

fewer dimensions.

we can also reduce the dimensionality of the problem by

transforming the data from a higher-dimensional space into

a space with fewer dimensions as it is the case with

116 j. rogel-salazar

Principal Component Analysis (PCA). We will discuss this

technique in Chapter 8. As for avoiding overfitting, in See Section 8.2 for a discussion

on Principal Component Analysis

(PCA).
Section 3.12 we will discuss the ideas behind

cross-validation. But first we need to make a stop to talk

about Scikit-learn.

3.10 Scikit-Learn is our Friend

The broad aim of machine learning, as we have seen,

is the development and application of algorithms that

can learn from data. This goal can be accomplished in a

variety of ways and in recent times, with the advancement

The advancement of computer

power and the availability of

useful software tools put machine

learning within our reach.of computer power, together with the availability of useful

software tools this is a goal that can be within the reach of

many of us.

Among the many programming languages and tools that

are at hand, in this book we have chosen to use Python.

Within the libraries and packages at our disposal we

concentrate mainly on Scikit-learn as it contains a Scikit-learn contains a wide-range

of machine learning algorithms

and builds upon libraries that we

have discussed.

wide-range of machine learning algorithms. Scikit-learn

builds upon libraries that we have already seen in Chapter 2

such as NumPy, SciPy and matplotlib. Scikit-learn is able to

interact with Pandas dataframes and other objects in Python.

It is worth mentioning that the focus of Scikit-learn is the

modelling part of the data science workflow, rather than the

manipulation of data.

Scikit-learn enables us to run popular models and

techniques such as:

data science and analytics with python 117

• Regression

• Clustering

• Feature selection Some popular models and

techniques available in Scikit-

learn.• Dimensionality reduction

• Classification

• Cross-validation

• etc.

In the following chapters we shall have opportunity to

explore some of the implementations of these models. Scikit- Scikit-learn comes packaged with

some test datasets ready to play

with.
learn also comes packaged with some test datasets that can

be used for investigating the usage of the various models.

Given that we will be using this library extensively, it is

worth mentioning the typical data representation expected

by the models in Scikit-learn. As explained in Section 2.4, Scikit-learn expects data in a

matrix representation.matrices and vectors are a favourable data representation, in

particular for mathematical calculations and manipulations.

Scikit-learn bears that in mind and it expects data to be

represented in the form of two-dimensional numeric

matrices with M data instances (rows) and N distinct The matrices can be NumPy or

SciPy arrays for instance.features (columns).

A canonical example in data science and analytics is the Iris

dataset, and as you can imagine it is included with Scikit-

learn. The set was first used by Ronald Fisher8, and has a 8 Fisher, R. A. (1936). The use
of multiple measurements in
taxonomic problems. Annals of
Eugenics 7(2), 179–188

total of M = 150 samples of three species of iris flowers:

Setosa (50), Virginica (50) and Versicolor (50). For each

specimen we are provided with N = 4 feature measures

118 j. rogel-salazar

(in centimetres): sepal length, sepal width, petal length and

petal width.

We can load this dataset by importing it directly from Scikit-

learn as follows:

from sklearn.datasets import load_iris

iris = load_iris()

With the two lines of code above we have imported the

dataset and loaded it into an object named iris. We can

now inspect the matrix that contains the feature data. For The Iris dataset is represented by a

150× 4 matrix.instance the size of the matrix must be M = 150 and N = 4,

and we can verify this with the shape method as follows:

> iris.data.shape

(150L, 4L)

Let us see the first six data instances:

We can use slicing and dicing to

see the contents of the dataset.

> iris.data[0:6,0:4]

array([[5.1, 3.5, 1.4, 0.2],

[4.9, 3. , 1.4, 0.2],

[4.7, 3.2, 1.3, 0.2],

[4.6, 3.1, 1.5, 0.2],

[5. , 3.6, 1.4, 0.2],

[5.4, 3.9, 1.7, 0.4]])

The dataset also contains the class to which each data

instance belongs, i.e. setosa, versicolor or virginica. The

data science and analytics with python 119

information can be obtained by looking at the target_names

of the iris object:

The class names of the iris flowers.
> print(iris.target_names)

[’setosa’ ’versicolor’ ’virginica’]

Remember that Scikit-learn expects data in numeric format,

so using strings to represent the classes is not suitable.

Instead, each of the three categories has been encoded with

numbers corresponding to the position of the names in the

list above:

> iris.target[0:151:50]

array([0, 1, 2])

We will come back to this dataset every so often in the rest

of the book.

3.11 Training and Testing

The models we use for gaining insight into our business

or research questions require data. With data as a resource, We need to be mindful of how,

when and where data is used.we need to be mindful of how, when and where it is used.

Let us imagine that we are tasked with running a

classification model based on the Iris dataset we saw in the

previous section. We can consider using all 150 records for

this purpose and base our model on the 4 features provided.

120 j. rogel-salazar

We carry out our modelling and the result can be used to

classify any new iris flower we encounter based on the

4 measurements (features) used. However, how do we

know how well (or how badly) our model performs? We We are interested in the

performance against unseen

data.
would have to wait until we get new data not seen by the

model. This may be an issue as we do not necessarily have

a Mark Watney9 - Martian botanist extraordinaire - or any 9 Weir, A. (2014). The Martian: A
Novel. Crown/Archetype

other (fictional or real) botanist at hand to obtain new iris

specimens, whether they are grown on Earth, Mars or

elsewhere.

What is more, we must remember that we build a model

because we are interested in using it effectively. This means

that we should care about its performance with new unseen

data and therefore a way to assess this is with error rates. If

we use our entire dataset to train the model, determining We have discussed some causes of

overfitting earlier in this chapter.our training error becomes impossible. Not to mention the

fact that the model will be built to account for the training

data only and may thus overfit it, i.e. it will not generalise

to new data instances.

One way to tackle this problem is to prepare two

independent datasets from the original one:

• Training set: This is the data that the model will see and

it is used to determine the parameters of the model

• Testing set: We can think of this as “new” data. The The testing set is sometimes also

called the holding set.model has not encountered it yet and it will enable us

to measure the performance of the model built with the

training set

data science and analytics with python 121

In some cases instead of partitioning the data into two sets,

it is divided into three. The third component is called the

validation set and it is used for tuning the model. All three Sometimes a third partition is

used to validate the model.parts need to be representative of the data that will be used

with the model. It is important to clarify that the testing

data must not be used for training the model, and that the

validation set must not be applied for testing.
The testing set must never be used

for training the model.

We can see a schematic representation of this situation in

Figure 3.4. Notice that the use of the training set in the

modelling provides us with a measure of the training error.

In turn, when applying the testing dataset we can get a

measure of how well the model performs, i.e. we obtain a

measure of the generalisation error. Finally, when using A measure of generalisation error

is obtained from the testing set.unseen new data we are getting a measure of the so-called

out-of-sample error.

From the discussion we had about the curse of

dimensionality, we know that the more data instances we

have for modelling the better. On the other hand, the more

test data we have the more accurate will be our error

estimate. A common way to split the data set into training

and testing is 80/20% , and typically between one third and

one tenth of the data is held out for testing. Other

combinations are possible such as 70/30% for example.

In cases when a straightforward splitting leaves us with

datasets that may not be representative of the data, we

can consider using a stratification method, for instance There are a number of

considerations that must be

made when splitting a given

dataset.

in situations where a particular class in the data is not

represented in the training set. Stratification will aim at

122 j. rogel-salazar

Dataset

Training set Testing
Set

Model

New Data

Training error
Generalisation
error

Out-of-sample error

Figure 3.4: A dataset is split
into training and testing sets.
The training set is used in the
modelling phase and the testing
set is held for validating the
model.

splitting the dataset so that each class is represented in both

the testing and training sets.

Splitting the data can be done by partitioning the set into

two (or three) sections without altering the order of the

data. However, in cases where the dataset has been ordered, Splitting the dataset into training

and testing is better done with

random selection.
this naïve procedure may lead to unbalanced training and

testing sets. A better approach is to randomly select the data

instances that will form each of the two partitions. It makes

sense thus to carry out the randomisation as part of your

workflow, regardless of the ordering of the data.

data science and analytics with python 123

Sckit-learn is able to assist with the splitting of the dataset For versions of Scikit-learn earlier

than 0.18 this functionality was in

the cross_validation module
into random train and test subsets with the

model_selection module and its train_test_split

function following this syntax:

Training and testing datasets

can be obtained with the

train_test_split function.

model_selection.train_test_split(\

*arrays, \

test_size, \

train_size, \

random_state)

where *arrays are the datasets that will be split, test_size

accepts a value between 0 and 1 representing the proportion

of the dataset to be included in the testing set, train_size The train size parameter is

optional.can be left out, and if so its value is automatically set to

be the complement of the test size. Finally, random_state

initialises the random number generator for sampling.

We can see how this can be applied to the case of the Iris

dataset. We would like to store the features in arrays called Let us split the Iris dataset with

Scikit-learn.
X_train and X_test and the corresponding targets in

Y_train and Y_test. We would like to hold 20% of the data

for testing:

We are using the pythonic style of

multiple assignation.

from sklearn import model_selection

X_train, X_test,\

Y_train, Y_test =\

model_selection.train_test_split(\

iris.data, iris.target,\

test_size=0.2, random_state=0)

124 j. rogel-salazar

We can check the sizes of the newly created sets:

We can verify the size of the

matrices we have after the split.

> print(X_train.shape, Y_train.shape)

((120, 4) (120,))

> print(X_test.shape, Y_test.shape)

((30, 4) (30,))

The modelling task will then be done with the training

dataset X_train and Y_train. We can assess how well our

model works by measuring the error against the testing

dataset X_test and Y_test.

3.12 Cross-Validation

Since we are interested in making accurate and useful

predictions, we need to ensure that any models we create

generalise well to unseen data. We have discussed how a
In other words, we avoid

overfitting.

training and testing dataset split can help us with this goal.

Nonetheless, the parameters that we obtain with the use of a

single training dataset may end up reflecting the particular

way in which the data split was performed.

The solution to this problem is straightforward: We can use

statistical sampling to get more accurate measurements.

This process is usually referred to as cross-validation. Cross-

validation improves statistical efficiency by performing

data science and analytics with python 125

repeated splitting of data into training and validation sets, Cross-validation improves

statistical efficiency by performing

repeated splitting of data.
and re-performing model training and evaluation every

time. The aim of cross-validation is to use a dataset to

validate the model during the training phase.

Let us see why this helps by considering the following

scenario: We have carried out an initial training/testing

split. The training set is used for modelling, and we perform

the evaluation with the testing set. Imagine now that a Cross-validation can help reduce

variability by repeated use of

training and testing splits.
different random state had been used to split the data. We

would expect the model to see different data points during

training. The generalisation error obtained with the second

split would be different from the first. We can reduce

variability by repeating this scenario over and over again,

using different partitions and averaging the validation

results over the rounds. Moreover, cross-validation is a great

tool when we have a large, but limited amount of data

points. Let us see how this can be done with k-fold

cross-validation.

3.12.1 k-fold Cross-Validation

A common cross-validation technique is the k-fold We need to split the dataset into k

partitions.procedure: The original data is divided into k equal sets.

From the k subsets, a single partition is kept for validating

the model, and k− 1 subsets are used for training.

The process is then repeated k times, using one by one each

of the k subsets for validation. We will therefore have a

total of k trained models. The results of each of the folds

can be combined, for instance by averaging, to obtain a

126 j. rogel-salazar

single estimation of the out-of-sample error. We can see

a schematic representation of the k-fold cross-validation

procedure for the case k = 4 in Figure 3.5.

1 2 3 4

Dataset

Model ModelModelModel

Validation ValidationValidationValidation

Aggregation

Training set k Testing set

Figure 3.5: For k = 4, we split the
original dataset into 4 and use
each of the partitions in turn as
the testing set. The result of each
fold is aggregated (averaged) in
the final stage.

There are other procedures of cross-validation such as

Leave-One-Out, (LOO) where one single data sample is

Other cross-validation procedures

are also available.

taken for validation and the rest of the M − 1 data points

are used for training. If we were to remove p samples from

the complete set we would be implementing the so-called

Leave-P-Out (LPO) procedure.

data science and analytics with python 127

Scikit-learn enables us to carry out cross-validation splits

with the aid of functions such as KFold, LeaveOneOut and

LeavePOut. The idea behind these functions is to generate

Cross-validation with the k-fold

method is implemented with the

KFold function.

k lists of indices that can be used to select the appropriate

data points for each fold. For instance, we can create 10

folds for the Iris dataset as follows:

KFold effectively maintains an

index that keeps track of the data

instances that go into each of the

training and testing sets.

kfindex = cross_validation.KFold(n_splits=10,\

shuffle=True,\

random_state=0)

for train_ix, test_ix in kfindex.split(iris.data):

X_train, X_test =\

iris.data[train_ix], iris.data[test_ix]

Y_train, Y_test =\

iris.target[train_ix], iris.target[test_ix]

Cross-validation is a useful and straightforward way to get

a more accurate estimate of the out-of-sample error, and

at the same time a more efficient use of data than a single Cross-validation provides a more

efficient use of our data.training/testing split. This is because each record in the

dataset is used in both training and validating.

Cross-validation can also be useful in feature and model

selection procedures. For example, it can be used for tuning

the regularisation parameter λ introduced in Section 3.7: We Cross-validation can be

very useful in tuning the

hyperparameter in regularisation.
split out training data and train a model for a fixed value of

λ. We can then test it on the remaining subsets and repeat

this procedure while varying λ. Finally, we select the best λ

that minimises our measure of error.

128 j. rogel-salazar

Despite these advantages we must bear in mind that cross-

validation increases the computational work that needs to

be done, and if overused, can lead to overfitting. I urge you Cross-validation increased the

computational work that needs to

be done.
to use cross-validation given the advantages mentioned

above. In a true case of “do as I say, not as I do”, there will

be examples in the book where I will not perform the cross-

validation step as part of the explanations of the various

models we will tackle. However, it is worth remembering

that cross-validation is an integral part of the modelling part

of the data science workflow.

3.13 Summary

I would like to finish this chapter with a few thoughts

that we must always keep in mind during our work in data

science and analytics:

• If the machine can learn, so can we!

• Machine learning and data science are not not focussed

on causality, but in prediction, insight and knowledge

• All models are wrong: There is no such thing as a perfect

model, just good enough ones

• The data science and analytics workflow is a balancing

act:

– Bias v variance

– Complexity v simplicity

– Overfitting v regularisation

– More data v cunning algorithm and resources

data science and analytics with python 129

– Accuracy v insight

– Effort saved v computational cost

– Jackalopes v unicorns

• Having a lot of data (even big data) is good, and being

able to construct models is a great skill. Nonetheless, they

are not magic wands

• Beware the curse of dimensionality

• Splitting our data into training and testing not only is

good practice but a must

• An important part of the modelling phase in data science

is the use of cross validation. Remember that the testing

set must never be used for training

http://taylorandfrancis.com

131

4

The Relationship Conundrum: Regression

Regression analysis is one of the most widely used

tools in statistical analysis. Most of us may have come

across it at some point either by employing it or interpreting

it. It is a powerful technique due to both its ease of Regression is a well-known and

widely used machine learning

tool.
calculation and simplicity of assumptions. However, it is

due to these attributes that sometimes regression is

misapplied or misinterpreted.

In this chapter we will cover the main aspects of regression

analysis starting up with a motivation to the problem and

covering both linear and polynomial regression techniques. We will cover here some of its

most important aspects.Similarly, we will see how feature selection can be done

with the help of appropriate regularisation techniques.

4.1 Relationships between Variables: Regression

Consider a situation where you are interested to

determine the association between two (or more) pieces of

132 j. rogel-salazar

information; say for example the relation of the height of a

child compared to that of her parents, or ice cream sales and

temperature, or even the body mass of an animal and the All these are actual, well

documented examples of

regression usage.
mass of its brain. We can collect data for these events and

use it for constructing a model that enables us to explore the

relationship between the variables in question. Ultimately,

our goal is to use our model to predict the outcome of the

variable of interest given the values of the other variable(s).

We usually call the quantity of interest the response or

dependent variable and denote it with the variable y. The The dependent variable is the

quantity we want to predict.other quantities are called predictors, explanatory or

independent variables and denote them as x. Intuitively, we The independent variables are also

called regressors.know that two quantities are correlated if there is a

relationship between the two variables, i.e. the value of one

tells us something about the value of the other one.

In a correlation analysis we estimate a value bounded

between −1 and 1 and we call it the correlation coefficient.

This coefficient tells us the strength of the linear association The correlation coefficient

measures the degree of linear

relationship among variables.
between the two variables. If the two quantities vary in

tandem (if one increases/decreases, the other one does too)

the correlation coefficient is positive, whereas it is negative

when the two quantities vary out of sync (if one decreases,

the other one increases).

It is important to remember that the correlation coefficient A zero correlation coefficient

simply indicates no linear

relationship, but other types

are available!

measures the strength of linear relationship between the

variables and therefore a value of zero does not mean that

there is no relationship at all. It simply indicates that there

is no linear relation between the variables in question.

data science and analytics with python 133

Determining the strength of the relationship provides us

with some clues towards answering our original question.

Although we can tell whether the relationship is strong (±1) Regression analysis lets us explore

the relationships among variables.or not (0), the correlation coefficient does not tell us how. A

regression analysis does allow us to start seeing how.

Before we continue, a word of caution: Just because we

measure a correlation between two variables, it does not

mean that there is a causal relationship between them. In You may have heard the age old

aphorism: “Correlation does not

imply causation’’.
other words, the fact that people use umbrellas when it

rains does not mean that umbrellas cause rain to fall. We are

better off avoiding Sir Bedevere’s type of reasoning: “If you

weigh the same as a duck, then, you’re made of wood and

must be a witch”.

Similarly, we must be careful when considering

relationships between variables as they may be related to a

third, confounding, variable. Take for example the

relationship between ice cream sales and temperature we

mentioned earlier on: As Summer approaches, the ice cream

van is busy selling more ice cones. A similar trend has been

noted for the murder rates, as the heat rises, the number of

killings do too1. In a simplistic analysis one may risk 1 Lehren, A. W. and Baker, A.
(2009, Jun 18th). In New York,
Number of Killings Rises With
Heat. The New York Times

looking at the relationship between ice cream sales and

murder, and concluding that one causes the other, without

taking into account the weather. Always be on the lookout

for confounding variables.

Nonetheless, trying to figure out the existence of these

relationships and explaining them is by no means

something new. As a matter of fact even the name of the

134 j. rogel-salazar

technique carries some historical connotations: Sir Francis

Galton, a 19th century polymath and first cousin of Charles

Darwin, effectively coined the term. Galton was interested

in a variety of subjects, from psychology to astronomy as

well as statistics. The acceptance of fingerprints as evidence

in court was advanced thanks to Galton’s studies2, 2 Cole, S. (2004). History of
fingerprint pattern recognition.
In N. Ratha and R. Bolle (Eds.),
Automatic Fingerprint Recognition
Systems, pp. 1–25. Springer New
York

including estimating the probability that two people have

the same fingerprints.

Back to our subject of interest, Galton pioneered the

application of statistical methods to many of his scientific

interests. For instance, he indeed was interested in the

relative size/height of children and their parents3 (both in 3 Galton, F. (1886). Regression
Towards Mediocrity in Hereditary
Stature. The Journal of the
Anthropological Institute of Great
Britain and Ireland 15, 246–263

animals and plants). Among his observations he noticed

that a tall parent is likely to have a child that is taller than

average. However, the child is likely to be less tall than the

parent. Similarly, a parent that is shorter than average

would have children taller than the parent, but still below

the average. In other words, the difference in height

between parent and offspring is proportional to the parent’s

The height difference in

proportional to the parent’s

deviation from the typical

population.
deviation from the typical population. He described this by

saying that the height of the offspring regresses towards a

mediocre point.
We would call this the mean in

modern, politically-correct terms.

Regression towards the mean is a purely statistical

phenomenon and can be seen as a fact of life, if you will.

The key to the matter is the expectation value of the

measured mean: A sprinter that breaks the world record in Regression to the mean is an

inescapable fact of life.a race is expected to run to her average time in the next one,

or the score in a mid-term exam can be expected to be less

bad than the score in the final.

data science and analytics with python 135

All in all, regression is thus the mean value of a response

variable as a function of one or more explanatory variables.

A regression model is an approximate to it. As a first

attempt to determining the dependence among the

variables, the simplest thing we can do is check if the

relationship follows a straight line.

In that sense, a linear regression model assumes (among

other things) that the response can be described by a linear

Linear regression assumes:

• Linear relationship.

• Multivariate normality.

• No or little multicollinearity.

• No auto-correlation.

• Homoskedasticity.

function. Even if it is not, we can at least approximate

linearly over a range of values or carry out transformations

to linearise relationships.

The veracity of a linear model may or may not reflect the

actual relationship among the variables in question, and we

should remind ourselves that there is no such a thing as a

perfect model!

The linear regression model has therefore the following

form:

y = f (x) + ε,

= β0 + β1x + ε, (4.1)

where β0 is the intercept of the line, β1 is the slope of the The intercept is the point where

the line crosses the y-axis.line, and ε denotes a vector of random deviations or

residuals assumed to be independent and identically

normally distributed. We refer to β0 and β1 as the

regression coefficients. In the next section we will extend the

model to more than one independent variable and will see

how to implement the model using matrix notation.

136 j. rogel-salazar

4.2 Multivariate Linear Regression

In the previous discussion we have only taken into

account the relationship between the dependent variable

and a single independent one. We can extend the model to

include many more variables, for example let us consider N

observations on the response yi with i = 1, 2, 3, . . . , N; and

with M regressors xj with j = 1, 2, 3, . . . , M. The multivariate Remember that xi are vectors that

contain the various data points we

will use in our model.
linear regression model is written as:

yi = β0 +
M

∑
j=1

β jxj + εi. (4.2)

We would like to express the linear regression model in

terms of matrices. As such, we can write the independent

variable as an N ×M matrix:

The matrix X provides us with

a compact representation of the

collection of the different M

features for each of our N data

points.
X =


1 x11 x12 · · · x1M

1 x21 x22 · · · x2M
...

...
...

...
...

1 xN1 xN2 · · · xNM

 , (4.3)

whereas the independent variable is a column vector with N

elements:

Y =


y1

y2
...

yN

 . (4.4) Similarly, the vector Y allows us to

collate all the various responses yi .

data science and analytics with python 137

Finally, the regression coefficients and the residuals are

given by:

β =


β0

β1
...

βM

 , (4.5)

ε =


ε0

ε1
...

εM

 . (4.6)

The intercept β0 has been included

in the regression coefficient vector

β.

Note that we have included the intercept β0 in the

expression of the regression coefficients. This is why we

have a column of ones in the matrix shown in expression

(4.3) in the previous page.

In that manner, we end up with the following form for the

regression model:

This is the expression for a

multivariate linear regression

model.
Y = βX + ε. (4.7)

Our task is therefore to find the regression coefficients in

the vector β. The simplicity of Equation (4.7) is provided

by the use of matrices. Furthermore, it is also their use that

will make all the calculations and manipulations to find the

regression coefficients much easier as we shall see in the

next section.

138 j. rogel-salazar

4.3 Ordinary Least Squares

We are tasked with finding the regression coefficients β

in the multivariate regression model given by Equation (4.7).

Let us recall that we are interested in predicting the value of

the dependent variable given the values of the explanatory

variables. If we were able to craft a perfect linear model,

the actual value of y would match exactly the prediction A perfect prediction would make

the residuals equal to zero.f (x1, x2, . . . , xM). This implies that the residuals ε are zero.

In a more realistic scenario, we would find a pretty good

line of best fit to the data by minimising the error. One way

to implement a suitable objective function for this purpose

is to minimise the sum of squared residuals as follows:

In linear regression we are thus

interested in minimising the sum

of the square residuals.

SSR = ε2, (4.8)

= |Y− Xβ|2 ,

= (Y− Xβ)T (Y− Xβ) ,

SSR = YTY− βTXTY− YTXβ + βTXTXβ. (4.9)

Notice that the third term in the last expression is actually a

scalar: YTXβ = (βTXTY)T .

Since we require the minimum of the SSR quantity above,

we take its derivative with respect to each of the βi

parameters. This leads us to the following expression:

We need to take the first derivative

to calculate the minimum.

∂(SSR)
∂βi

=
∂

∂βi

(
YTY− βTXTY− YTXβ + βTXTXβ

)
,

= −XTY +
(

XTX
)

β. (4.10)

data science and analytics with python 139

We can now equate the above expression to zero, leading us

to the solution of the matrix equation as:

This is the solution to the linear

model given in Equation (4.7).
β =

(
XTX

)−1
XTY. (4.11)

We refer to Equation (4.11) as the the normal equation

associated with the regression model.

We have already encountered this calculation in Section We have actually already

implemented this calculation

in Section 2.4.1.
2.4.1 where we used Python to demonstrate the use of linear

algebra operations such as transposition, inversion and

multiplication. Let us go through the calculations one step

at a time.

4.3.1 The Maths Way

We can use the normal equation given in expression

(4.11) to solve the linear system given by the linear model in We have a single feature and four

records.Equation (4.7). Let us see how this is done for the same data

used in Section 2.4.1. For the independent variable we have:

X =


1

2

3

4

 , (4.12)

and for the dependent variable:

Y =


1

2

3

4

 . (4.13)

140 j. rogel-salazar

We have a very succinct dataset with only four observations

and one single feature. In other words, we have an N = 4 by

M = 1 system. Let us express Equation (4.7) as β = M1M2.

In this case we have a 4×1 linear

system.

We can now start by calculating M1 as follows:

We calculate the first part of the

solution as M1 =
(
XTX

)−1.

M1 =
(

XTX
)−1

, (4.14)

=


 1 1 1 1

1 2 3 4




1 1

1 2

1 3

1 4





−1

,

=

 4 10

10 30

−1

,

=

 1.5 −0.5

−0.5 0.2

 . (4.15)

Whereas the second part M2 is given by:

The second part is given by

M2 = XTY.

M2 = XTY, (4.16)

=

 1 1 1 1

1 2 3 4




1

2

3

4



=

 10

30

 . (4.17)

data science and analytics with python 141

Finally, the regression coefficients are given by:

Finally the multiplication M1M2

gives us the coefficients of the

linear regression.

β = M1M2,

=

 1.5 −0.5

−0.5 0.2

 10

30

 ,

 β0

β1

 =

 0

1

 . (4.18)

As we can see from the results above, the intercept of the

model is zero and the slope of the line is one. In other

words, the model can be expressed by the following

equation:
Remember that the model is

Y = β0 + β1x.
Y = x, (4.19)

and therefore the line of best fit is given by a line at 45◦

crossing the origin, as can be seen in Figure 4.1. The grey

circles correspond to the data points used for the regression,

and the line is given by Equation (4.19).

Not only is it important to be able to carry out the

operations that enable us to determine the regression

coefficients, but also we must be able to interpret them. In

case of the intercept β0, we can consider this to be the

expected mean value of the predicted variable when the

independent variable is not present. By the same token, a Not present here means that the

dependent variable is zero, x = 0.“unit” increase in the independent variable is associated

with a β1 “unit” increase in the predicted variable.

Please note that in the example used in this section, since

all the points considered are perfectly aligned, the line of

142 j. rogel-salazar

Figure 4.1: The regression
procedure for a very well-behaved
dataset where all data points are
perfectly aligned. The residuals in
this case are all zero.

best fit does indeed pass through every point. However, in

a more realistic situation the presence of noise cannot be

ignored. This is why it is important to get an estimate of the

sum of squared residuals. A schematic representation of this

situation is shown in Figure 4.2, where the distance from

each of the data points to the line of best fit is shown as a

dot-dashed line.

Although the calculations we have covered above are The calculations shown are

straightforward, but can get

somewhat laborious.
straightforward, they can be somewhat laborious. This is

particularly true in the case where there are more than one

data science and analytics with python 143

x

y

Figure 4.2: The regression
procedure for a very well-behaved
dataset where all data points are
perfectly aligned. The residuals in
this case are all zero.

or two independent variables at play. Furthermore, the

matrix inversion that must be carried out is not a trivial

calculation, and we should be careful as there is no

guarantee that a given matrix is invertible. In those cases,

we say that the matrix is singular or degenerate and

methods to approximate the inverse are needed.

We can implement a function in Python with the normal

equation given by expression (4.11). A naïve approach may Instead of doing the computations

“by hand”, we are better off using

a computer.
be well suited for simple problems. In a nutshell, we do

not really want to solve the problem “by hand” as done

in this section, but perhaps we are better off using Python

libraries that are readily available for this task such as those

in StatsModels and Scikit-learn.

144 j. rogel-salazar

4.4 Brain and Body: Regression with One Variable

Let us now take a look at running a linear regression

with a slightly larger dataset. In this case, we are going

to follow one of the examples that we mentioned at the

beginning of this chapter. The dataset that we will use

looks at relationship of the body mass of an animal and

the mass of its brain4. The data is available at http:// 4 Allison, T. and D. V. Cicchetti
(1976, Nov 12). Sleep in mammals:
ecological and constitutional
correlates. Science 194, 732–734

dx.doi.org/10.6084/m9.figshare.1565651 as well as at

http://www.statsci.org/data/general/sleep.html.

We will assume that the data has been downloaded into a

comma-separated-value (CSV) file with the name

mammals.csv and saved in a subfolder called Data. We can

use Pandas to manipulate the file. Let us start by looking at

a scatter plot of the data. Before we can do this we need to

upload the necessary modules:

We start by importing the

Python libraries that will help

us manipulate the data.

%pylab inline

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Note that the %pylab inline command at the beginning of The %pylab inline command

imports NumPy and matplotlib.the code above imports NumPy and matplotlib enabling

plots to be printed in the Jupyter notebook. We are also

explicitly importing these libraries to make the code a bit

clearer. Finally, we also import Pandas, and assign to it the

alias pd.

http://dx.doi.org/10.6084/m9.figshare.1565651
http://www.statsci.org/data/general/sleep.html
http://dx.doi.org/10.6084/m9.figshare.1565651

data science and analytics with python 145

Let us load the data into a Pandas dataframe called mammals

and visualise the data with a scatter plot as shown in Figure

4.3:

Using the read_csv method from

Pandas we can read our CSV file.

mammals = pd.read_csv(u’./Data/mammals.csv’)

plt.scatter(mammals[’body’], mammals[’brain’])

Figure 4.3: A scatter plot of the
brain (gr) versus body mass (kg)
for various mammals.Let us take a look at the number of entries for each of the

two variables we are considering. First the variable called

body:

> body_data = mammals[’body’]

> body_data.shape

(62,)

146 j. rogel-salazar

The variable brain gives us the following:

> brain_data = mammals[’brain’]

> brain_data.shape

(62,)

As we can see there are 62 records in the dataset. We have The shape command allows us

to see the size of the dataset

imported into Pandas.
assigned the values of each of the columns of the dataset

to new variables for ease of reference. Here we will make

use of the StatsModels module to perform the regression.

We show how to use Scikit-learn in Section 4.4.1. First we We make use of StatsModels here.

You can see an example of using

Scikit-learn in Section 4.4.1.
have to add a column of ones to the body variable so that

we can accommodate for the calculation of the intercept,

β0. StatsModels has a handy function for this purpose:

add_constant

We make use of the StatsModels

library to carry out the regression.

import statsmodels.api as sm

body_data = sm.add_constant(body_data)

In the code above we are loading the StatsModels package

and using the sm alias to refer to it. We are then adding a

column of ones to the body_data array making it a 62× 2

array. We are ready to run our regression with the ordinary

least squares method (OLS) implemented in StatsModels:
In particular we are using the

ordinary least squares method

implemented in StatsModels.
regression1 = sm.OLS(brain_data, body_data).fit()

If you are familiar with R, you are probably familiar with

the “formula notation” used to refer to the dependency

of a variable on appropriate regressors. So, if you have a

data science and analytics with python 147

function y = f (x), in R you can denote that dependency

with the use of a tilde, i.e ~. This is an easy way to deal with

denoting the dependency among variables and fortunately

StatsModels has an API that allows us to make use of it in

Python too:

The formula API in StatsModels

allows us to simply the notation

in the linear regression. It uses

formulas similar to those in R.

import statsmodels.formula.api as smf

regression2 = smf.ols(formula =\

’brain ~ body’,\

data = mammals).fit()

Please note that the R-style formula does not require us to

add the column of ones to the independent variable. The

regression coefficients obtained with both methods are the Do not forget to use the fit()

command to carry out the

regression.
same, and do not forget that the .fit() command is needed

in both cases.

Let us now take a look at the results of fitting the model to

the data provided. StatsModels provides a summary

method that renders a nice-looking table with the

appropriate information. Unfortunately the formatting of

the output is more suitable for showing on a computer

StatsModels provides a nice

summary of the regression using

the summary() command. The

output is more suitable to be

shown on a computer screen: go

ahead and try it in your Python

implementation.

screen rather than in a book page. Nonetheless, you are

encouraged to try the following command in your shell:

regression1.summary()

You can run the same command for the second model we

executed and you will see the same results:

148 j. rogel-salazar

print(regression2.summary())

Among the information provided you will have the

following entries:

OLS Regression Results

=====================================

Dep. Variable: brain

Model: OLS

Method: Least Squares

No. Observations: 62

R-squared: 0.873

Adj. R-squared: 0.871

Part of the summary provided by

OLS gives us information about

the goodness of fitness via the R2

coefficient.

OLS tells us the name of the dependent variable, the model

used and the method as well as the number of observations

used. It also tells us the value of R2 also called the

coefficient of determination. The values of this number

range between 0 and 1, and it tells us how well the data fit

the model. A value of 1 is an indication that the regression

line obtained fits the data perfectly well, whereas a value of

0 tells us that the linear model is no good. This measure is The R2 coefficient is related to the

Pearson correlation.related to the Pearson correlation coefficient between the

dependent and explanatory variables. We could formulate

the linear regression model as a maximisation problem for

R2.

Having said that, there are some drawbacks with only

looking at the value of R2. Namely, that it increases as we

add more explanatory variables to the mix. We should

data science and analytics with python 149

therefore be careful when running regression models by Although the coefficient of

determination provides an

indication about how well the

model fits the data, it should be

used with care.

adding extra features: An increase in the value of R2 may

not be due to the explanatory power of the input, but to

the fact that we added that extra input. That is why OLS

also provides information for the adjusted R2. It is very

similar to R2, but it introduces a penalty as extra variables

are included in the model. The adjusted R2 value increases An alternative is the adjusted R2

value.only in cases where the new input actually improves the

model more than would be expected by pure chance.

For the case of our dataset, an R2 = 0.873 is a pretty good

outcome as 87% of the total variance in brain mass is

explained by the linear regression model based on the body

mass. This means that the regression line obtained must be

a good one. And as yet we have not even mentioned what

this line is and how it can be obtained from OLS.

coef
std
err

t P>|t|
95% Conf.
Interval

Intercept 91.0044 43.553 2.090 0.041 3.886 178.123

body 0.9665 0.048 20.278 0.000 0.871 1.062

Table 4.1: Results from the
regression analysis performed
on the brain and body dataset.

In Table 4.1 we can see the regression parameters obtained

from running the ordinary least squares method on the

brain and body dataset. The column named “coef” lists the

estimated values of the coefficient listed in the table. Notice

that the “const” corresponds to the intercept of the model.

150 j. rogel-salazar

OLS lists the rest of the coefficients using the names of OLS lists the names of the

variables as they appear in our

data.
the variables included in the model. The “std err” column

corresponds to the basic standard error of the estimate of

the coefficient; “t” is the so-called t-statistic and it tells us

how statistically significant the coefficient is. The P-value is

listed in the “P > |t|” column and it helps us determine the

significance of the results considering the null-hypothesis

that the coefficient being equal to zero is true. A small P-

value (typically ≤ 0.05) indicates strong evidence against the

null hypothesis and you should go with the value obtained A small P-value indicates evidence

against the null hypothesis and so

it is rejected.
for the coefficient. Finally “95% Conf. Interval” gives us the

lower and upper values of the 95% confidence interval.

The results shown in Table 4.1 indicate that the intercept

for the model is β0 = 91.0044 and the slope of the line is

β1 = 0.9665, leaving us with the following model:

Brain = 0.9665(Body) + 91.0044, (4.20)

and the P-values obtained indicate a rejection of the null-

hypothesis. We can get the parameters using the params

method:

The regression parameters can be

obtained with the params method

of the fitted model object.

> regression2.params

Intercept 91.004396

mammals.body 0.966496

We can use this equation to predict the mass of a mammal

given its body mass and this can easily be done with the

predict method in OLS. Let us consider new body mass

data science and analytics with python 151

measurements that will be used to predict the brain mass

using the model obtained above. We need to prepare the

new data in a way that is compatible with the model. We

can therefore create an array of 10 new data inputs as

follows:

new_body = np.linspace(0,7000,10)

For the predict method of the model run with the formula

API we do not need to add a column of ones to our data

and instead we simply indicate that the new data points are The predict method of the

StatsModel formula API does not

need the addition of a column of

ones.

going to be treated as a dictionary to replace the

independent variable (i.e. exog in StatsModels parlance) in

the fitted model. In other words, you can type the following:

exog refers to the independent

variable.
brain_pred=regression2.predict(exog=\

dict(body=new_body))

print(brain_pred)

This will generate the following output:

array([91.00439621, 842.72379329,

1594.44319036, 2346.16258744,

3097.88198452, 3849.6013816 ,

4601.32077868, 5353.04017576,

6104.75957284, 6856.47896992])

The numbers shown correspond to the brain mass

predictions for the artificial body mass measurements used

as input. In Figure 4.4 we can see the regression line given

by Equation (4.20) in comparison to the data points in the

We can use the values above to

construct the line of best fit given

by the model.

152 j. rogel-salazar

set. Please note that if you are not using the formula API,

the input data will require the addition of a column of ones

to obtain the intercept.

Figure 4.4: A scatter plot and the
regression line calculated for the
brain (gr) versus body mass (kg)
for various mammals.

So far so good, but can we do better than that? For example,

look at the clustering that happens in the region below

1, 000 kilogram mark for body mass and compare it with the

ones that take place after the 2, 000 or 6, 000 kilogram marks.

Are the latter outliers?, or can we come up with a better

model that encompasses these differences? Let us take a

look at a typical transformation carried out in a variety of

analyses. But before let us use Scikit-learn.

data science and analytics with python 153

4.4.1 Regression with Scikit-learn

We have seen how to use StatsModels to perform our

linear regression. One of the reasons to use this module is

the user-friendly output it generates. Nonetheless, this is

not the only way available to us to perform this analysis. We can implement a regression

model using Scikit-learn.In particular, Scikit-learn is another very useful module,

and one that we use extensively throughout the book. For

completness, in this section we will see how to perform

linear regression with Scikit-learn.

Let us import the modules to read the data. We will use

Pandas to load the data into a dataframe called mammals:

This is exactly the same we did in

the previous section.

%pylab inline

import numpy as np

import pandas as pd

mammals = pd.read_csv(u’./Data/mammals.csv’)

As we discussed in Section 3.10, we know that Scikit-learn

expects data to be represented by two-dimensional numeric

matrices with M data instances (rows) and N distinct fea-

tures (columns). In this case, we have 62 instances and one

feature. Let us arrange the data as expected by creating

appropriate arrays for the dependent and independent

variables:

Notice the use of double brackets

to get the right shape for the

arrays.

body_data = mammals[[’body’]]

brain_data = mammals[[’brain’]]

154 j. rogel-salazar

We are now ready to create our model. First, we need

to create an instance of a linear regression model from

linear_model in Scikit-learn. This can be done as follows:

We carry out linear regression

modelling with linear_model in

Scikit-learn.

from sklearn import linear_model

sk_regr = linear_model.LinearRegression()

With that in place we simply use the fit method for the

model and we are done:

sk_regr.fit(body_data, brain_data)

We can now check that the intercept and coefficient obtained

are the same we calculated with StatsModels. We can also

check the value of the R2 coefficient:

The coefficients and intercept are

obtained with the .coef_ and

.intercept_ methods.

The R2 coefficient is calculated

with the .score method.

> print(sk_regr.coef_)

[[0.96649637]]

> print(sk_regr.intercept_)

[91.00439621]

> print(sk_regr.score(body_data, brain_data))

0.872662

Finally, the predictions can be calculated with the predict

method:

new_body = np.linspace(0, 7000, 10)

new_body = new_body[:, np.newaxis]

brain_pred = sk_regr.predict(new_body)

Note the use of np.newaxis to

render the Numpy array into the

format expected by Scikit-learn.

data science and analytics with python 155

4.5 Logarithmic Transformation

One of the principal tenets of the linear regression

model is the idea that the relationship between the variables

at play is linear. In cases when that is not necessarily true,
Hence the name!

we can apply manipulations or transformation to the data

that result in having a linear relationship. Once the linear

model is obtained, we can then undo the transformation to

obtain our final model.

A typical transformation that is often used is applying Applying the logarithmic function

is a typical way to transform our

data.
a logarithm to either one or both of the predictive and

response variables.

Let us see what happens to the scatter plot of the body

and brain data we have been analysing when we apply the

logarithmic transformation to both of the variables. We will

create a couple of new columns in our Pandas dataframe to

keep track of the transformations performed:

Remember that log in Python

refers to the base-e logarithm.

from numpy import log

mammals[’log_body’] = log(mammals[’body’])

mammals[’log_brain’] = log(mammals[’brain’])

We can plot the transformed data and as we can see from

Figure 4.5 the data points are aligned in a way that indicates

a linear relationship in the transformed space.

Why has this happened? Well, remember that we are trying The transformation has helped us

convert our problem into a simpler

one.
to use models (simple and less simple ones) that enable us

to exploit the patterns in the data. In this case the

156 j. rogel-salazar

Figure 4.5: A scatter plot in a
log-log scale for the brain (gr)
versus body mass (kg) for various
mammals.

relationship we see in this data may be modelled as a power

law; e.g. y = xb.

The log-log transformation applied to the data maps this

nonlinear relationship to a linear one, effectively

transforming the complicated problem into a simpler one:

log(y) = log(xb), (4.21)

log(y) = b log(x),

y′ = bx′, (4.22)

where we are using the notation log for the inverse of the
In engineering and other

disciplines they use the notation ln

for this function.exponential function e. As we can see, we have transformed

data science and analytics with python 157

our power law model, a nonlinear model in the regressor,

into a form that looks linear as shown in Equation (4.22).

Now that we have this information at hand, we can train a

new model using the transformed features attached to the

mammals dataframe:

log_lm=smf.ols(formula = ’log_brain ~ log_body’,\

data = mammals).fit()

If we print the log_lm.summary() we will see some of the

The only difference here is that

we are using the transformed

variables in the OLS function.

following information:

OLS Regression Results

=====================================

Dep. Variable: log_brain

Model: OLS

Method: Least Squares

No. Observations: 62

R-squared: 0.921

Adj. R-squared: 0.919

The logarithmic transformation has increased the value of

However, the results returned by

OLS are remarkably different.

R2 from 0.873 to 0.921. We can see the value of the sum of

squared residuals with the following command:

We can obtain the sum of the

square residuals with the ssr

method.

> log_lm.ssr

28.9227104215

Let us now take a look at the statistics for the model as well

as the all important coefficients. As we can see from Table

158 j. rogel-salazar

coef
std
err

t P>|t|
95% Conf.
Interval

Intercept 2.1348 0.096 27.227 0.000 1.943 2.327

log_body 0.7517 0.028 26.409 0.000 0.695 0.809

Table 4.2: Results from the
regression analysis performed
on the brain and body dataset
using a log-log transformation.

4.2, the new model has an intercept of β0 = 2.1348 and a

slope of β1 = 0.7517. The regression line for this model can

be seen in Figure 4.6.

Figure 4.6: A log-log scale figure
with a scatter plot and the
regression line calculated for
the brain (gr) versus body mass
(kg) for various mammals.

Remember that the coefficients obtained above are for the

transformed data and if we wanted to relate this to the

data science and analytics with python 159

original features we would need to undo the transformation.

In this case we have a model given by

Brain = A(Body)0.7517 (4.23)

where A = e2.1348.

Figure 4.7: A comparison of the
simple linear regression model
and the model with logarithmic
transformation for the brain (gr)
versus body mass (kg) for various
mammals.

In Figure 4.7 we can see the original scatter plot and a

comparison of the two models. It is easy to see how the

logarithmic transformation allows for greater flexibility,

The logarithmic transformation

enabled us to capture those data

points which are a struggle for the

linear model.

capturing those data points which are a struggle for the

simple linear model. This comparison demonstrates that

it is possible to build a variety of models to explain the

behaviour we observe in the data. In Section 4.7 we will

160 j. rogel-salazar

see how we can fit a polynomial regression to the same

dataset. Nonetheless, please remember that carrying our

appropriate splitting of training and testing sets, together

with cross-validation is an unrivalled way to decide which

model, among those tried, is the most suitable to use with

unseen data.

4.6 Making the Task Easier: Standardisation and

Scaling

Given that the main underlying concept behind

linear regression is the assumption of a linear relationship,

transformations such as the one covered in the previous
Remember that the main

assumption of linear regression

is the existence of a linear

relationship.
section make the task easier for both the learning algorithm

and for us. As you can imagine, there may be many more

tricks up our jackalope sleeves to transform and pre-process Data pre-processing is nothing

new in the data science workflow.the data in order to facilitate our modelling. In this section

we are going to present a couple of the most widely used

techniques to transform our data and provide us with

anchors to interpret our results.

One of those techniques consists on centring the predictors

such that their mean is zero, and is often used in regression

analysis. Among other things it leads to interpreting the

intercept term as the expected value of the target variable

Centring the data around their

mean leads us to interpret the

intercept as the expected value

of the target variable when the

predictors are set to zero.when the predictors are set to zero. Another useful

transformation is the scaling of our variables. This is

convenient in cases where we have features that have very

different scales, where some variables have large values and

others have very small ones.

data science and analytics with python 161

As mentioned above, standardisation and scaling may help

us interpret our results: They allow us to transform the

features into a comparable metric with a known range,

mean, units and/or standard deviation. It is important to

note that the transformations to be used depend on the

The transformations to be applied

depend on the dataset and the

domain of application.

dataset and the domain where the data is sourced from and

applied to. It also depends on the type of algorithm and

answer sought. For example, in a comprehensive study of

standardisation for cluster analysis, Milligan and Copper5 5 Milligan, Glenn W. and Cooper,
Martha C. (1988). A study of
standardization of variables
in cluster analysis. Journal of
Classification 5(2), 181–204

report that standardisation approaches that use division

by the range of the feature provide a consistent recovery of

clusters. We shall talk about clustering in the next chapter.

Let us go through the two techniques mentioned above in a

bit more detail.

4.6.1 Normalisation or Unit Scaling

The aim of this transformation is to convert the

range of a given variable into a scale that goes from 0 to 1.

Given a feature f with a range between fmin and fmax the

transformation is given by:

Unit scaling transforms our data

into a scale between 0 and 1.
fscaled =

f − fmin
fmax − fmin

. (4.24)

Notice that this method of scaling will cast our features

into equal ranges, but their means and standard deviations

will be different. An alternative formulation divides each Unit scaling leaves the means and

standard deviations unchanged.feature by its range without subtracting the minimum

162 j. rogel-salazar

value. We can apply this unit scaling to our data with the

preprocessing method in Scikit-learn that includes the

MinMaxScaler function to implement unit scaling.

Scikit-learn comes with a

preprocessing module.
from sklearn import preprocessing

Once we have loaded the appropriate function, we can

apply the scaling as follows:

scaler = preprocessing.MinMaxScaler()

mammals_minmax = pd.DataFrame(\

scaler.fit_transform(mammals[[’body’, ’brain’]]),\

columns = [’body’,’brain’])

Let us see the minimum and maximum values of the

Scikit-learn includes MinMaxScaler

to implement unit scaling.

transformed data:

Here we are using Pandas to

manipulate our dataset.

> mammals_minmax.groupby(lambda idx: 0).\

agg([’min’,’max’])

body brain

min max min max

0 0.0 1.0 0.0 1.0

4.6.2 z-Score Scaling

An alternative method for scaling our features

consists of taking into account how far away data points are

from the mean. In order to provide a comparable measure,

data science and analytics with python 163

the distance from the mean is calculated in units of the The standard deviation is a

measure of dispersion.standard deviation of the feature data.

In this case a positive score tells us that a given data point is

above the mean whereas a negative one is below the mean.

The standard score explained above is called the z-score as z-score scaling is related to the

normal distribution.it is related to the normal distribution. The transformation

that we need to carry out for a feature f with mean µ f and

standard deviation σf is given by:

fz−score =
f − µ f

σf
. (4.25)

Strictly speaking, the z-score must be calculated with the

mean and standard deviation of the population, otherwise

we are making use of the Student’s t statistic6. 6 Freedman, D., R. Pisani, and
R. Purves (2007). Statistics.
International student edition. W.W.
Norton & CompanyScikit-learn’s preprocessing method allows us to standardise

our features in a very straightforward manner:

Scikit-learn includes

StandardScaler to implement

z-score scaling.

scaler2 = preprocessing.StandardScaler()

mammals_std = pd.DataFrame(\

scaler2.fit_transform(mammals[[’body’,’brain’]]),\

columns = [’body’,’brain’])

After the transformation we should have features with zero

mean and standard deviation one; let us check that this is

the case:

164 j. rogel-salazar

> mammals_std.groupby(lambda idx: 0).\

agg([’mean’,’std’])

body brain

mean std mean std

0 1.790682e-18 1.008163 -3.223228e-17 1.008163

Once again, the aggregation

shown here uses Pandas.

4.7 Polynomial Regression

In the previous section we have seen how a simple

transformation in the input and output variables make a

complex model into a simpler one. In fact, we can try fitting

different models using more and more complex functions. A model is said to be linear when

it is linear in the parameters.One important point to note is that a model is said to be

linear when it is linear in the parameters. With that in mind,

the model

y = β0 + β1x + β2x2 + ε, (4.26)

and the model These two models are linear.

y = β0 + β1x + β2x2 + β11x2
1 +

β22x2
2 + β12x1x2 + ε (4.27)

are both linear as the parameters βi are linear. In the case

of the examples above, the models are given by second

order polynomials in one and two variables, respectively.

When using such models to fit our data we talk therefore

The models above are given by

second order polynomials in one

and two variables respectively. We

can then talk about polynomial

regression.

about polynomial regression and in general the k-th order

data science and analytics with python 165

polynomial model in one variable is given by:

y = β0 + β1x + β2x2 + · · ·+ βkxk + ε. (4.28)

The techniques for fitting a linear regression model can be

used for the models above too.

This is general polynomial model.

Polynomial models can be very useful in cases where we

know that nonlinear effects are present in the target variable.

The polynomial model is effectively the Taylor series

expansion of an unknown function and thus can be used to A polynomial model is effectively

the Taylor series expansion of an

unknown function.
approximate it. Furthermore, it is possible to use different

orthogonal functions to define the model. For instance, if we

decide to use trigonometric functions we end up effectively

in the realm of harmonic analysis and the regression would

give us the coefficients we would obtain via a Fourier

transform.

Let us fit a quadratic model to the brain and body dataset

we have been using in the previous sections. We can start by

adding a feature that corresponds to the square of the body

mass:

In this case we are trying a

quadratic model with our test

dataset.

mammals[’body_squared’]=mammals[’body’]**2

We can now fit the quadratic model given by Equation

(4.26), and using StatsModels is a straightforward task:

The application of OLS remains

the same.

poly_reg=smf.ols(formula=\

’brain~body+body_squared’,\

data=mammals).fit()

166 j. rogel-salazar

We can take a look at the parameters obtained:

The parameter for the quadratic

term seems to be small.

> print(poly_reg.params)

Intercept 19.115299

body 2.123929

body_squared -0.000189

In other words, we have a model given by

Brain = 19.115 + 2.124(Body)− 1.89× 10−4(Body)2. (4.29)

It may seem that the coefficient of the quadratic term is

rather small, but it does make a substantial difference to the

predictions. Let us take a look by calculating the predicted

values and plot them against the other two models:

However, it makes a substantial

difference to the predictions made.

poly_brain_pred=poly_reg.predict(exog=\

dict(body=new_body,\

body_squared=new_body**2))

As we can see in Figure 4.8, the polynomial regression

captures the data points much closer than the other two

models. However, by increasing the complexity of our

model we are running the risk of overfitting the data. We

know that cross-validation is a way to avoid this problem,
We have to bear in mind that

increasing the complexity of our

model, increases the chances of

overfitting.

and other techniques are at our disposal, such as

performing some feature selection by adding features one at

a time (forward selection) or discarding non-significant ones

(backward elimination). In Section 4.9 we shall see how

feature selection can be included in the modelling stage by

applying regularisation techniques.

data science and analytics with python 167

Figure 4.8: A comparison of a
quadratic model, a simple linear
regression model and a model
with logarithmic transformation
fitted to the brain (gr) versus body
mass (kg) for various mammals.

When using polynomial regressions there are a number of

things that should be taken into account. For instance, the

order of the polynomial model should be kept as low as

possible; remember that we are trying to generalise and not

run an interpolation.

Once a model is obtained, take particular care not to

overuse the model; extrapolating with the aid of a

polynomial model is a perilous task. There are other Extrapolating with a polynomial

model is a perilous task.technical issues to be aware of. For instance, as the order of

the polynomial increases, matrix inversion calculations

become inaccurate; this is a form of ill conditioning and it

introduces errors in the estimation of the parameters.

168 j. rogel-salazar

Another aspect to take into account is that if the values of

the independent variables are limited to a narrow range,

there can also be significant ill conditioning of the problem,

or multicollinearity in the features used to train the model. Multicollinearity arises when

two or more features are highly

correlated with each other.
Multicollinearity is the name we give to the situation where

two or more features in our model are highly (or even

moderately) correlated with each other. This becomes

aggravated in a polynomial regression as higher powers of

a feature are highly correlated with each other. Let us look

at this empirically by taking the 9th and 10th powers of an

array and calculating their correlation:

x = np.random.random_sample(500)

x1, x2 = x**9, x**10

cor_mat = np.corrcoef(x1,x2)

Let us take a look at the correlation matrix:

As we can see, the correlation

between x9 and x10 is high.

> print(cor_mat)

[[1. 0.99877083]

[0.99877083 1.]]

As we can see for the random numbers generated by my

computer, the correlation coefficient between x1 and x2 is The numbers may be different in

your computer.quite close to 1. Multicollinearity results in having wide

swings in the values of the parameter estimations when

small changes in the data are included. Also, the coefficients

obtained may be such that their standard errors are quite

data science and analytics with python 169

high with low significance levels, although they are actually

jointly significant and the R2 is high.

It is important to note that multicollinearity is not exclusive

of the use of polynomial models. In fact, it is quite possible Remember that multicollinearity

is not exclusive of polynomial

models.
that two seemingly independent features included in our

data are highly correlated among themselves, having a

confounding effect in our model and thus we should avoid

using these features together in our model.

4.7.1 Multivariate Regression

In the examples so far, we have concentrated mainly on

regression models that have one single independent variable

to explain the target we are interested in. As mentioned

earlier in this chapter, in the case where we have more than
Multivariate regression refers

to having more than one input

variable in our model.
one input variable we are entering the realm of multivariate

regression.

In a sense we have already - indirectly - seen an example of

a multivariate regression in Section 4.7 when we addressed

the ideas behind polynomial regression. In that case, the Polynomial regression is

effectively a multivariate

regression problem.
added features were powers of a single input variable.

For the more general case of a multivariate regression the

features are given by different independent variables.

If we consider a set of M predictors x1, x2, x3, . . . , xM that

are hypothesised to be related to a response variable y, the

multivariate regression model can be expressed as:

A general multivariate linear

model.
y = β0 + β1x1 + β2x2 + · · ·+ βrxM + ε, (4.30)

170 j. rogel-salazar

and the best part is that the parameter estimation for this

model can be achieved with the same techniques discussed

in Section 4.3. This means that we can continue using the We can continue using

StatsModels for polynomial

regression.
same StatsModels libraries described in the previous

sections. Also, as before, multicollinearity should be

avoided when considering the various independent features

to be included in our model.

4.8 Variance-Bias Trade-Off

Now that we have explored the ideas behind describing

the relationship among variables with a model of the type

given the expression:

y = f (x) + ε, (4.31)

we can take a look at the expected prediction error obtained

when estimating a model f̂ (x). This is given by the

expectation of the squared error

The expectation of the squared

error can be decomposed into bias,

variance and noise.

E
[(

y− f̂ (x)
)2
]

. (4.32)

This expectation value can be can be decomposed into

portions that correspond to bias, variance and noise

respectively.

In order to facilitate the decomposition let us first consider a

random variable Z with a probability distribution given by

P(Z). We denote the expectation value of Z as E[Z]. Let us

calculate the expectation value of (Z− E[Z])2:

data science and analytics with python 171

We will use the result of this

calculation later on.

E
[
(Z− E[Z])2

]
= E

[
Z2
]
− 2E[Z]E[Z] + E2[Z],

= E
[

Z2
]
− 2E2[Z] + E2[Z],

= E
[

Z2
]
− E2[Z]

and thus

E[Z2] = E[(Z− E[Z])2] + E2[Z]. (4.33)

Using the expression above, we can now take a look at the

decomposition of the expectation of the squared error:

Variance

Bias

Noise

E
[(

y− f̂ (x)
)2
]

= E
[
y2 − 2 f̂ (x) + f̂ 2(x)

]
,

= E
[
y2
]
− 2E[y]E

[
f̂ (x)

]
+ E

[
f̂ 2(x)

]
,

= E
[
(y− E[y])2

]
+ E2[y]

−2E[y]E
[

f̂ (x)
]

+E
[(

f̂ (x)− E
[

f̂ (x)
])2
]

+E2
[

f̂ (x)
]

= E
[(

f̂ (x)− E
[

f̂ (x)
])2
]
+ (4.34)(

E[y]− E
[

f̂ (x)
])2

+ (4.35)

E
[
(y− E[y])2

]
(4.36)

172 j. rogel-salazar

where the first term (4.34) corresponds to variance, the

second one (4.35) to the square of the bias and finally the

third (4.36) is the noise.

This decomposition shows that apart from the noise, there

are two sources of error in our model. Our task is the We need to find a balance between

the variance and bias.minimisation of these two error sources that preclude our

algorithm from generalising.

On the one hand variance tells us how sensitive the model

is to small fluctuations in the training set, on the other hand

bias is related to the difference between the expected value

of our estimator and its true value. High variance results

in overfitting whereas high bias results in under-fitting. High variance gives us more

complex models, whereas high

bias yields simpler ones.
Finding a good model is therefore a matter of balancing the

bias and the variance. This tradeoff applies to algorithms

used in supervised learning.

4.9 Shrinkage: LASSO and Ridge

The decomposition of our prediction error into its

variance and bias components makes it clear that a balance

between the two is required for any regression problem

we may encounter. In general, linear regression exhibits Linear regression exhibits high

variance and low bias.high variance and low bias and it should therefore stand to

reason that lowering the variance at the expense of the bias

is the way to go.

Furthermore, we have also seen that our ability to interpret

the outcome when adding more and more features is

diminished. It would be therefore preferable to identify

Feature selection is not possible

within the straightforward linear

model.

data science and analytics with python 173

those features that are deemed to be the most important

ones. Unfortunately, our linear regression model, as it

stands at the moment, does not allow us to do this

automatically.

Let us recall that given our model

This is the linear model which we

have been using all along.
yi = β0 +

M

∑
j=1

β jxj + εi, (4.37)

we are interested in choosing the coefficients β0 and β j

in order to minimise the Ordinary Least Squares (OLS)

criterion given by Equation (4.8) which is just the sum

of squared errors. The coefficients are in effect a way of

The model coefficients are a

way to determine if a feature is

important or not.

determining whether a particular feature is important or

not. In particular, the closer the coefficient is to zero the less

significant the feature is.

Let us then consider replacing the estimates with a smaller

value such that

The parameter λ lets us tune the

value of the coefficients.
β̃k =

1
1 + λ

βk. (4.38)

When λ = 0 our coefficients are unchanged, and as λ gets

larger and larger, the coefficients start shrinking down to

zero. In this manner, with the right choice of λ we can get The new estimates are biased

though.an estimator with an improved error. The estimate is biased,

but remember that we were happy to sacrifice some of that

to make up for the variance.

Shrinkage of the coefficients is therefore a form of

regularisation as we penalise the model for increased

174 j. rogel-salazar

complexity as given by the size of the coefficients. In Section

3.8 we introduced the L2- and L1-norms and it is thus

natural to consider these measures for the size of the

coefficients.

The use of the L2-norm results in the so-called ridge

regression7: 7 Hoerl, A. E. and R. W. Kennard
(1970). Ridge regression: Biased
estimation for nonorthogonal
problems. Technometrics 12(3),
55–67

β̂ridge = min
{
|Y− Xβ|22 + λ |β|22

}
, (4.39)

whereas the application of the L1-norm leads to the Least

Absolute Shrinkage and Selection Operator or LASSO8 for 8 Tibshirani, R. (1996). Regression
Shrinkage and Selection via the
Lasso. J. R. Statist. Soc. B 58(1),
267–288

short:

β̂lasso = min
{
|Y− Xβ|22 + λ |β|1

}
. (4.40)

In both cases, as the value of λ is increased, the bias The tuning parameter λ

is sometimes called the

hyperparameter.
increases, whereas the variance decreases. It controls the

amount of penalty imposed on the model and therefore it is

important to find a good value for this parameter. Model

selection is the process of finding the appropriate value for

the hyperparameter, and cross-validation is a good way to We discussed cross-validation in

Section 3.12.tackle this problem.

For instance, using k-fold cross-validation and a set of

possible hyperparameter values λ ∈ {λ1, . . . , λm}, we A quick recipe to find a suitable

value for the hyperparameter λ,

using cross-validation.
partition our data in K folds: F1, F2, . . . , Fk. For each value of

k = 1, . . . , K, we train on the feature values in the training

set Fi with i 6= k and validate on the feature values in Fk.

For each value in the set λ we compute our estimate on the

training set as well as the error on the validation set and

data science and analytics with python 175

compute the average error over all folds. The latter provides

us with a curve that corresponds to the cross-validation

error. The value of the hyperparameter to choose is such

that it minimises the cross-validation error itself which in

turns corresponds to the best score for the model.

Do not be deceived by the similar look between the ridge

and lasso regressions; the solutions do have significant Ridge and LASSO differ on the

type of penalty imposed.differences. Although the ridge regression works well in

cases where there are coefficients whose values are actually

close to zero, the algorithm never explicitly sets them to this

value.

Unless λ = ∞.

This means that in some cases, with ridge regression the

feature selection wished for is not possible, particularly

when there are a large number of features involved. In the

case of LASSO, the usage of the L1-norm as the penalty

means that it is possible for some of the coefficients to be Feature selection is possible with

LASSO.shrunk down to zero, making feature selection possible.

It is important to remember that if the features included in

our model are not on the same scale, the estimates obtained

with both ridge and LASSO are not fair. In those cases it is

recommended to use some scaling as described in Section We discussed scaling in Section

4.6.
4.6. Let us know see how we can run ridge and LASSO

regressions in Python. In this case we are going to use

Scikit-learn to carry out the modelling.

We will continue working with the body and brain dataset

we have been using all along, and in order to make things Assuming that we have already

added the square of the bodysize.more interesting we will use a feature that corresponds to

the cube of the body size. We can do this as follows:

176 j. rogel-salazar

mammals[’body_cubed’]=mammals[’body’]**3

Let us first start by scaling our data using z-score scaling:

A contrived feature, but it will

serve our purposes for a demo.

As we know, this scaling can be

done with StandardScaler.

from sklearn import preprocessing

X = mammals[[’body’,’body_squared’,’body_cubed’]]

Y = mammals[[’brain’]]

Xscaled = preprocessing.\

StandardScaler().fit_transform(X)

Yscaled = preprocessing.\

StandardScaler().fit_transform(Y)

Not only are we interested in finding the coefficients that

describe each of the ridge and LASSO models, but we also

want to find a good value for λ in each case. In order to do

that we will need to carry out the cross-validation procedure

as described earlier in this section.

Fortunately, Scikit-learn provides us with GridSearchCV Scikit-learn lets us carry

out an exhaustive search of

parameter combinations with the

GridSearchCV method.

which is a helpful function that lets us perform an

exhaustive search over specified parameter values by

implementing a fit and a score methods. The latter will let

us choose the value for our hyperparameter λ. First, we

need to create our test and training sets:

We split our data into training and

testing sets.

import sklearn.model_selection as ms

XTrain, XTest, yTrain, yTest =\

ms.train_test_split(Xscaled, Yscaled,\

test_size= 0.2, random_state=42)

data science and analytics with python 177

We can now define a set of parameters to be used in our

search:

We need to define a dictionary

that holds the set of values to be

searched. Note that Scikit-learn

refers to the hyperparameter as α.

from sklearn.model_selection import GridSearchCV

from sklearn.linear_model import Ridge, Lasso

lambda_range = linspace(0.001,0.2,25)

lambda_grid = [{’alpha’: lambda_range}]

Our search will use each of the values in the lambda_grid

dictionary and carry our cross-validation with the number

of folds desired:

model1 = Ridge(max_iter=10000)

cv_ridge = GridSearchCV(estimator=model1,\

param_grid=lambda_grid,\

cv=ms.KFold(n_splits=20))

cv_ridge.fit(XTrain, yTrain)

model2 = Lasso(max_iter=10000)

cv_lasso = GridSearchCV(estimator=model2,\

param_grid=lambda_grid,\

cv=ms.KFold(n_splits=20))

cv_lasso.fit(XTrain, yTrain)

GridSearchCV takes care of the

cross-validation step using the

set of parameters to be searched.

In this case we are using k-fold

cross-validation.

In Figure 4.9 we show a heatmap with the values for the

hyperparameters used in our search and their method, as

well as their corresponding cross-validation mean scores.

We can obtain the actual values selected with the help of the

best_params_ method as follows:

178 j. rogel-salazar

Figure 4.9: Using GridSearchCV

we can scan a set of parameters
to be used in conjunction with
cross-validation. In this case we
show the values of λ used to fit a
ridge and LASSO models, together
with the mean scores obtained
during modelling.

> cv_ridge.best_params_[’alpha’],\

cv_lasso.best_params_[’alpha’]

(0.133666666667, 0.00929166666667)

We can now use these parameters with the corresponding

models to extract the coefficients:

Similar code can be written for the

ridge model.

> bestLambda_lasso=cv_lasso.best_params_[’alpha’]

> Brain_Lasso = Lasso(alpha=bestLambda_lasso,\

max_iter=10000)

> Brain_Lasso.fit(XTrain,yTrain)

> print(Brain_Lasso.coef_)

[1.65028091 -0. -0.76712502]

as we can see, the second coefficient has been shrunk down

to zero with the application of the LASSO regression.

data science and analytics with python 179

Finally, let us take a look at the residual sum of squares

obtained with the test dataset:

Once again, similar code can be

written for the ridge model.

> lasso_prediction = Brain_Lasso.predict(XTest)

> print(‘‘Residual sum of squares:%.4f ’’\

% np.mean((lasso_prediction - yTest)**2))

Residual sum of squares: 0.0114

4.10 Summary

In this chapter we have addressed the topic of

regression analysis. It is a natural first step in our data

science and analytics journey as it is one of the most widely

used techniques out there. Mastering regression is a must

for a jackalope data scientist.

We have seen how regression allows us to describe

relationships between input features and the target variable,

bearing in mind that correlation does not imply causation.

Using the language of linear algebra we implemented the

Ordinary Least Squares (OLS) model to solve the linear

regression problem and extended this to a multivariate

situation. Furthermore, we have also seen how the models

can be used to carry out polynomial regression.

The use of appropriate transformations to our input (and

output) data was shown to be beneficial to our modelling

task, and the interplay between bias and variance in our

180 j. rogel-salazar

models is an important concept to take into account at the

modelling stage.

The continuous tension between bias and variance can

be used to our advantage in the form of regularisation

techniques such as ridge and LASSO, allowing us to fine

tune our models in a very flexible manner. Regression is

indeed a useful tool that every jackalope data scientist

should have in the toolbox.

181

5

Jackalopes and Hares: Clustering

Have you ever considered how we can distinguish

a rabbit from a stag, or a jackalope from a hare? Since we

are able to do this instantaneously, this seems to be a very

silly question. A jackalope is effectively the same as a hare

except for the antlers. In the case of the rabbit and the stag,

if the animal is small and has long ears then it is a rabbit,

whereas if it has prominent antlers then it is a stag. We use Of course, if we come across a

jackalope we may have to think

twice.
distinguishing features that allow us to create groups based

on similarities and differences.

We talk about clustering when the groups made out of

similar data points do not have a predefined name or label.

Clustering is an unsupervised

learning task, whereas

classification is a supervised

one.

When the label does exist we talk about classification and

will cover it in Chapter 6. Clustering analysis is an

unsupervised machine learning task, whereas classification

is a supervised one. In this chapter we will present some

important algorithms that enable us to cluster hares and

jackalopes, as well as rabbits and stags.

182 j. rogel-salazar

5.1 Clustering

A cluster can be thought of as a group of similar

data points and therefore the concept of similarity is at the

heart of the definition of a cluster. The greater the similarity A cluster is a group of similar

data points, and the concept of

similarity is therefore important.
among points leads to better clustering and thus to better

results. We have mentioned that clustering analysis is an

unsupervised learning task. This means that its goal is to

provide us with a better understanding of our dataset by

dividing the data points into relevant groups. Once the

clusters are defined, we can assign them a label and use

them as the starting point for classification of unseen data.

Let us consider a couple of examples: Imagine an alien life-

form arriving to Earth and being presented with the animals Imagine an alien life-form that

does not know the animals on

Earth.
listed in the dataset used in Chapter 4. It does not know

what a cat, a rabbit, a horse and a roe deer are and it does

not even have a name for these strange-looking animals.

The alien is shown examples of various specimens, and

starts to make notes: Cats have pointy triangular ears,

whereas rabbits have long oval ones; horses have manes and

deer have antlers. In other words, our alien friend is looking Our alien friend when presented

with a variety of animals can

cluster them by their similarities,

even if it does not know the names

we give to these animals.

at the similarities (and differences) among the specimens

presented for examination. This enables it to group the

animals even if it does not know what humans call them.

With the help of its clusters, our friendly alien can create its

own labels for the groupings. The next time the alien sees a

small mammal with a round head, whiskers and triangular

ears, it will be able to classify this animal with other cats.

data science and analytics with python 183

The application of clustering in the simple example above

shows how it helps us enhance our knowledge of the

dataset we are working with. Clustering provides us with a

layer of abstraction from individual data points to Clustering enables us to enhance

our knowledge of our datasets.collections of them that share similar characteristics. It is

important to clarify that the enhancement is made by

extracting information from the inherent structure of the

data itself, rather than imposing an arbitrary external one.

In that sense, a cluster can be conceived to be a potential A cluster is a potential class.

class, and the solution to a clustering problem is

determining these classes, as per the data at hand.

Clustering is therefore a data exploration technique that Clustering is a data exploration

technique.contributes to our familiarity with the dataset. Once we

have created suitable clusters and provided them with a

label, these clusters can be the starting point to use

supervised machine learning techniques. This is true not

only about clustering, but also about other unsupervised

learning algorithms we will encounter in the rest of the

book.

5.2 Clustering with k-means

One of the simplest algorithms that one can

implement to solve a clustering problem is the so-called

k-means algorithm1. Its goal is to partition an 1 MacQueen, J. (1967). Some
Methods for classification
and Analysis of Multivariate
Observations. In Proceedings of 5-th
Berkeley Symposium on Mathematical
Statistics and Probability. University
of California Press

N-dimensional dataset into k different sets, whose number

is fixed at the start of the process. The algorithm performs a

complete clustering of the dataset, in other words, each data

point considered will belong to exactly one of the k clusters.

184 j. rogel-salazar

The k-means procedure is said to be a greedy algorithm

as it employs a heuristic based on local optimal choices A heuristic helps us solve a

problem in a quick fashion by

finding an approximate solution.
and therefore the solution found depends on the initial

conditions given. The most important part of the process

is determining the partitions that form the k sets. This is

done by defining k centroids and assigning each data point k-means requires the definition

of k partitions to which data

instances are assigned.
to the cluster with the nearest centroid. The centroid is then

updated by taking the mean of the data points in the cluster.

From the brief description above it is clear that the data

required needs to have features in a vector-like form. We

also have to bear in mind that the process is iterative in

nature. Two other important things to consider are the

following:

• The partitions are not scale-invariant and therefore the The partitions are not scale-

invariant.same dataset may lead to very different results

depending on the scale and units used. In Figure 5.1 we

show two representations of a same dataset using two

scales

• The initial k centroids are set at the beginning of the Different k centroids lead to

different results.process and different locations may lead to different

results

Remember that the number of clusters is set at the

beginning of the modelling process. The general idea

The value k is an input to the

algorithm.

behind k-means can be summarised in the following four

steps:

1. Choose the location of the initial k centroids

2. For each data point, find the distance to each of the k

centroids and assign the point to the nearest one

data science and analytics with python 185

Figure 5.1: The plots show the
exact same dataset but in different
scales. The panel on the left shows
two potential clusters, whereas
in the panel on the right the data
may be grouped into one.

3. Once all data points have been assigned to a cluster,

recalculate the centroid positions

4. Repeat steps 2 and 3 until convergence is met The centroids will no longer

change position.

Step 1 above requires us to choose the initial centroids

and there are several possibilities for this. One can choose

the positions at random. We can also start with a global Note that a random choice may

lead to a divergent behaviour.centroid and choose points at a maximum distance from

it. A good alternative is using multiple random initial

conditions on various clustering trials.

We know that a cluster is defined by similarity among data

points. In the case of k-means that similarity is shown by the

closeness of a data point to a given centroid. That closeness

186 j. rogel-salazar

is determined by the distance measure or similarity measure

chosen for the task. We know the conditions that should be

met by a good similarity measure as discussed in Section Similarity among points is

measured by their closeness

to the centroids.
3.8. An intuitive way to measure similarity is the Euclidean

distance calculated from the N features that describe the

data points.

As is the case with many algorithms, k-means aims at

minimising an objective function. The optimisation of this

objective function lets us know how well our clustering task

is performing. The recalculation of the centroids at each

As with other algorithms, k-means

aims at minimising an objective

function too.

iteration has to be carried out with this in mind. Using the

Euclidean distance d(x, ci) from point x to the centroid ci, a

typical objective function is a squared error function that is

given by:

SSEk−means =
k

∑
i=1

N

∑
i

d
(

x(i)j , ci

)2
. (5.1)

As such, given two clustering results, we will prefer the one

with the lower sum of squared errors. This is an indication

that the centroids have converged to better locations and

therefore to a better local optimum for the objective function

above.

5.2.1 Cluster Validation

It is important to note that even in cases where no

partion exists, k-means will return a partition of the dataset

in to k subsets. It is therefore useful to validate the clusters

Cluster validation is an important

part of the process to determine

the effectiveness of the algorithm.

obtained. Cluster validation can be further used to identify

data science and analytics with python 187

clusters that should be split or merged, or to identify

individual points with disproportionate effect on the overall

clustering.

This can be done with the help of two measures: Cohesion

and separation. Cohesion is a measure of how closely
Cohesion tells us how closely

related the data points are in a

given cluster.
related data points within a cluster are, and is given by the

within-cluster SSE:

C(ci) = ∑
x∈ci

d(x, ci)
2. (5.2)

Separation is a measure of how well clusters are segregated

from each other:

Separation indicates if clusters are

self-contained.

S(ci, cj) = d(ci, cj)
2. (5.3)

Figure 5.2 shows a diagrammatic representation of cluster

cohesion and separation. The overal cohesion and

separation measures are given by the sum over clusters; in

the case of separation it is not unusual to weight each of the

terms in the sum.

We can use these two definitions to provide us with an

overall measure of clustering validity Voverall by taking a

weighted sum over clusters such that

The overall clustering validity

measure combines both cohesion

and separation.

Voverall =
k

∑
i=1

wiV(Ci), (5.4)

where V can be cohesion, separation or a combination of

them.

188 j. rogel-salazar

Cohesion

Separation
Figure 5.2: A diagrammatic
representation of cluster cohesion
and separation.An alternative measure of validity that provides us with a

combination of the ideas behind cohesion and separation in

a single coefficient is given by the silhouette2 score. 2 Rousseeuw, P. J. (1987).
Silhouettes: a Graphical Aid to the
Interpretation and Validation of
Cluster Analysis. Comp. and App.
Mathematics 20, 53–65

For a point xi the silhouette is defined by the average

in-cluster distance to xi, denoted by ai, and the average

between-cluster distance to xi, denoted by bij. Out of these

measures it is possible to obtain bi = minj(bij):

The silhouette coefficient combines

the ideas behind cohesion and

separation.

s(xi) =
bi − ai

max(ai, bi)
, (5.5)

and it has values between −1 and 1. The value of ai tells us

how dissimilar xi is in the cluster and thus we would prefer

small values for this quantity. Having a large bi implies that

xi has been badly matched to a cluster nearby. We are

data science and analytics with python 189

interested in having high separation and low cohesion and

this situation corresponds to values close to 1 for the We are interested in having high

separation and low cohesion.silhouette coefficient. The average silhouette over the entire

dataset tells us how well the clustering algorithm has

performed and can be used to determine the best number of

clusters for the dataset at hand.

All in all, k-means is pretty efficient both in time and

complexity, however it does not perform very well with Complexity is linear in the

number of records.non-convex clusters, or with data having varying shapes

and densities. One possible way to deal with some of these

issues is by increasing the value of k, and later recombining

the sub-clusters obtained. Also, remember that k-means

requires a carefully chosen distance measure that captures

the properties of the dataset.

5.2.2 k-means in Action

Let us take a look at an example of clustering with k-means

using Scikit-learn. We will use data that record the results

of chemical analysis of Italian wines grown in the same

region and from three different cultivars. The dataset can

be found in the UCI Machine Learning Repository under

“Wine Dataset”3 and is available at http://archive.ics. 3 Lichman, M. (2013a). UCI
Machine Learning Repository,
Wine Data. https://archive.

ics.uci.edu/ml/datasets/

Wine. University of California,
Irvine, School of Information and
Computer Sciences

uci.edu/ml/datasets/Wine.

The 13 attributes determined by the chemical analysis are:

Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium,

Total phenols, Flavonoids, Nonflavonoid phenols,

Proanthocyanins, Colour intensity, Hue, OD280/OD315 of

diluted wines, and Proline. The data also has information

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
http://archive.ics.uci.edu/ml/datasets/Wine
https://archive.ics.uci.edu/ml/datasets/wine
http://archive.ics.uci.edu/ml/datasets/Wine

190 j. rogel-salazar

about the cultivar where the wine is from. In this case we

will not use this information as k-means is an unsupervised

machine learning algorithm.

We have pre-processed the data into a csv file with column

names and we can now used pandas to read the file:

We have preprocessed the data to

add appropriate column names.

wine = pd.read_csv(u’./Data/wine.csv’)

We can see the names of the columns in our dataset:

These are the features included in

the wine dataset.

> wine.columns

Index([u’Cultivar’, u’Alcohol’, u’Malic_Acid’,

u’Ash’, u’Ash_Alcalinity’, u’Magnesium’,

u’Total_Phenols’, u’Flavonoids’,

u’NonFlavonoid_Phenols’,

u’Proanthocyanins’, u’Colour_Intensity’,

u’Hue’, u’0D280_0D315_DilutedWines’,

u’Proline’],

dtype=’object’)

In order to simplify the example, we are going to

concentrate on a couple of features out of the 13 mentioned

above. In this situation, we will use the Alcohol and Colour

Intensity features as they are some of the more obvious

descriptors that a wine tester would note. We will therefore Perhaps a wine chemist or a

proper sommelier would start

with other features.
create an array that contains the values of these columns

and while we are at it we will also extract the cultivar for

each of the wines:

data science and analytics with python 191

X1=wine[[’Alcohol’,’Colour_Intensity’]].values

Y=wine[’Cultivar’].values

Figure 5.3: k-means clustering of
the wine dataset based on Alcohol
and Colour Intensity. The shading
areas correspond to the clusters
obtained. The stars indicate the
position of the final centroids.

We will use k = 3 as we know that there are three different

cultivars in the dataset. In general, we would not necessarily

have this information to start with. In that case a search

of the optimal k can be carried out with the help of the

silhouette score. Here we will use the KMeans method in

Scikit-learn’s cluster:

The method KMeans takes the

parameter n_clusters to indicate

the number of clusters k.

from sklearn import cluster

cls_wine = cluster.KMeans(n_clusters = 3)

cls_wine.fit(X1)

192 j. rogel-salazar

The shading areas shown in Figure 5.3 illustrate the clusters

obtained for the wines in the dataset using the alcohol and We have used k = 3 in the example

above and only used a couple of

the features available.
colour intensity features. The data points are shown as filled

circles and their colours correspond to their actual cultivar

as per the dataset itself. Finally, we mark the position of the

final centroids with the help of filled stars.

We can take a look at the clusters to which each of the data

points have been assigned to with the aid of labels_:

> print(cls_wine.labels_)

[2 2 2 0 2 2 2 2 2 0 2 2 2 2 0 0 2 2 0 2 2 2 2

1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2

2 2 2 0 0 2 0 2 2 2 2 2 2 1 1 2 2 2 1 2 2 2 1

1 1 1 2 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 2 2 2 0 1 2

2 2 2 2 2 2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 0 2 0 0 0 0 2 0 0 0 0 0 0 0]

The values correspond to the cluster (0, 1, or 2) in which

The predicted labels are obtained

with the .labels_ method.

the records have been placed. The algorithm does not know

anything about the cultivars, so these numbers make no

reference to the values that appear in the dataset.

The output of fitting KMeans also provides information

about the location of the final centroids and it is saved in

cluster_centers_:

data science and analytics with python 193

> print(cls_wine.cluster_centers_)

[[13.38472222 8.74611108]

[12.25353846 2.854]

[13.45168831 5.19441558]]

The coordinates of the final

centroids are obtained with the

method .cluster_centers_.

Finally, we can see the silhouette score obtained with the

use of the features and value of k chosen:

> from sklearn.metrics import silhouette_score

> print(silhouette_score(X1, cls_wine.labels_))

0.509726787258

Remember that we only used two features. Perhaps the

The silhouette score is calculated

with silhouette_score().

score can be improved either by using more relevant

features or, in the case where we do not know k, by varying

the number of clusters. We leave this as an exercise for the

reader.

5.3 Summary

Clustering is a very important application in the data

science workflow as it provide ways to explore our data. In

this chapter we discussed the difference between clustering

and classification. The former is an unsupervised learning

task that allows us to establish meaningful groupings within

our data. The latter is a supervised learning task that

exploits information about the classes contained in our data

194 j. rogel-salazar

in order to make predictions about unseen data instances.

We will discuss classification in the following chapter.

We discussed the k-means algorithm for clustering data,

where data instances are assigned to their closest centroid

among the k predefined ones. We saw how the cohesion,

separation and silhouette measures let us validate the

clusters we obtain with the algorithm.

Remember that we require prior knowledge of k or

alternatively a search for an optimal value. It is worth

pointing our that a typical k-means algorithm is started with

a random choice for the initial centroids. This means that it

is possible to obtain different results on different runs of the

algorithm with the same data. This is an important point as

the clusters we obtain will need to be evaluated not just

using cohesion, separation and silhouette scores, but also for

fitness to our end goal within the business or research

context where we are employing the algorithm.

195

6

Unicorns and Horses: Classification

Distinguishing unicorns from horses or jackalopes

from hares by using their differences and similarities can

be very useful as we saw in the previous chapter. The

groupings we can create based on the chosen features

can tell us something about the members in each of them.

Furthermore, depending on the context in which we create

those groups or clusters we can exploit research or business

knowledge and assign a label to each of the clusters.

Once we are in possession of labelled data, we can take a

step further and use those labels in a supervised learning

task, where the labels become our targets. In this chapter we

will discuss how classification algorithms are used and

scored. In particular we will cover some important

algorithms such as K Nearest Neighbours, Logistic

Regression and the famous Naïve Bayes classifier, letting us

classify unicorns and horses, jackalopes and hares and why

not, rabbits and stags too.

196 j. rogel-salazar

6.1 Classification

Classification is a task that involves arranging

objects systematically into appropriate groups or categories

depending on the characteristics that define such groupings.

It is important to emphasise that the groups are pre-defined

according to established criteria. In our case, the use of Classification is a supervised

learning task.classification is to determine the category to which an

unseen observation belongs, depending on the information

of a training dataset with appropriate labels. Classification

is therefore a supervised learning task.

In Section 5.1 we encountered our alien friend trying to

make sense out of the fluffy earthlings it encountered.

Let us see another example: Imagine that we are given a

Whizzo Quality Assortment chocolate box. We have never

tried this brand, but we know that in a box of assorted You may want to avoid some

of the chocolates in the Whizzo

Quality Assortment box.
chocolates there are some delicious ones and others that

are not so good. We try a few of the sweets and notice that

among the traditional pralines there are some extremely

nasty confections: One of them has a raw frog inside, others

have cockroaches.

We notice the shape, aroma and general look of these two

nasty sweets to make a note about them for future reference.

We even go as far as giving them a name based on the

defining attributes we have noted. In other words, we use In particular, the “crunchy frog”

and the “cockroach cluster” may

not be very palatable.
the features of the confections to cluster them appropriately

and provide us with a better understanding of the contents

of the box, and even label them. In that way, the next time

data science and analytics with python 197

we get another one of these chocolate boxes we know we are

better off avoiding the “crunchy frog” and the “cockroach

cluster” sweeties as we are able to classify them as

unpalatable confections, and devour the rest of the box.

We can see the clear relationship between classification and

clustering as discussed in Section 5.1. Whereas in clustering

the aim is to determine the groups from the features in the

dataset, classification uses the labelled groups to predict

the best category for unseen data. In the context of the Our friendly alien life-form will

be able to classify animals after

having applied clustering to the

specimens it was presented with.

examples we presented earlier on, the alien life-form is able

to determine whether the next animal it sees is classified

to be a cat or a rabbit depending on the pre-determined

groups it established at an earlier step. Similarly, we will

be able to avoid eating “crunchy frogs” from our box of

chocolates without the need of tasting these exotic delicacies

again.

A typical example of a classification problem is determining

if a given email that arrives to an email box is spam or

ham. We all know how annoying it is to get unsolicited Ham of course being not spam.

messages that advertise for all sort of things and have no

relevance to us. It would be preferable to have an email box

without spam, and as such many modern email clients have And without “Uuuuuuugggh!”

implementations of classifiers whose task is to predict if

an email is spam or not, and filter those messages that are

deemed to be spam.

These classifiers may or may not be all that great. However,

they certainly try to get better at their task if they encounter

more and more examples of labelled data. In the case of

198 j. rogel-salazar

spam, every time that a spam message makes it through to We help improving a spam

classifier by marking misclassified

emails as spam, or a legitimate

messages as ham.

our inbox we may get the option of marking or labelling the

offending message as spam. In that way we are adding data

to the training of the classifier and helping its improvement.

With that in mind, it becomes obvious that there is a need to

quantify how well, or how badly, a classifier is performing.

If we carried out the categorisation task at random,

sometimes we would classify some observations into the

right category and sometimes not. We would prefer a

classifier that performs better than this random classifier. At

the other end of this spectrum we have a perfect classifier, As you can imagine, getting a

perfect classifier may be a hard

thing to achieve.
which categorises all data points into the correct class every

time. Since we have labelled data to train a classifier, we can

- at the very least - use this information to tell us something

about the performance of the classifier. There are a few

common ways to present this information and we discuss

them below.

6.1.1 Confusion Matrices

A very convenient way to evaluate the accuracy of a

classifier is the use of a table that summarises the

performance of our algorithm against the data provided.

Karl Pearson used the name contingency table1. These days 1 Pearson, K (1904). On the theory
of contingency and its relation to
association and normal correlation.
In Mathematical Contributions to the
Theory of Evolution. London, UK:
Dulau and Co.

the machine learning community tends to call it a confusion

matrix as it lets us determine if the classifier is confusing

two classes by assigning observations of one class to the

other. One advantage of a confusion matrix is that it can be

extended to cases with more than two categories.

data science and analytics with python 199

In any case, the contingency table or confusion matrix is

organised in such a way that its columns are related to the

instances in a predicted category, whereas its rows refer to

actual classes. To explain the use of the confusion matrix, We can also transpose the table, by

the way.let us consider a binary classification system implemented

for example by a World War II air reconnaissance troop.

Their task consists of distinguishing enemy aircraft from

flocks of birds. Let us imagine that they have taken 100

measurements and created Table 6.1. The troop is of course

interested in detecting correctly when an enemy plane is

flying above them.

Predicted Class

Enemy
Aircraft

Flock of
Birds

Actual class
Enemy Aircraft 20 4

Flock of Birds 6 70

Table 6.1: A confusion matrix for
an elementary binary classification
system to distinguish enemy
aircraft from flocks of birds.

From Table 6.1, we can see that the troop has correctly

predicted 20 enemy planes. These are called the True

Please note that the word

“positive” relates to the class

we are interested in classifying.

Positives. Similarly, they have correctly predicted 70 flocks,

and these are called the True Negatives.

A False Positive is a case where we have incorrectly made

a prediction for a positive detection. From the table we In that sense a false positive is a

case where we have incorrectly

classified an observation as

belonging to the class of interest.

can see that the troop has predicted 6 cases as aircraft,

but they turned out to be flocks. Finally, a False Negative

is a case where we have incorrectly made a prediction

for a negative detection. Again, the table lets us see that

200 j. rogel-salazar

they have predicted 4 cases to be birds, but unfortunately

they were actual enemy planes. In total we have 90 correct

classifications and 10 instances of misclassification. In Table

6.2 we show a diagram of the location where we would find

True Positives, False Negatives, False Positives and True

Negatives in a confusion matrix.

Predicted Class

Class 1 Class 2

Actual class
Class 1

True Positives
(TP)

False Negatives
(FN)

Class 2
False Positives
(FP)

True Negatives
(TN)

Table 6.2: A diagrammatic
confusion matrix indicating
the location of True Positives,
False Negatives, False Positives
and True Negatives.

The use of a confusion matrix enables us to see how well the

troop has performed the classification of enemy aircraft or A confusion matrix lets us see

how well our classifier performs

in the identification of the class of

interest.

flocks of birds. There are also a few quantities that help us

with determining the performance of our classifier. Let us

define a few of them:

Recall or True Positive Rate: It is also known as sensitivity

or hit rate. It corresponds to the proportion of positive data
The true positive rate is also

known as recall or sensitivity.

points that are correctly classified as positive versus the total

number of positive points:

TPR =
TP

TP + FN
. (6.1)

The higher the True Positive Rate, the fewer negatives will

be missed. In our example TPR = 20/24 = 0.833.

data science and analytics with python 201

True Negative Rate or Specificity: It is the counterpart

of the True Positive Rate as it measures the proportion of The true negative rate is also

known as specificitynegatives that have been correctly identified. It is given by:

TNR =
TN

TN + FP
. (6.2)

In the example, TNR = 70/76 = 0.921.

Fallout or False Positive Rate: It corresponds to the

proportion of negative data points that are mistakenly The false positive rate is also

known as fallout.considered as positive, with respect to all negative data

points:

FPR =
FP

FP + TN
= 1− TNR. (6.3)

In other words, the higher the FPR, the more negative

data points we will have misclassified. In our example

FPR = 6/76 = 1− 0.921 = 0.079.

Precision or Postitive Predictive Value: It is the proportion

of positive results that are true positive results. Positive The precision is also known as

positive predictive value.predictive value

PPV =
TP

TP + FP
. (6.4)

In our example PPV = 20/26 = 0.769.

Finally, the Accuracy is given by the ratio of the points that

have been correctly classified and the total number of data

points:

The accuracy of a classifier is

the ratio of correctly classified

instances and the total number of

data points.

ACC =
TP + TN

TP + FP + FN + TN
, (6.5)

and in our example the accuracy is ACC = 90/100 = 0.9.

202 j. rogel-salazar

6.1.2 ROC and AUC

The Receiver Operator Characteristic or ROC is a

quantitative analysis technique used in binary classification.

It has its origins in the British efforts during World Word

II to differentiate enemy aircraft from noise, using systems

Hence the example in the previous

section.

such as “Chain Home”2. Different operators had a wide 2 Galati, G. (2015). 100 Years of
Radar. Springer International
Publishingrange of skills, and changes in the radar receiver gain levels

could influence signal to noise ratios. As such, flocks of

birds could be mistaken for enemy aircraft. Each receiver

operator was said to have their own characteristic and thus

the name.

As we saw in the Section 6.1.1, we can obtain a lot of useful

information from true positives, false negatives, etc.

Nonetheless, it is sometimes easier to compare one single

metric rather than several. That is where ROC3 becomes 3 Fawcett, T. (2006). An
introduction to ROC analysis.
Patt. Recog. Lett. 27, 861–874

very handy: It lets us construct a curve in terms of the true

positive rate against the false positive rate. Unfortunately

ROC curves are suitable for binary classification problems

only.

In a ROC curve the True Positive Rate is plotted as a The receiver operator characteristic

(ROC) curve shows the true

positive rate as a function of the

false positive rate.

function of the False Positive Rate for different cut-off

points or thresholds for the classifier. Think of these

thresholds as settings in the receiver used by the radar

operators.

If our classifier is able to distinguish the two classes without

overlap, then the ROC would have a point at the 100% A perfect classifier would have a

100% sensitivity and 0% fallout.sensitivity and 0% fallout, i.e. the upper left corner of the

data science and analytics with python 203

curve. This means that the closer the ROC curve is to that

corner, then the better the accuracy of the classifier. A

different way of representing this information is in terms of

the area under the ROC curve, aka AUC. This means that A perfect classifier would have an

area under the ROC curve equal to

1.
for a perfect classifier the area under the ROC curve will be

equal to 1. In that sense the AUC is the one single metric we

were looking for.

The other side of the coin is a classifier that by chance

distinguishes the two classes. It would be no better than A classifier that is as good as

guessing would have a ROC curve

described by a diagonal line.
tossing a coin to assign observations to each of the two

categories. This would be represented by a diagonal line

from the origin and going to the (1, 1) point in the plot. In

that case the AUC would then be 0.5. Let us see an example

by considering a receiver that can be placed in 8 different

settings from off to full detection. The readings from this

thought experiment are as shown in Table 6.3.

Setting

Enemy
Aircraft
Detected
(%)

Flocks
Detected
(%)

Flocks
Incorrectly
Detected (%)

Sensitivity Specificity Fallout

Off 0 100 0

S1 18 96 4

S2 34 95 5

S3 58 84 16

S4 70 78 22

S5 88 62 38

S6 97 25 75

Full blast 100 0 100

Table 6.3: Readings of the
sensitivity, specificity and fallout
for a thought experiment in a
radar receiver to distinguish
enemy aircraft from flocks of
birds.

204 j. rogel-salazar

In Figure 6.1 we can see the ROC curve for the data in Table

6.3. We are also showing the diagonal line that represents Figure 6.1 shows a set of typical

ROCs.the 0.5 AUC classifier, as well as the curve given by a perfect

classifier whose AUC is equal to 1.

Figure 6.1: ROC for our
hypothetical aircraft detector.
We contrast this with the result of
a random detector given by the
dashed line, and a perfect detector
shown with the thick solid line.

We now know what a perfect classifier looks like in terms

of a ROC curve. Similarly, we also know that a diagonal

line is equivalent to a random guess. With this in mind, it

is clear that we would prefer classifiers that are better than
We prefer classifiers that are better

than guessing.
guessing, in other words those whose ROC curve lies above

the diagonal. Also we would prefer those classifiers whose

ROC curves are closer to the curve given by the perfect

classifier. If you end up with a ROC curve that lies below

the diagonal, your classifier is worse than guessing, and it

data science and analytics with python 205

should be immediately discarded. In the following sections

we will discuss some of the most popular classification

algorithms and show a few examples.

6.2 Classification with KNN

Now that we have clarified the goal of classification, we

are in a position to discuss our first classifier: The k-Nearest-

Neighbours algorithm4 or KNN, for short. We will use the 4 Cover, T. M. (1969). Nearest
neighbor pattern classification.
IEEE Trans. Inform. Theory IT-13,
21–27

labels provided by the training data to help us decide the

class to which a new unseen observation belongs.

Recall that we consider our data points to exist in an N-

dimensional space given by the N features in our dataset.

In the KNN classifier, similarity is given by the distance

between points. We classify new observations taking into In KNN similarity is given by the

distance between data instances.account the class of the k nearest labelled data points. This

means that we need a distance measure between points, and

we can start with the well-known Euclidean distance we

discussed in Section 3.8.

As it was the case in k-means for clustering, the value of

k in KNN is a parameter that is given as an input to the The number of neighbours k to

take into account for classification

is a parameter in this model.
algorithm. For a new unseen observation, we measure the

distance to the rest of the points in the dataset and pick the

k nearest points. We then simply take the most common

class among these to be the class of the new observation. In

terms of steps we have the following:

1. Choose a value for k as an input

2. Select the k nearest data points to the new observation

206 j. rogel-salazar

3. Find the most common class among the k points chosen

4. Assign this class to the new observation

Please note that step 3 may pose some issues in cases where

we choose an even k. For example, if k = 4 we may An even number of neighbours

may pose a decision problem, so

it is better to concentrate on odd

values of k.

encounter a situation where two points belong to class A

and the other two to class B. In this case it is not possible for

us to decide whether to assign our new sample to either A

or B.

As you can see, KNN is a very straightforward algorithm

and it is very easy to explain. Furthermore, it is able to learn

nonlinear boundaries among classes. However, it may be

easy to overfit a dataset and the question about choosing

the value of k is an important one. We also need to consider These issues can be dealt with

with cross-validation.the best distance measure for our dataset. Finally, it is worth

mentioning that KNN has low bias and high variance.

6.2.1 KNN in Action

For this section we will make use of the Iris dataset we

introduced in Section 3.10, containing 150 samples of three We introduced the Iris dataset in

Section 3.10.species of iris flowers: Setosa, Virginica and Versicolor, with

four features: Sepal length, sepal width, petal length and

petal width.

Let us start by creating our training and testing datasets. In supervised learning we are also

interested in the labels.Remember that not only are we interested in the features,

but also in the labels. We will load the features in object X

and the labels in Y:

data science and analytics with python 207

X = iris.data

Y = iris.target

With the aid of train_test_split we can create our testing

Remember to load the Iris dataset

first.

and training datasets. In this case we are using 70% of the

data for training and 30% for testing:

We can construct training

and testing datasets with

train_test_split. The parameter

random_state initialises the

pseudo-random number generator

used for sampling.

import sklearn.model_selection as ms

XTrain, XTest, YTrain, YTest =\

ms.train_test_split(X, Y,\

test_size= 0.3, random_state=7)

We need to find the appropriate value of k for our problem

and we can indeed fit various models for different values of The value of k, number of

neighbours, is a parameter that we

need to determine.
k. We can facilitate this search with the help of

GridSearchCV as we did for the hyperparameter λ in Section

4.9.

Let us load the relevant libraries:

from sklearn import neighbors

from sklearn.model_selection import GridSearchCV

We will search odd values between 1 and 20 and find the

best value of k with cross-validation:

208 j. rogel-salazar

k_neighbours = list(range(1,21,2))

n_grid = [{’n_neighbors’: k_neighbours}]

We will apply this to the KNeighborsClassifier() function

We will be searching the optimal

value of k in the odd values

between 1 and 20.

in the module neighbors:

We are performing cross-

validation with 10 folds in our

training data.

model = neighbors.KNeighborsClassifier()

cv_knn = GridSearchCV(estimator=model,\

param_grid=n_grid,\

cv=ms.KFold(n_splits=10))

cv_knn.fit(XTrain, YTrain)

The result of the search can be seen as follows:

> best_k = cv_knn.best_params_[’n_neighbors’]

> print(‘‘The best parameter is k={0}’’.\

format(best_k))

The best parameter is k=11

In this case we see that the best number of neighbours is 11

and in Figure 6.2 we show a heatmap of the different values

of k considered and their corresponding score.

The score evaluated in by the

model is the accuracy of the

classification.

Finally, let us see how our model performs on the testing

dataset using k = 11 for the number of neighbours. In this

case we will only use two of the features of the dataset for

data science and analytics with python 209

Figure 6.2: Accuracy scores for
the KNN classification of the Iris
dataset with different values of k.
We can see that 11 neighbours is
the best parameter found.

visualisation purposes. We will concentrate on the sepal

width and the petal length:

We will use k = 11 to fit a model

to our training dataset.

knnclf = neighbors.KNeighborsClassifier\

(n_neighbors=best_k)

knnclf.fit(XTrain[:, 2:4], YTrain)

The prediction can be obtained using the predict method of

our model:

y_pred = knnclf.predict(XTest[:, 2:4])

In Figure 6.3 we show a contour map of the three Iris classes

The predictions of our model

can be obtained with the predict

method.

obtained using KNN based on sepal width and petal length.

210 j. rogel-salazar

Figure 6.3: KNN classification of
the Iris dataset based on sepal
width and petal length for k = 11.
The shading areas correspond
to the classification mapping
obtained by the algorithm. We can
see some misclassifications in the
upper right-hand corner of the
plot.

The data points correspond to the flowers in the testing set,

coloured according to their class. We can see some instances

where the flowers have been misclassified.

Let us construct a confusion matrix for our classifier:

> from sklearn.metrics import confusion_matrix

> confusion_matrix(YTest,y_pred)

array([[12, 0, 0],

[0, 14, 2],

[0, 2, 15]])

A confusion matrix can

be obtained with the

confusion_matrix function from

the module metrics.

data science and analytics with python 211

As we can see four instances for classes 2 and 3 (two each)

have been misclassified. We can obtain a classification report

as follows:

The classification_report

function provides information

about the precision and recall of

the classification model trained.

> from sklearn.metrics \

import classification_report

> print(classification_report(YTest, y_pred))

precision recall f1-score support

0 1.00 1.00 1.00 12

1 0.88 0.88 0.88 16

2 0.88 0.88 0.88 17

avg / total 0.91 0.91 0.91 45

The report gives us information about the precision and

recall for our classifier as well as the F1 score which

provides a measure of accuracy based on the precision and

recall as follows:

F1 = 2
(precision)(recall)
(precision + recall)

, (6.6)

and ranges between 1 (best) and 0 (worst).

6.3 Classification with Logistic Regression

We are familiar with the concept of regression as

discussed in Chapter 4. We saw that regression is a Regression is used for continuous

variables. For logistic regression

think of categorical variables.
supervised machine learning task that enables us to obtain

predictions for continuous variables. In contrast, logistic

212 j. rogel-salazar

regression is used in the prediction of a discrete outcome

and therefore best suited for classification purposes. Logistic

regression is in effect another generalised linear model that

uses the same basic background as linear regression.

However, instead of a continuous dependent variable, the

model is regressing for the probability of a (binary) Logistic regression predicts

the probability of a categorical

outcome.
categorical outcome. We can then use these probabilities to

obtain class labels for our data observations.

Let us recall that a linear regression model is the conditional

mean of the outcome variable Y given the value of the

covariate X noted as E(Y|X) and is given by:

For a univariate case βX =

β0 + β1x.
E(Y|X) = βX, (6.7)

where we assume that this conditional mean is a linear

function taking values between −∞ and ∞.

In logistic regression, we are interested in determining the

probability that an observation belongs to a category (or not)

and therefore the conditional mean of the outcome variable We need to map our outcomes to

values between 0 and 1.must lie in the interval [0, 1]. We need to extend the linear

regression model to map the outcome variable into that

unit interval. We can do this with the help of the sigmoid

function defined as:

The logistic function.g(z) =
ez

1 + ez . (6.8)

We show a plot of this function in Figure 6.4 where we can

see that the domain of the function is (−∞, ∞) and its range

is [0, 1], as required. This function is also known as the

logistic function.

data science and analytics with python 213

Figure 6.4: A plot of the logistic
function g(z) = ez

1+ez .
Our transformed regression model (for a univariate case) is

therefore given by:

Our transformed model.E(Y|X) = P(X) =
exp (βx)

1 + exp (βx)
. (6.9)

It is also relevant to mention an important transformation

related to the logistic function, namely the logit function

or log-odds function. The logit of a probability given by

p ∈ [0, 1] is:

The logit or log-odds function.logit(p) = ln
(

p
1− p

)
. (6.10)

The interpretation of the quantity above is such that if p

represents a probability, the logit of the probability is the

214 j. rogel-salazar

logarithm of the odds. Conveniently, the difference between

the logits of two probabilities is the logarithm of the odds

ratio, which can be expressed in terms of simple addition

The difference between the

logits of two probabilities is the

logarithm of the odds ratio.

and substraction.

We can show that we can recover our linear model by

applying the logit function to Equation (6.9):

ln
(

P(X)
1− P(X)

)
= ln P(X)− ln (1− P(X))

= ln

(
eβx

1 + eβx

)
− ln

(
1− eβx

1 + eβx

)

= ln
(

eβX
)
− ln

(
1 + eβX

)
+ ln

(
1 + eβX

)

= βX. (6.11)

The logit function can therefore be a very useful tool in

interpreting the results obtained from the logistic regression

algorithm.

Another important difference between the linear and the

logistic regressions is the error term. In the case of the linear

regression the error term follows an independent normal

distribution with zero mean and constant variance.

Normal distributions are also

called Gaussian

In logistic regression, however, the outcome variable can

take only two values: Either 0 or 1. This means that instead Think of a coin tossing

experiment.of following a Gaussian distribution it follows a Bernoulli

one. The Bernoulli distribution corresponds to a random

variable that takes the value 1 with probability p and 0 with

probability q = 1− p.

data science and analytics with python 215

Our logistic regression model given by Equation (6.9) will

provide us the probability that an observation belongs to

a binary class or not. We need a threshold that helps us

carry out the classification task, and a typical example is as

follows:

These are typical thresholds

applied alongside a logistic

regression.

yi =

1, if P(X) ≥ 0.5.

0, otherwise.
(6.12)

Since the logistic regression model is a generalised linear

model for outcomes in (0, 1) the solution can be

implemented using Ordinary Least Squares and still use See Chapter 4 for more

information.measures such as R2. In cases where the outcome is exactly

0 or 1 other methods, such as maximum likelihood

estimation, are needed.

Let x be a set of training data and y correspond to the labels

for the dataset. We are interested in maximising the log-

likelihood of the data and so for i samples we have that the

coefficients are given by:

The objective function for logistic

regression.
β← max

β
∑

i
ln P(Xi, β). (6.13)

We can also apply regularisation to the logistic regression

model and thus the optimisation problem can be written as:

The objective function for

regularised logistic regression.
β← max

β
∑

i
ln P(Xi, β)− λ||β||n, (6.14)

216 j. rogel-salazar

where || · ||n is the L-n norm. In that way we can achieve the

penalisation for high coefficients as discussed for the linear

regression in Section 4.9.

6.3.1 Logistic Regression Interpretation

As we have mentioned above, the interpretation of the

results from logistic regression is better understood in terms

of the odds and the odds ratio. We know that the odds of an

event with probability p is given by:

The odds of an event with

probability p.
odds =

p
1− p

, (6.15)

which is effectively the ratio of the probability that the event

will take place (p) to the probability that it will not (1− p).

In a univariate case, from Equation (6.11) we have that:

The odds for the univariate case.
P(x)

1− P(x)
= exp (β0 + β1x) . (6.16)

Remember that in linear regression, we interpret the

parameter β1 as the change in the target variable given a

unit change in the covariate x. Let us see how we can use Let us consider a unit change in x.

this to interpret our coefficients in the logistic regression.

We consider a univariate case and a change of one unit in

the variable x. The odds would be given by

odds(x + 1) = exp (β0 + β1(x + 1)) . (6.17)

data science and analytics with python 217

Let us now take the odds ratio of Equations (6.16) and (6.17):

OR =
exp (β0 + β1x)

exp (β0 + β1(x + 1))
= eβ1 . (6.18)

If we now take the logarithm of the odds ratio we have that

We then calculate the odds ratio.

it is equal to the coefficient β1:

ln(OR) = β1, (6.19)

and this means that the coefficients obtained from logistic

regression can be interpreted as the change in the logit The coefficients correspond to the

change in the logit function for a

unit change in x.
function for a unit change in the covariate. In other words,

the odds ratio of a binary event gives the increase in

likelihood of an outcome if the event occurs. Similarly, the

odds ratio in logistic regression represents how the odds

change with a unit increase in a given feature, holding all

other features constant.

For example, imagine that you estimate a logistic regression

model with features x1 and x2 such that the model can be An example of the interpretation

of the logistic regression

coefficients.
expressed as 10.0145 + 0.25x1 + 0.04x2. The effect of the odds

of a unit increase in x1 is given by exp(0.25)=1.284, and this

means that the odds increase by about 28%, regardless of

the value of x2.

Before we move on to see an example of the application of

logistic regression let us address an important point

regarding the number of classes in our problem. Our

discussion has concentrated on a problem with two classes

(A and B, 1 and 0, etc). Logistic regression can be used in a It is possible to use logistic

regression in cases involving more

than two classes.
multiclass setting too and a typical strategy is the so-called

one-versus-the-rest strategy. In this case the modelling is done

218 j. rogel-salazar

by using one classifier per class so that for each of our

classifiers, the chosen class is modelled against the rest of

the classes. In other words, if we have a problem with three

classes 0, 1 and 2, we will need three classifiers:

1. Classifier one for class 0 versus 1 and 2

2. Classifier two for class 1 versus 0 and 1

3. Classifier three for class 2 versus 0 and 1

6.3.2 Logistic Regression in Action

We are going to use a breast cancer dataset that contains

cases from a study at the University of Wisconsin Hospital

by W. H. Wolberg and O. L. Mangasarian5. The dataset is 5 Mangasarian, O. L. and W. H.
Wolberg (1990, Sep.). Cancer
diagnosis via linear programming.
SIAM News 25(5), 1 & 18

available at the UCI Machine Learning Repository under

“Breast Cancer Wisconsin (Original) Dataset” and is

available at https://archive.ics.uci.edu/ml/datasets/

Breast+Cancer+Wisconsin+(Original)6. 6 Lichman, M. (2013b). UCI
Machine Learning Repository,
Wisconsin Breast Cancer Database.
https://archive.ics.uci.edu/

ml/datasets/Breast+Cancer+

Wisconsin+(Original). University
of California, Irvine, School
of Information and Computer
Sciences

We are interested in classifying breast tissue samples into

benign or malignant cases. The dataset contains 699

instances with an ID column and 10 features as follows:

1. Sample code number (ID number)

2. Clump Thickness (1- 10)

3. Uniformity of Cell Size (1- 10)

4. Uniformity of Cell Shape (1- 10)

5. Marginal Adhesion (1- 10)

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)

data science and analytics with python 219

6. Single Epithelial Cell Size (1- 10)

7. Bare Nuclei (1- 10)

8. Bland Chromatin (1- 10)

9. Normal Nucleoli (1- 10)

10. Mitoses (1- 10)

11. Class (2 for benign, 4 for malignant)

We assume that the data has been pre-processed into a CSV

file with appropriate names for the columns detailed above.

We can then load it into Python as follows:

The dropna method drops

instances with missing

information.

bc = pd.read_csv(u’./breast-cancer-wisconsin.csv’)

bc = bc.dropna()

We have dropped any instances where no information is

available, leaving us with 683 instances; we can see how

they are distributed with the help of describe:

> bc[’Class’] = bc[’Class’].astype(’category’)

> bc[’Class’].describe()

count 683

unique 2

top 2

freq 444

Name: Class, dtype: int64

We cast the column Class as a

categorical variable.

220 j. rogel-salazar

As we can see, the most frequent class is ’2’ (benign) with

444 instances. Let us prepare our data by separating the

labels from the rest of the dataset:

We separate the labels from the

rest of the dataset by dropping the

appropriate column.

X = bc.drop([’Class’], axis=1)

X = X.values

Y_raw = bc[’Class’].values

It would make our task easier to use ’0’ and ’1’ as the labels

for our classes instead of the labels used by in the original

dataset. This can easily be done with LabelEncoder as

follows:

The LabelEncoder method lets us

re-assign the encodings used for

our classes.

from sklearn import preprocessing

label_enc = preprocessing.LabelEncoder()

label_enc.fit(Y_raw)

Y = label_enc.transform(Y_raw)

It is possible to see the classes with label_enc.classes_

and very importantly we can invert the encoding with

label_enc.inverse_transform().

Let us split our data into training and testing as we have

been doing so far:

import sklearn.model_selection as cv

XTrain, XTest, YTrain, YTest =\

ms.train_test_split(X, Y,\

test_size=0.3, random_state=1)

data science and analytics with python 221

Scikit-learn implements logistic regression in the

linear_model module and is called LogisticRegression.

We are going to use regularisation in our model and we can

choose between L1 and L2 penalties. The hyperparameter in The logistic regression model is

implemented in the linear_model

module. The hyperparameter is

denoted by C.

this case is implemented as C and it corresponds to the

inverse of the regularisation strength. This means that the

smaller the value of C, the stronger the penalty. We will use

GridSearchCV to determine the best values for these two

parameters:

As with other examples we have

seen, we can search for optimal

values of the hyperparameter with

GridSearchCV.

from sklearn.linear_model \

import LogisticRegression

pen_val = [’l1’,’l2’]

C_val = 2. ** np.arange(-5, 10, step=2)

grid_s = [{’C’: C_val, ’penalty’: pen_val}]

model = LogisticRegression()

from sklearn.model_selection\

import GridSearchCV

cv_logr = GridSearchCV(estimator=model,\

param_grid=grid_s,\

cv=ms.KFold(n_splits=10))

The fitting can now be done as follows:

cv_logr.fit(XTrain, YTrain)

best_c = cv_logr.best_params_[’C’]

best_penalty = cv_logr.best_params_[’penalty’]

222 j. rogel-salazar

Figure 6.5: A heatmap of mean
cross-validation scores for the
Logistic Regression classification
of the Wisconsin Breast Cancer
dataset for different values of C
with L1 and L2 penalties.

In this case the grid search was carried out with 10 folds,

over the hyperparameter values defined, as well as L1 and

L2 penalties returns the following parameters:

> print(‘‘The best parameters are:\

cost={0} and penalty={1}’’.\

format(best_c, best_penalty))

The best parameters are: cost=0.5 and penalty=l1

Figure 6.5 shows a heatmap of the parameter search we

have performed. It is now possible for us to use the

parameters above to create a classifier for our problem and

train it to be used on unseen data. All we have to do is

data science and analytics with python 223

create an instance of the logistic regression model using the

parameters obtained:

b_clf = LogisticRegression(C=best_c,\

penalty=best_penalty)

b_clf.fit(XTrain, YTrain)

The classifier can now be used to predict the class in our

We are instantiating a model with

the parameters found above.

testing dataset with the predict method. We obtain the

probabilities assigned to each instance with the

predict_proba method:

predict gives us the predicted

class, where as predict_proba

gives us the probabilities.

predict = b_clf.predict(XTest)

y_proba = b_clf.predict_proba(XTest)

Please note the y_proba is an array with two columns, each

column indicates the probability that the instance belongs to

either of the two classes.

Let us take a look at the classification accuracy score:

The accuracy of the model can be

seen with the score method.

> print(b_clf.score(XTest, YTest))

0.960975609756

The coefficients for the model can be obtained with the

.coef_ method:

224 j. rogel-salazar

> print(b_clf.coef_)

[[-2.76001862e-06 3.34121074e-01

3.64527317e-01 3.44557750e-01

2.99474883e-02 -1.24661155e-01

3.49887361e-01 1.30369406e-01

2.94834342e-01 1.56018289e-01]]

The coefficients are stored in the

coef_ method.

Remember that the odds ratios are obtained by taking the

exponential of the coefficients. They tell us how a unit

increase or decrease in a variable affects the odds of having

a malignant mass:

Taking the exponential of the

coefficients lets us interpret the

results.

> print(np.exp(b_clf.coef_))

[[0.99999724 1.39671224

1.43983326 1.41136561

1.03040042 0.88279598

1.41890772 1.13924915

1.34290388 1.16884758]]

For instance we can expect the odds of having a malignant

mass to increase by about 43% if the measure for

“Uniformity of Cell Shape” increases by one unit.

Finally, let us take a look at obtaining the ROC and AUC

measures. In the case of ROC we can use roc_curve whose The next step is to calculate the

ROC and AUC.inputs are the true labels of the instances and the target

scores such as probability estimates of the positive class

data science and analytics with python 225

or confidence values. Let us use the y_proba estimates we

calculated above:

Figure 6.6: ROC curves obtained
by cross-validation with k = 3
on the Wisconsin Breast Cancer
dataset.

from sklearn.metrics import roc_curve, auc

fpr, tpr, threshold=roc_curve(YTest, y_proba[:,1])

plt.plot(fpr, tpr)

and the AUC can be calculated with the true positive and

false positive rates obtained above:

226 j. rogel-salazar

> print(auc(fpr, tpr))

0.992167919799

In Figure 6.6 we show ROC curves obtained by using It is possible to obtain various

ROC plots with the aid of cross-

validation.
cross-validation on the dataset using 3 folds for simplicity.

We also show the mean ROC calculated from the

cross-validation and compare it with the random classifier

given by the diagonal line shown.

6.4 Classification with Naïve Bayes

Probability is at the centre of many everyday life

applications: From weather to sports, passing by finance

and science. As a theory, we owe much to the French

mathematicians Pierre de Fermat and Blaise Pascal who

used to discuss problems related to games of chance with

each other7. As such, in the early seventeenth century, it 7 Devlin, K. (2010). The Unfinished
Game: Pascal, Fermat, and the
Seventeenth-Century Letter That
Made the World Modern. Basic ideas.
Basic Books

was widely believed that it was not possible to calculate

(predict) the outcome of rolling a dice for example. We now

know that is not really the case.

In the previous section we used logistic regression to

estimate the probability that a data instance belongs to a

particular class and, based on that, decide on the label that

should be assigned to that instance. We assumed that we We denote the probability of and

event A as P(A).knew what was meant by probability, i.e. a number between

0 and 1 that indicates how likely it is for an event A to occur.

We denote the probability of event A as P(A).

data science and analytics with python 227

From a traditional standpoint, probability is presented

in terms of a frequentist view where data instances are There are two probability schools

of thought: frequentist and

Bayesian.
drawn from a repeatable random sample with parameters

that remain constant during the repeatable process. These

assumptions enable us to determine a frequency with which

an event occurs. In contrast, the Bayesian view takes the

approach that data instances are observed from a realised

sample, and that the parameters are unknown. Since the In the Bayesian view, probability

reflects a state of knowledge.repeatability of the data sample does not hold under this

view, the Bayesian probability is not given in terms of

frequencies, but instead it represents a state of knowledge or

a state of “belief”.

The Bayesian approach is named after the 18th century

English statistician and Presbyterian minister Thomas Bayes

who is known for formulating a theorem that bears his

name: Bayes’ theorem. Bayes’ stardom in the scientific world

is grounded on a posthumous publication8 presented to the 8 Bayes, T. (1763). An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions 53, 370–418

Royal Society by his friend Richard Price.

Bayes’ theorem states that the probability of a particular

hypothesis is given by both current information (data)

and prior knowledge. The prior information may be the

outcome of earlier experiments or trials, or even educated

guesses drawn from experience. This is the reason why

many frequentist practitioners have shunned the Bayesian

approach for centuries. Nonetheless, Bayesian statistics has

stood the test of time9 and demonstrated its usefulness in 9 McGrayne, S. (2011). The Theory
that Would Not Die: How Bayes’
Rule Cracked the Enigma Code,
Hunted Down Russian Submarines,
& Emerged Triumphant from Two
Centuries of Controversy. Yale
University Press

many applications. Let us consider the set of all possible

events, Ω, which is our sample space. Event A is a member of

the sample space, as is every other event. The probability of

228 j. rogel-salazar

the sample space is P(Ω) = 1. The probability P(A) is given

by:

P(A) =
|A|
|Ω| , (6.20)

where |A| denotes the cardinality of A. We show a Venn

diagram of this situation in Figure 6.7.a). If |A| were to have

equal cardinality to Ω then the probability of A would be at

most 1.

Ω

A

Ω

B

Ω

A B
AB

Ω

B
AB

a) b)

c) d)

Figure 6.7: Venn diagrams to
visualise Bayes’ theorem.

data science and analytics with python 229

For a different event B, we have a similar situation (shown

in Figure 6.7.b) and the probability P(B) is:

We are using the frequentist view

in this case.
P(B) =

|B|
|Ω| . (6.21)

Thinking about the dataset we analysed in the previous

section, let us consider A to be the set of women with breast

cancer, and B the set of women whose test for cancer was
The probability of events A and B

happening together is related to

the intersection A ∩ B.

positive. Any woman in either of the sets above would be

interested to know if their test was positive and if they

actually have cancer. This would be given by the

intersection of A and B, namely A ∩ B, or AB for short. This

would be the situation depicted in Figure 6.7.c). So, how do

we calculate that? Actually, in the same fashion as before:

We are using AB as a shorthand

for A ∩ B.

P(AB) =
|AB|
|Ω| . (6.22)

Notice that the calculation above aims at excluding the

following events: 1) women with cancer and with a negative

test result (A− AB), and 2) women with a positive result but

without cancer (B− AB).

All in all, for this example, the question of real importance

is whether for a randomly selected woman, given that the

test is positive, what is the probability that she has cancer? In The next question to ask is the

probability of event A, given event

B, i.e. P(A|B).
terms of our Venn diagrams (see Figure 6.7.d)) the question

above is equivalent to given that we are in region B, what is the

probability that we in fact are in region AB?.

230 j. rogel-salazar

We denote the conditional probability of A given B as

P(A|B), and it can be calculated as follows:

P(A|B) = |AB|
|B| =

|AB|
|Ω|
|B|
|Ω|

=
P(AB)
P(B)

. (6.23)

It is also possible to calculate P(B|A):

P(B|A) =
P(BA)

P(A)
, (6.24)

and for our example it will give us the probability of a

randomly selected woman to test positively given that she If events A and B are independent

from each other, information from

one does not affect the other.
has the condition. Incidentally, if the events A and B are

independent from each other, information about one does

not affect the other and thus P(A|B) = P(A). This means

that P(AB) = P(A)P(B).

The numerators of Equations (6.23) and (6.24) are actually P(AB) = P(BA).

the same. This means that we can write the following:

two as P(A|B)P(B) = P(B|A)P(A), which in turn can be

rearranged as

This is Bayes’ theorem.P(A|B) = P(B|A)P(A)

P(B)
. (6.25)

This result is what we know as Bayes’ theorem. We call

P(A|B) the posterior probability, P(A) the prior probability P(A|B) is the posterior probability

and P(A) is the prior.and P(B|A) the likelihood. Bayes’ theorem can be thought

of as a rule that enables us to update our belief about a

hypothesis A in light of new evidence B, and so our

posterior belief P(A|B) is updated by multiplying our prior

data science and analytics with python 231

belief P(A) by the likelihood P(B|A) that B will occur if A

is actually true. This rule has had a number of very

successful applications and perhaps one of my favourite

ones is a very early one by Pierre Simon Laplace to

determine the mass of Saturn10. 10 Laplace, P. and A. Dale (2012).
Pierre-Simon Laplace Philosophical
Essay on Probabilities: Translated
from the fifth French edition of 1825
With Notes by the Translator. Sources
in the History of Mathematics and
Physical Sciences. Springer New
York

In Bayesian statistics we tend to work along the following

steps:

1. We first set out a probability model for an unknown

parameter of interest, and include any prior knowledge

about the parameter, if available at all

2. Using the conditional probability of the parameter on

observed data, we update our knowledge of this

parameter

3. We then evaluate the fitness of the model to the data and

These are some typical steps

followed in Bayesian statistics.

check the conclusions reached based on our assumptions

4. We may then decide to start over again using the new

information gained as our starting prior

The priors we use in the first step above reflect the best

approximation to what we are interested in modelling. This

information may come from expert information, researcher The priors reflect the best

approximation to what we are

interested in modelling.
intuition, previous studies, other data sources, etc. In the

past, Bayesian analysis would require a lot of manual

computation. These days, the help of computers has

lowered this barrier considerably.

232 j. rogel-salazar

6.4.1 Naïve Bayes Classifier

Let us now see how Bayes’ theorem can be used in a

classification task. A typical example, and one that most

of us are familiar with, is the task of determining if a new

email that arrives to our inbox is a good email (“ham”)

or a bad email (“spam”). Let us imagine that we have an

existing corpus of email data that can be decomposed A collection of text documents is

called a corpus.in such a way that we end up with a dataset containing

{xi} = x1, x2, . . . , xn features and we are interested in

classifying new emails as belonging to the class S of spam

emails.

We can use Bayes’ theorem to calculate the conditional

probability of an email belonging to class S given the

observation of features {xi} as:

P (S|{xi}) =
P ({xi}|S) P (S)

P ({xi})
. (6.26)

The value of the likelihood P ({xi}|S) P (S) can be obtained

We are calculating the probability

of an email to be spam given the

features we observe in the corpus.

directly from the training data: We know that we have spam

emails correctly labelled as such. We can therefore obtain

the probability of observing the set of features {xi} given The majority of the quantities

needed can be readily calculated.the spam email sample we have at our disposal. Similarly,

the value of the prior P (S) can also be obtained from the

data as the training dataset includes both spam and ham.

Finally, P ({xi}) is a constant that does not depend on

the class S and can be incorporated at the end of all our

computations.

data science and analytics with python 233

On the whole, the most difficult part in the calculation

outlined above is the estimation of the likelihood function The hardest part is the likelihood

function P ({xi}|S).P (x1, x2, . . . , xn|S). To get this value we need to have a lot

of data in order to cover every possible combination of

features {xi} and obtain a good estimation. This may be

achievable, but remember that a model is just a reasonable

approximation to reality. As such, we can make a suitable

assumption to simplify the computation of this quantity.

Naïvely, we can assume for example that the features {xi}
are conditionally independent from each other. If that is the

case we can re-write the likelihood function as:
We can make the calculation

tractable by assuming that

the features are conditionally

independent from each other.

P (x1, x2, . . . , xn|S) ' P (x1|S) · P (x2|S) · . . . · P (xn|S) . (6.27)

It is this naïve assumption that makes the calculation above

tractable and gives the name to this classification algorithm.

6.4.2 Naïve Bayes in Action

The example we are going to follow for the naïve Bayes

classifier is based on text classification. Instead of a spam You can follow me on

Twitter: @quantum_tunnel and

@dt_science.
detector, we will work with Twitter data coming from my

own streams @quantum_tunnel, and @dt_science. Our task

is to determine if a given tweet is about “data science” or

not. The data is available11 at https://dx.doi.org/10. 11 Rogel-Salazar, J. (2016a,
Jan). Data Science Tweets.
10.6084/m9.figshare.2062551.v1

6084/m9.figshare.2062551.v1.

The corpus to be used in this task is already split into

training and testing datasets. The training data contains 324

labelled tweets related to “data science” in a file called

https://dx.doi.org/10.6084/m9.figshare.2062551.v1
https://dx.doi.org/10.6084/m9.figshare.2062551.v1

234 j. rogel-salazar

Train_QuantumTunnel_Tweets.csv with three columns: A

“data science” label, the date when the tweet was published

and the actual published text of the tweet. The testing The corpus of tweets is already

split into training and testing sets.dataset is not labelled and contains 163 tweets. Let us load

the training data into a Pandas dataframe:

import pandas as pd

train = pd.\

read_csv(’Train_QuantumTunnel_Tweets.csv’,\

encoding=’utf-8’)

We can inspect the data by slicing the dataframe:

In Python 3 it is important to

specify the encoding of a text file.

In this case UTF-8.

print(train[62:64])

Tweets 62 and 63 actually read:

The content of the tweets has not

been pre-processed. We will clean

the input in the next steps.

Tweet 62: And that is Chapter 3 of "Data Science and Analytics

with Python" done... and moving on to the rest! Super chuffed!

#BookWriting’

Tweet 63: See sklearn trees with #D3 https://t.co/UYsi0Xbcbu

We would like to pre-process the text of the tweets to get rid

of URLs and hashtags. We can do so by writing a function

as follows:

We will use the regular

expressions package re.

import re

def tw_preprocess(tw):

ptw = re.sub(r‘‘http\S+’’, ‘‘’’, tw)

ptw = re.sub(r‘‘#’’, ‘‘’’, ptw)

return ptw

https://t.co/UYsi0Xbcbu

data science and analytics with python 235

We can now apply the function to the relevant column in the

Pandas dataframe:

The apply method of a Pandas

dataframe allows us to pre-process

our corpus.

train[’Tweet’] = train[’Tweet’].\

apply(tw_preprocess)

We are interested in characterising the tweets by the words

that appear in each of them, and so these words will be our

features. To that end, we need to tokenise our tweets and

generate a term-document matrix. In other words, a matrix A term-document matrix is a

matrix whose rows correspond

to documents and its columns to

words.

whose rows correspond to documents (in this case tweets)

and its columns correspond to terms (words). We can get

this done with the help of CountVectorizer in Scikit-learn:

from sklearn.feature_extraction.text \

import CountVectorizer

vectoriser = CountVectorizer(lowercase=True,\

stop_words=’english’,\

binary=True)

We can now apply our vectoriser to the training tweets as

CountVectorizer enables us to

create our term-document matrix.

follows:

We use our vectoriser to transform

our corpus.

X_train = vectoriser.\

fit_transform(train[’Tweet’])

The result is a large sparse matrix, so printing it is not a

good idea. Nonetheless, we can still see the vocabulary that

has been gathered from the training set by fit_transform.

This can be done with get_feature_names:

236 j. rogel-salazar

> vectoriser.get_feature_names()[1005:1011]

[’putting’, ’python’,

’quantitative’, ’quantum’,

’quantum_tunnel’, ’question’]

We are now in a position to create our model using the

We can list the vocabulary

created with the help of

get_feature_names.

sparse matrix generated by our vectoriser and the labels

provided with the training dataset:

We are using the MultinomialNB

algorithm from naive_bayes.

from sklearn import naive_bayes

model = naive_bayes.MultinomialNB().\

fit(X_train, list(train[’Data_Science’]))

We have not employed cross validation as yet, but we can

certainly take a look at the scores obtained with cross

validation as follows:

In this case we use cross-

validation with 3 sets, enabling us

to see the scores attained.

> import sklearn.model_selection as ms

> ms.cross_val_score(naive_bayes.\

MultinomialNB(), X_train, train[’Data_Science’],\

cv=3)

array([0.74311927, 0.77777778, 0.72897196])

We can see the confusion matrix that we obtain for the

training dataset with the model we just created:

data science and analytics with python 237

> from sklearn.metrics import confusion_matrix

> confusion_matrix(train[’Data_Science’],\

model.predict(X_train))

array([[195, 1],

[0, 128]])

Finally, we can now apply our model to the testing dataset

We discussed confusion matrices

in Section 6.1.1.

provided. We need to load the data and let us apply the

same preprocessing we used for the training dataset:

We need to load the training

dataset and apply the same

transformation used for training.

test = pd.\

read_csv(’Test_QuantumTunnel_Tweets.csv’,\

encoding=’utf-8’)

test[’Tweet’] = test[’Tweet’].\

apply(tw_preprocess)

We now have to apply the vectoriser to the testing dataset

via the transform method and to finally apply the predict

method of the model:

We have to use the transform

method of our vectoriser before

running our prediction.

X_test = vectoriser.transform(test[’Tweet’])

pred = model.predict(X_test)

We can also see the probability assigned to each tweet as

follows:

The predict_proba method lets us

see the probabilities assigned to

each of the testing tweets.

print(pred)

pred_probs = model.predict_proba(X_test)[:,1]

238 j. rogel-salazar

Let us check for example the probability assigned to the

tweet with id 103:

Remember that Python starts

counting from 0.

> pred_probs[102]

0.99961933738874065

Let us see the text of this tweet:

Finished writing Chapter 4 for my DataScience and analytics with

Python book. Moving on to discussing some classification analysis

The rest of the data can be checked in a similar fashion.

Notice that we have used a very small corpus for this demo,

but you can see how powerful Bayes’ theorem is, even when

making the naïve assumption we described earlier on in More sophisticated pre-processing

of the corpus is left to the

reader as an exercise: Get rid

of punctuation, numbers, etc.

this chapter. Furthermore, in this example we were not

particularly careful when cleaning the data, for instance we

left numbers and punctuation in the corpus, also we did not

apply any stemming on the text either.

6.5 Summary

Classification is another very important tool to

have under our jackalope data scientist belt. Together with

clustering, these techniques let us understand our data and

obtain insights which in turn can be used to get actionable

predictions. We saw how classification is a supervised

learning task that exploits information about the classes

contained in our data in order to make predictions about

unseen data instances.

data science and analytics with python 239

We discussed three well-known techniques, namely: k-

Nearest-Neighbours (or KNN), Logistic Regression and

Naïve Bayes. In KNN we use the similarity of a given data

instance and its closest data points. Logistic regression

extends the linear model we discussed in Chapter 4 using

a sigmoid function to estimate the probability that a given

data instance belongs to a class. Finally, naïve Bayes uses

Bayes’ theorem to update the posterior probability that a

data instance belongs to a class, given that certain features

are observed in the data.

Finally, we saw how confusion matrices, true and false

positives and negatives, as well as the recall and fallout

measures let us evaluate how well our classifiers are

performing. The same applies to the Receiver Operator

Characteristic (ROC) curve and the area under this curve

(AUC). We saw the algorithms described above applied to a

variety of problems, from cancer to twitter data as well as

wine and flower datasets.

http://taylorandfrancis.com

241

7

Decisions, Decisions: Hierarchical Clustering,

Decision Trees and Ensemble Techniques

The use of diagrams and illustrations in science and

business is nothing new. Along with tables and inscriptions,

they provide us with useful representations of concepts and

data we need to communicate. They make it easier for us to

organise our knowledge and information. A resource that

has been widely used for centuries and across cultural and

disciplinary landscapes is that of the tree1. It is easy to see 1 Lima, M. and B. Shneiderman
(2014). The Book of Trees: Visualizing
Branches of Knowledge. Princeton
Architectural Press

the appeal: Trees enable us to represent information in a

hierarchical manner that is easy to follow.

In this chapter we will address a few techniques that, in

one way or another, have been inspired by the metaphorical

representation of a tree: From roots to branches and leaves.

First we will talk about a clustering algorithm that organises The techniques we will discuss in

this chapter have been inspired by

trees.
groups of data in a hierarchical manner. Then we will talk

about decision trees, a tool that is widely used in decision

analysis applications and operations research. Towards

242 j. rogel-salazar

the end of the chapter we will combine trees in ensembles

giving rise to random forests.

7.1 Hierarchical Clustering

The word hierarchy evokes the idea of a system where

information is ranked according to a relative status, giving

rise to different levels. Hierarchical clustering is an Hierarchical clustering is an

unsupervised learning task.unsupervised learning task whose goal is to build a

hierarchy of data groups. The hierarchy can be built from

the “bottom-up”. In this case each data instance starts in its

own cluster, and we successively merge these clusters as we

go up in the levels of the hierarchy. This is known as

agglomerative clustering. In contrast, divisive clustering

takes the opposite approach, starting with all data instances

and performing splits as we go down the levels of the

hierarchy. The results of hierarchical clustering are

The result of hierarchical

clustering are represented by

a dendrogram.

presented in a tree-like structure called a dendrogram.

As we know, clustering relies on the existence of a similarity

measure among data instances. In a dendrogram, data

points are joined together from the most similar (closest) to

the most different (further apart). Let us recall our In a dendrogram, data points are

joined together from the most

similar to the most different.
discussion from Section 5.2 about the k-means algorithm.

We need to determine k different clusters with three things:

The number of clusters k, an initial assignation of data

points to the clusters, and a distance or similarity measure

d(xi, xj). In hierarchical clustering we only need one thing:

A similarity measure among groups of data points.

data science and analytics with python 243

Let us take a look at the agglomerative clustering approach, In hierarchical clustering we

only need to define a similarity

measure.
where our starting point is a situation where each of our N

data instances is on their own cluster. Given the similarity

measure d(xi, xj), we iteratively merge the two closest

groups, repeating until all data instances end up in a single A node is a point where two

clusters are joined.cluster. The point at which two clusters are joined up is

called a node. At each of the nodes of the resulting tree we

are effectively segmenting our data in a sequential manner.

A E D C B
Figure 7.1: A dendrogram is a
tree-like structure that enables us
to visualise the clusters obtained
with hierarchical clustering. The
height of the clades or branches
tells us how similar the clusters
are.

It is easy to see that the similarity among merged groupings

decreases monotonically at every node created by

agglomerative clustering. The more dissimilar two clusters

are, the more distant they are. This is actually depicted in a

dendrogram: The height of each branch, or clade, tells us

how similar or different the groupings are from each other,

the greater the height, the greater their dissimilarity. We The height of the branches tells us

how similar the clusters are.show a sample dendrogram in Figure 7.1. We see that

244 j. rogel-salazar

clusters D and E are more similar to each other than B and

C. Also, cluster A is significantly different from the rest of

the other clusters.

At the start of the agglomerative process, finding similar

data points is straightforward as we are comparing As we know, defining what we

mean by similarity is a very

important step in the process.
individual data points. However, once we have more than

one instance per cluster we need to define what we mean by

similarity among groups or clusters. Given two clusters F

and G, we have a few choices:

1. Single linkage: We define the similarity by the closest

instance pair: dSL(F, G) = min d(xi, xj) with xi ∈ F and

xj ∈ G

2. Complete linkage: The similarity is given by the farthest Some similarity measures used in

hierarchical clustering.pair: dCL(F, G) = max d(xi, xj) with xi ∈ F and xj ∈ G

3. Group average: The similarity is given by the mean

similarity between F and G:

dGA(F, G) = 1
|F|||G ∑i ∑j d(xi, xj) with xi ∈ F and xj ∈ G

Be aware that single linkage may lead to a situation where

a sequence of close data points gives rise to a chain. This is

because clusters tend to merge very early on in the process.

By the same token, complete linkage may not merge close As usual, there are advantages and

disadvantages with each of these

choices.
groups in cases where there are far-apart outliers in the

clusters. Finally, group average depends on the scale of

the similarities taken into account, and over all is a good

compromise between the three choices detailed above.

Another alternative for cluster merging is the so-called Ward

method based on an analysis of variance (ANOVA)

data science and analytics with python 245

approach. In this method, at each stage two clusters would An alternative is the use of the

Ward method.merge when they provide the smallest increase in the

combined error sum of squares from one-way univariate

ANOVAs that may be performed for each feature.

Finally, remember that hierarchical clustering is an

unsupervised algorithm and in cases where groupings do

not actually exist in the data, the algorithm will still impose Remember that hierarchical

clustering is an unsupervised task.a hierarchy. Cross validation may provide some clues as to

whether the clusters we obtain may actually make sense.

7.1.1 Hierarchical Clustering in Action

Let us use the Iris dataset to demonstrate the use of

hierarchical clustering with Python. Although Scikit-learn

provides hierarchical clustering implementations such as We will use SciPy with the Iris

dataset.
AgglomertiveClustering in this case we are going to use

the hierarchy module in SciPy.

Let us retrieve the Iris dataset and load the data to a suitable

variable:

By now, we are very well

acquainted with loading the

Iris dataset.

from sklearn.datasets import load_iris

iris = load_iris()

X = iris.data

From SciPy, we will be using the linkage and dendrogram

functions from hierarchy, and from distance we will call

the function pdist:

246 j. rogel-salazar

from scipy.cluster.hierarchy import linkage

from scipy.cluster.hierarchy import dendrogram

from scipy.spatial.distance import pdist

The dpist function lets us calculate the pairwise distances

We will use the functions linkage,

dendrogram and pdist from SciPy.

between the features in our data, whereas linkage is used to

run hierarchical clustering on a distance matrix:

We calculate pairwise distances

among our data points and

run the hierarchical clustering

algorithm.

X_dist = pdist(X)

X_link = linkage(X, method=’ward’)

We are using the Ward method in our agglomerative

clustering task.

We can obtain a measure of how the pairwise distances

in our data compare to those implied by the hierarchical

clustering. This is can be done with the cophenetic coefficient2. 2 Farris, J. S. (1969). On the
cophenetic correlation coefficient.
Systematic Biology 18(3), 279–285

The better the clustering preserves the original distances,

then the closer this coefficient is to 1:

A cophenetic coefficient closer

to 1 indicates that the clustering

preserves the original pairwise

distances of the data points.

> from scipy.cluster.hierarchy import cophenet

> coph_cor, coph_dist = cophenet(X_link, X_dist)

> print(coph_cor)

0.872601525064

It is sometimes important to know what clusters have

been merged at each iteration. This information is actually

contained in the matrix returned by the linkage function.
The linkage function provides

information about what clusters

have been merged together.The i-th entry of this matrix tells us what clusters have

data science and analytics with python 247

been merged at iteration i (first two entries), as well as their

distance (third entry) and the number of samples contained

(fourth entry). For example, we can see what data points

were merged at the first iteration as follows:

> print(X_link[0])

[9., 34., 0., 2.]

which indicates that the data instances with indices 9 and 34

The 9th and 34th data instances

were merged first.

were merged at the first iteration.

Figure 7.2: Dendrogram generated
by applying hierarchical clustering
to the Iris dataset. We can see how
three clusters can be determined
from the dendrogram by cutting at
an appropriate distance.

We are showing the dendrogram generated for the Iris data

set in Figure 7.2. The numbers in brackets along the x-axis

248 j. rogel-salazar

correspond to the number of data instances that are under

each clade. Remember that we are starting from a point

where each data instance is a cluster (i.e. the final leaves

in our tree). In this case we have a total of 150 entries, and

showing all those branches may not be that practical. The

dendrogram function provides us with a way to truncate the

diagram. In this case we are showing the last p = 15 merged

clusters:

The dendrogram function lets us

plot the result of our hierarchical

clustering.

import matplotlib.pyplot as plt

dendrogram(X_link, truncate_mode = ’lastp’,\

p=15, show_contracted = True)

plt.show()

Finally, we can obtain the labels that the hierarchical

clustering generates. This can be done with fcluster, which The fcluster function lets us

truncate the dendrogram and

assign labels to our data points.
takes a threshold corresponding in this case to the distance

where we want to truncate our dendrogram. From Figure

7.2 we can see that at a height lower than 10 we have three

distinct clusters. Let us then pick a threshold of 9 and use

that with in fcluster:

The array clusters contains the

labels 1, 2, or 3 assigned to our

data points.

from scipy.cluster.hierarchy import fcluster

max_d = 9

clusters = fcluster(X_link, max_d,\

criterion=’distance’)

An alternative way of choosing the threshold can be done

with the inconsistency measure. It compares the height h

of each cluster merge to the average, and normalises the

difference to the standard deviation:

data science and analytics with python 249

from scipy.cluster.hierarchy import inconsistent

depth = 6

incons_measure = inconsistent(X_link, depth)

The matrix returned by inconsistent contains the average,

An alternative way to choose the

threshold is with the use of the

inconsistency measure.

standard deviation, count and inconsistency for each merge.

We can use this measure to obtain our clusters. However,

this method has a high reliance on having choosing the

right parameters for threshold and depth:

The inconsistency measure can

also be used to obtain our labels.

clusters_incons = fcluster(X_link, t=8,\

criterion=’inconsistent’, depth=15)

7.2 Decision Trees

Continuing with the inspiration provided by trees,

in this section we are going to explore one of the most well-

known classification algorithms, and one that is actually

named after its botanical counterpart. A decision tree is an Decision trees are among the

most well-known classification

algorithms.
algorithm described as non-parametrical because it does not

require us to make any assumptions about parameters or

distributions before starting our classification task. It is also

a hierarchical technique: The model is built in such a way

that a sequence of ordered decisions about the values of the Think of these decisions as

questions regarding the data.data features results in assigning a class label to any given

data instance.

You may be asking yourself how to recognise a decision tree, You will surely recognise a tree,

even from a very long way away.even from a very long way away. Well, you will be happy

to know that a decision tree is probably better known by its

250 j. rogel-salazar

diagrammatic representation, where rules guide us through

the chart to decide a final outcome. The tree structure A decision tree is a type of a

directed acyclic graph.consists of nodes and edges, where the nodes represent

the test conditions or questions we need to consider for

classifying our data. The edges represent the answers or

outcomes to the questions we are asking.

A good tree must have a solid root, and a decision tree is Even a larch has a root.

no exception. We have a root node which is the node that

has no incoming edges, and two or more outgoing edges.

An internal node has one incoming edge and two or more And as such, our decision trees

have roots, as well as branches and

even leaves.
outgoing ones: Internal nodes represent test conditions

at every given level. Finally a leaf node has one incoming

edge an no outgoing ones; leaf nodes correspond to class

labels, as there are no further outcomes.

In Chapter 2 we created a Pandas dataframe for some

animals, we detailed the number of limbs and dietary habits Let us revisit our first Pandas

dataframe from Chapter 2.in Table 2.4. Let us expand the information by adding a

column that labels the data. We show this in Table 7.1 and

we will use this information to construct our first decision

tree.

Animal Limbs Herbivore Class

Python 0 No Reptile
Iberian Lynx 4 No Mammal
Giant Panda 4 Yes Mammal
Field Mouse 4 Yes Mammal
Octopus 8 No Mollusc

Table 7.1: Dietary habits and
number of limbs for some animals.

It is possible to evaluate all possible combinations of the

test conditions for a given dataset and construct all possible

data science and analytics with python 251

decision trees from there. For example, we can start by

considering as our root node the test of whether or not the We start here by asking whether

the animal in question is a

herbivore or not. Then we ask

about the number of limbs, and so

on.

animal is a herbivore. We can continue by asking how many

limbs the animal has, and so on. The result is the decision

tree shown in Figure 7.3. Note that we could have started

by asking first if the animal has 4 limbs or not. This would

have resulted in having immediately a leaf node where all

the mammals in our dataset get classified in one go.

Figure 7.3: A simple decision tree
built with information from Table
7.1.

It stands to reason that constructing all possible decision

trees is not a very practical thing to do. Instead, we are

interested in applying a greedy algorithm that lets us find a

local optimum to solve our classification problem in a much

faster way.

252 j. rogel-salazar

One possibility is the application of Hunt’s algorithm3, 3 Hunt, E. B., J. Marin, and P. J.
Stone (1966). Experiments in
induction. New York: Academic
Press

which grows a decision tree in a top-down fashion by

recursively splitting the dataset into smaller and smaller

data subsets. The aim is to minimise the cost of the

classification task: On the one hand taking into account the

misclassification of a data instance, and on the other one

determining the value of a feature exhibited by the data

instance.

Selecting smaller subsets of data is an easy thing to do.

However, we require smaller subsets that actually lead

to leaf nodes that let us classify data instances accurately. Not only is it necessary to select

smaller subsets, but also they

need to lead to a more accurate

classification.

With that in mind, we therefore need a measure to partition

our dataset at every node. That measure is called purity:

A partition is said to be 100% pure if all of the the data

instances in the subset belong to the same class and this

means that it is not necessary to split the data any further. A partition is 100% pure if all its

data points belong to the same

class.
This would have been the case in our example above, using

Table 7.1, if we had started splitting the data by the number

of limbs: animals described in that table as having 4 limbs

are all mammals.

For a binary classification problem with classes A and B,

and a dataset with Nn data instances at node n, Hunt’s

algorithm proceeds as follows:

1. If node nis pure, in other words, all its data instances Nn

belong to class A, we are done as we effectively have a

leaf node for class A

2. If node n is not pure, we need to split the dataset further.

We need to create a test condition that enables a partition

Hunt’s algorithm in a few simple

steps.

data science and analytics with python 253

in the dataset. This means that the node becomes an

internal node

3. We run the test condition and assign each of the instances

Nn to one of the two child nodes created from node n

4. These steps are applied recursively to each and every

child node

Step 2 above indicates that we need to create a test

condition. We prefer a condition that gives us the best split

in terms of purity for each of the child nodes. In other The test condition we need should

give us the best split in terms of

purity.
words, the larger the purity the better our classification. We

need to compare the impurity of the parent node with the

impurity of each of the child nodes generated after splitting

our data.

With a total of c classes, let us denote the fraction of records

that belong to class i at a given node n as p(i|n). Some

popular measures of impurity include the following:

A typical measure used is the

entropy.

• Entropy:

H(n) = −
c

∑
i=1

p(i|n) log2 p(i|n). (7.1)

The entropy of a pure node is zero as log2(1) = 0. It

reaches is maximum when all classes have equal

proportions and in the particular case of a binary

classifier the maximum is 1.

• Gini impurity:

The Gini impurity is also widely

used.G(n) = 1−
c

∑
i=1

p2(i|n). (7.2)

254 j. rogel-salazar

The Gini impurity of a pure node is zero. As it is the case

for the entropy measure, the Gini impurity has a

maximum value of 1 when all classes have equal

proportions. The values of the Gini impurity range

between 0 and 1 irrespective of the number of classes

involved.

Figure 7.4: A comparison of
impurity measures we can use for
a binary classification problem.• Classification error:

Classification error.E(n) = 1−max
i

p(i|n). (7.3)

Once again, the classification error for a pure node is

zero. Its values range between 0 and 1.

Figure 7.4 shows the behaviour of the impurity measures

described above.

data science and analytics with python 255

With any of the impurity functions I(n) mentioned above,

we are now in a position to compare the purity of the parent

and children nodes with the gain:

The gain enables us to compare

the purity of the parent and

children nodes.

∆ = I(parent)− ∑
children

Nj

N
I(j-th child). (7.4)

When the impurity measure employed is the entropy, the

gain is actually called the information gain.

Decision tree algorithms are not exempt from overfitting

and the worst case scenario would be one where we end

up with a number of leaves equal to the number of data

instances. We can restrict our tree growth to binary splits Decision trees are not exempt

from overfitting.exclusively (CART algorithm) or by imposing a penalty

on the number of outcomes (C4.5 algorithm). A popular

regularisation employed is the gain ratio, which takes into

account the entropy of the distribution of data instances into

the children nodes:

The gain ratio is a popular

regularisation technique employed

with decision trees.
GR =

∆in f o

−∑
Nj
N log2

(Nj
N

) . (7.5)

The gain ratio reduces the bias towards multi-valued

features as it considers the number and size of nodes when

choosing a feature for splitting our data.

Overfitting can also be avoided by determining criteria that

stop us from continuing splitting of our data. A trivial

example is the case when all the data instances in a node

belong to the same class. We can set a minimum threshold Pre-pruning our tree consists on

setting a minimum threshold on

the gain.
on the gain and stop when the information on a branch

becomes unreliable as we are no longer achieving a gain

256 j. rogel-salazar

above the threshold imposed. In this case we are pre-pruning

our tree and although it prevents overfitting, its calibration

is not straightforward and may also stop growth

prematurely.

An alternative is to work on a fully grown tree and apply

post-pruning. We effectively examine the tree bottom-up
Post-pruning our tree is another

alternative.

and simplify subtrees either by replacing them with a

single node (subtree replacement) or with a simpler subtree

(subtree raising).

7.2.1 Decision Trees in Action

The Titanic and its fateful maiden voyage from

Southampton, England to New York City, US is well-known

to all of us. Famous even before sailing, the vessel was

effectively a floating city, and Her passengers came from all We are all familiar with the fateful

maiden voyage of the Titanic.backgrounds in society: From the wealthy elite to hopeful

immigrants looking to start afresh in America. On the night

of April 14th, 1912 the Titanic struck an iceberg, ultimately

sinking the vessel. The Titanic sent distress signals by

telegraph and, although there were other ships nearby, no

assistance was promptly provided.

Using information about passengers of the Titanic, we are

interested in building a model based on a decision tree to

say something about the chances of surviving the disaster.

The data we are going to use can be obtained from the

Kaggle competition “Titanic: Machine learning from Disaster”4 4 Kaggle (2012). Titanic: Machine
Learning from Disaster. https:

//www.kaggle.com/c/titanicat the following URL: https://www.kaggle.com/c/titanic.

http://www.kaggle.com/c/titanic
http://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic

data science and analytics with python 257

The training data provided contains 891 records with the

following attributes:

• Survived: 0= No; 1 = Yes

• Pclass: Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

• Name: Passenger name The attributes in the Titanic

dataset.
• Sex: (female; male)

• Age: Passenger age

• SibSp: Number of Siblings/Spouses Aboard

• Parch: Number of Parents/Children Aboard

• Ticket:Ticket Number

• Fare: Passenger Fare

• Cabin: Cabin

• Embarked: Port of Embarkation (C = Cherbourg; Q =

Queenstown; S = Southampton)

Let us load the data into a Pandas dataframe and get rid of There is some missing data in the

dataset.some information that is incomplete. In this case, we will

ignore the Ticket and Cabin columns, and drop instances

without values in the rest of the dataframe:

In this case we are dropping the

Ticket and Cabin columns, as well

as records with missing data.

titanic = pd.read_csv(u’./Data/train.csv’)

titanic = titanic.drop([’Ticket’,’Cabin’], axis=1)

titanic = titanic.dropna()

These transformations leave us with 712 data instances to

work with.

258 j. rogel-salazar

There is some extra information that may help us navigate No pun intended...

the use of the various attributes in the dataset. Famously,

the ship did not have enough lifeboats for all the crew

and passengers. Furthermore, the lifeboats used were Let us perform some basic

exploratory analysis.not used at full capacity. Passengers in the upper classes

were the first to be helped out, leaving the rest to fend for

themselves.

We can assume that the old adage of “Women and children

first” may have applied. With that in mind, let us perform

some data exploration and see the percentage of passengers

who survived the disaster, categorised by travelling class

and gender:

We first construct a cross-

tabulation of the travel class v

survival with crosstab.

We can use Pandas to calculate the

percentage of survivors per class.

What about the percentage of

survivors per gender?

Pclas_pct =\

pd.crosstab(titanic.Pclass.astype(’category’),\

titanic.Survived.astype(’category’),\

margins=True)

Pclas_pct[’Percent’] =\

Pclas_pct[1]/(Pclas_pct[0]+Pclas_pct[1])

Sex_pct =\

pd.crosstab(titanic.Sex.astype(’category’),\

titanic.Survived.astype(’category’),\

margins=True)

Sex_pct[’Percent’] = \

Sex_pct[1]/(Sex_pct[0]+Sex_pct[1])

data science and analytics with python 259

Let us now look at the numbers:

> print(Pclas_pct[’Percent’], Sex_pct[’Percent’])

Pclass

1.0 0.652174

2.0 0.479769

3.0 0.239437

All 0.404494

Name: Percent, dtype: float64

Sex

female 0.752896

male 0.205298

All 0.404494

Name: Percent, dtype: float64

We can see from the data provided that about 65% of

We can now take a look at the

percentages calculated above.

passengers travelling in 1st class, compared to only 23% of A more thorough data exploration

analysis can be done. Go ahead,

give it a go!
those traveling in 3rd class. In terms of gender, 75% of

female passangers survived, compared to only 20% of males.

In other words, you had a better chance of surviving if you

were a female passenger travelling in 1st class

accommodation.

For our modelling we will use a subset of the features

provided and concentrate on three things: Class, gender

and age. Remember that Scikit-learn only accepts numerical Remember that Pandas only

takes numerical values. We need

to encode categorical values

appropriately.

values as data, and in this case the Sex feature is given

as text, i.e “female” and “male”. Let us pre-process our

data with Pandas to obtain dummy variables to encode the

information in numerical labels:

260 j. rogel-salazar

titanic = pd.concat([titanic,\

pd.get_dummies(titanic[’Sex’])], axis=1)

This appends two columns to our dataframe, one called

The get_dummies function lets us

do this very easily.

female and the other one called male, indicating the values

with 0 or 1.

We are now ready to start our modelling. Scikit-learn

provides a decision tree model in DecisionTreeClassifier, We are making use of the

DecisionTreeClassifier

algorithm implemented in Scikit-

learn.

accepting various parameters such as the impurity criterion

taking values such as entropy and gini. We can also affect

the pruning with parameters such as max_depth and

min_samples_leaf, the former determines the the maximum

depth (levels) of the tree, whereas the latter determines the

minimum number of data instances required to split an

internal node.

Let us use GridSearchCV to determine the best values of the

maximum depth and minimum number of samples. We

start by splitting our data into training and testing:

Let us split our data into training

and testing. Notice that we are

only including the column female

as a 0 here implies a 1 in the male

column.

X = titanic[[’Pclass’,’Age’,’female’]]

Y = titanic[’Survived’]

import sklearn.model_selection as ms

XTrain, XTest, YTrain, YTest =\

ms.train_test_split(X, Y,\

test_size= 0.3, random_state=1)

data science and analytics with python 261

We can now define the values over which our search will be

performed, and instantiate our decision tree model to use

entropy as the impurity measure:

We will perform our parameter

search over the depth of the tree

and the threshold of data for node

splitting.

Finally, we instantiate our model

using entropy for the impurity

criterion.

depth_val = np.arange(2,11)

leaf_val = np.arange(1,31, step=9)

from sklearn import tree

grid_s = [{’max_depth’: depth_val,\

’min_samples_leaf’: leaf_val}]

model = tree.DecisionTreeClassifier(criterion=\

’entropy’)

It is possible now to run our search and use the best

parameters found:

from sklearn.model_selection import GridSearchCV

cv_tree = GridSearchCV(estimator=model,\

param_grid=grid_s,\

cv=ms.KFold(n_splits=10))

cv_tree.fit(XTrain, YTrain)

best_depth = cv_tree.best_params_[’max_depth’]

best_min_samples = cv_tree.\

best_params_[’min_samples_leaf’]

262 j. rogel-salazar

Figure 7.5: Heatmap of mean
cross-validation scores for the
decision tree classification of the
Titanic passengers for different
values of maximum depth and
minimum sample leaf.

In this case the parameters turned out to be 3 for the

maximum depth and 1 for the minimum number of data

instances. We show a heatmap of the classification score in

Figure 7.5. Let us now apply our model to the testing subset

we created above:

This is the moment of truth, we

will apply our model to the testing

subset and see how it performs.

model = tree.DecisionTreeClassifier(\

criterion=’entropy’,\

max_depth=best_depth,\

min_samples_leaf=best_min_samples)

TitanicTree = model.fit(XTrain, YTrain)

survive_pred = TitanicTree.predict(XTest)

survive_proba = TitanicTree.predict_proba(XTest)

data science and analytics with python 263

The confusion matrix we obtain from our model above is as

follows:

We can take a look at the

confusion matrix for this classifier.

> from sklearn import metrics

> metrics.confusion_matrix(YTest, survive_pred)

array([[104, 22],

[23, 65]])

The score obtained is:

As well as the overall score on the

testing dataset.

> print(TitanicTree.score(XTest, YTest))

0.789719626168

Scikit-learn enables us to generate a Graphviz visualisation Graphviz is an open source graph

visualisation software. You need

a separate install to visualise the

tree.

of the tree we have generated with the export_graphviz

method in tree. We show our tree in Figure 7.6.

This code will generate a .dot

file that can be visualised with

Graphviz.

tree.export_graphviz(TitanicTree,\

out_file=’TitanicTree.dot’,\

max_depth=3, feature_names=X.columns,\

class_names=[’Dead’,’Survived’])

Finally, we can apply our model to the hold-out data In this case we are using the

Kaggle dataset as a holdout. Our

model has not seen this dataset at

all yet.

provided by the test dataset from the Kaggle competition.

We need to preprocess our data first as we did for the

training dataset:

264 j. rogel-salazar

Figure 7.6: Decision tree for the
Titanic passengers dataset.

titanic_test = pd.read_csv(u’./Data/test.csv’)

titanic_test = titanic_test.drop([’Ticket’,\

’Cabin’], axis=1)

titanic_test =titanic_test.dropna()

titanic_test = pd.concat([titanic_test,\

pd.get_dummies(titanic_test[’Sex’])], axis=1)

Now we finish with obtaining our predictions:

We need to apply the same

transformations we performed on

the training set.

Finally, we run our model on the

holdout dataset.

X_holdout = titanic_test[[’Pclass’,’Age’,\

’female’]]

survive_holdout = TitanicTree.predict(X_holdout)

data science and analytics with python 265

7.3 Ensemble Techniques

Many of us may have encountered in our travels the

enticing competition of guessing the number of jelly beans,

candy or coins in a jar. It is an easy one to grasp: All you

have to do is provide your estimate of the number, leave

your details and, if you get it right, you are awarded a

prize together with a lifetime of newsletters to your inbox.

This sort of competition has been running for quite a long

time, but not many of us stop to consider the statistical

implications of the estimates provided. Not unless you are

Francis Galton.

Yes, the same Francis Galton of

regression fame we discussed in

Chapter 4.

In a county fair held at Plymouth, England, Galton

encountered a version of the competition above, but instead

of jelly beans, the contestants had to guess the weight of a

fat ox5. He reports that the average guess of 1, 207 lbs 5 Galton, F. (1907). Vox populi.
Nature 75(1949), 450–451

among 800 contestants is actually rather close to the actual

weight of said ox (1, 198 lbs). He remarked that the

middlemost estimate expresses the vox populi. These days

we refer to it as the “wisdom of crowds”.

One single estimate of the weight of the ox (or the number

of coins in the jar) may not be accurate or even close to the

real value. However, when taking into account a diversity of

independent opinions and aggregating them, the estimate

becomes more accurate. Of course the wisdom of crowds is

not infallible but it is worth considering. In fact we do this

Simply take a look at panicked

investors in a bursting bubble

market.

when seeking a second or even third opinion on medical

diagnostics. Furthermore, citizen science projects such as

266 j. rogel-salazar

Zooniverse6 and Fold-it7 have demonstrated that the 6 Zooniverse. Projects. https:

//www.zooniverse.org/projects
7 Fold-it. Solve puzzles for science.
https://fold.it/portal/

collaboration of the general public and nonprofessional

amateurs provides an invaluable contribution to the

scientific endeavour.

A similar effect has been successfully shown when

combining classifiers in machine learning. We call these

combinations ensemble techniques. In that respect, an

ensemble is a set of individually trained base classifiers, An ensemble is a set of

individually trained classifiers

whose predictions are combined.
such as decision trees, whose predictions are combined to

determine the class of unseen data. As in the example of the

ox investigated by Galton, the results obtained from an

ensemble are generally more accurate than those of the

individual classifiers.

The base classifiers can be any algorithm that provides us

with a result that is slightly better than random guessing

and hence is referred to as a weak learner. For a binary

classifier, a weak learner will provide us with a function Classifiers can be categorised into

weak and strong learners.that correctly classifies a record with at least a probability
1
2 + ε, with a small and positive value for ε. In contrast, a

strong learner provides us with a very successful algorithm

to classify our records.

Our task is to find a way to aggregate the results provided

by our weak learners and obtain a strong one. Nonetheless, We aim to combine weak learners

and get a strong one.in order for the ensemble classifier to be strong, and

therefore outperform a weak base classifier, we need the

base classifiers be accurate and they must show diversity in

Base classifiers must outperform

random guessing.

their misclassifications, in other words, their classification

errors must occur on different training records. The

http://www.zooniverse.org/projects
https://fold.it/portal/
http://www.zooniverse.org/projects

data science and analytics with python 267

accuracy requirement indicates the low bias of the model,

whereas diversity suggests that the weak learners are

uncorrelated. For these reasons, a decision tree is the A decision tree is a classic example

of a weak learner.epitome of a base classifier: The flexibility provided by the

number of labels that we can take into account when

growing our tree, for example, enables us to generate

various base classifiers.

Let us consider the advantages that are provided by an

ensemble classifier in terms of a supervised learning task.

We are interested in making accurate predictions of the

true class of new data by learning the classifier h. If our An ensemble classifier can help by

averaging out the predictions of

the individual base learners.
training data is small, the base classifier on its own will find

it difficult to converge to h. An ensemble classifier can help

by “averaging out” the predictions of the individual base

classifiers, improving convergence.

There are also advantages in terms of computation: An

exhaustive search over all possible classifiers is a hard

problem. In this case, even with enough data at our This is why we used a heuristic in

Section 7.2 to grow our decision

trees.
disposal, finding the best h is difficult. The use of an

ensemble made out of several base classifiers with different

starting conditions can help with our search.

Finally, a single base classifier may provide a classification

function that does not adapt very well to the actual h. A

good example is the canonical decision tree, whose decision A single base classifier may not

provide a good approximation

to the actual decision boundary.

Instead, an ensemble can provide

a better approximation.

boundaries are given by rectilinear partions of the feature

space, as shown in Figure 7.7.a). In this case, if the true

boundary is given by a diagonal line, we would need our

base classifier to provide an infinitely large number of

268 j. rogel-salazar

a) b)

Class	A	

Class B

Figure 7.7: Decision boundaries
provided by a) a single decision
tree, and b) by several decision
trees. The combination of the
boundaries in b) can provide a
better approximation to the true
diagonal boundary.

segments. However, the ensemble classifier can provide a

good approximation to the boundary, as can be seen from

Figure 7.7.b).

The idea of aggregating base classifiers is quite straight

forward. Given an initial training dataset, we need to build

a set of base classifiers. Each of these n classifiers need to be

trained with appropriate data. A way to do this is shown

diagrammatically in Figure 7.8, where the initial training Our training data is used to create

multiple datasets to train the base

classifiers.
data is used to create multiple datasets according to a given

sampling distribution. This distribution determines how

likely we are to select a particular record for training. Each

of these datasets is used to train weak learners to predict the

class of unseen data, and finally the models are aggregated.

The ensemble classifier can be constructed by applying

different mechanisms. For instance, we can manipulate There are different ways to

construct our ensemble.a) the training set, b) the class labels, or c) the learning

algorithm. We shall talk about these mechanisms in more

data science and analytics with python 269

Training
Data

Set 1

Set 2

Set n

… …

Classif. n

Ensemble

Classif. 2

Classif. 1

Figure 7.8: A diagrammatic view
of the idea of constructing an
ensemble classifier.detail. First, let us get a clearer picture of how ensemble

methods achieve better results than a single base classifier.

Let us consider a binary classification task with labels A and

B. We have total of 10 new data records whose true label is

A for all of them. We build three classifiers whose accuracy

is 60%. We obtain the predicted labels returned by each of

the three classifiers and take a majority vote of the labels to

construct our ensemble. An instance of results is given in

Table 7.2.

Classifier Predicted Class

1 A B A A B B A B A A
2 B A A A A A B A B B
3 A B A B A B A B A A

Ensemble A B A A A B A B A A

Table 7.2: Predicted classes of
three hypothetical binary base
classifiers and the ensemble
generated by majority voting.

270 j. rogel-salazar

In the particular example we show in Table 7.2, the majority

vote has boosted the accuracy to 70%. All in all, for a

majority vote with the three classifiers above we expect the

following outcomes:

• All three classifiers are wrong: (1− 0.6)3 = 0.43 = 0.064

• Two classifiers are wrong: 3(0.6)(0.4)2 = 0.288 Expected outcomes of the

ensemble considered in Table

7.2.• Two classifiers are correct 3(0.6)2(0.4) = 0.432

• All three classifiers are correct: 0.63 = 0.216

As we can see, in about 43% of the cases the majority vote

provides the correct label. From the figures above, the

ensemble will be correct about 64% of the time (43% + 21%), Using a larger number of base

classifiers provide a better result.performing better than the 60% of a single base classifier.

Using a larger number of classifiers will provide a better

classification.

We have mentioned above that correlation among the

classifiers has an impact on the ensemble. Let us show some

empirical examples: If all of our three classifiers have

correlated outcomes we may see no improvement. Consider Classifiers with correlated

outcomes may show no

improvement.
the outcomes shown in Table 7.3 where classifiers 2 and 3

have an accuracy of 70% and are highly correlated in their

predictions. The ensemble shows no real improvement

when taking the majority vote (70%).

Let us now compare the result above with that of three In contrast, uncorrelated outcomes

in the classifiers may show an

improved accuracy.
classifiers that have very different performances and with

uncorrelated results as shown in Table 7.4. As we can see,

the ensemble with a majority vote achieves in this case an

accuracy of 90%.

data science and analytics with python 271

Classifier Predicted Class

1 (Accuracy 80%) A A A A A B A B A A
2 (Accuracy 70%) B A A A A A B A A B
3 (Accuracy 70%) B A A A A A B A A B

Ensemble B A A A A A B A A B

Table 7.3: Predicted classes of
three hypothetical binary base
classifiers with high correlation in
their predictions.

Classifier Predicted Class

1 (Accuracy 80%) A A A A A B A B A A
2 (Accuracy 60%) A B A B B A B A A A
3 (Accuracy 70%) B A A A A A B A A B

Ensemble A A A A A A B A A A

Table 7.4: Predicted classes of
three hypothetical binary base
classifiers with low correlation in
their predictions.

In the examples above we have used a simple majority

voting to decide the outcome for the ensemble. In the

following sections we discuss some of the different ways in

which we can construct our ensemble classifier.

7.3.1 Bagging

Bagging stands for bootstrap aggregation and it

is an ensemble technique that involves the manipulation of

the training dataset by resampling. Given an initial training

Bagging stands for bootstrap

aggregation.

dataset with N records, in bagging we create multiple

training datasets of size N, by sampling uniformly with

replacement. This means that some records may be picked
Note that in bagging some records

may appear more than once in the

engineered datasets.
more than one time during the process, and some may not

even appear at all.

272 j. rogel-salazar

We build classifiers on each bootstrap sample and take a

majority vote across the classifiers. Since some of the newly Similarly, some data points may be

missing altogether, giving rise to a

collection of weak learners.
created datasets may contain repeated instances of the data,

as well as missing some records altogether, we end up with

a situation where some classifiers will have an error rate

higher than a classifier that uses all the raw data.

Nonetheless, as we have seen in the example shown in

Table 7.4, when combining these classifiers we may have a

result with an accuracy that is better than that of a single

classifier on its own. Breiman has shown8 that bagging is 8 Breiman, L. (1996). Bagging
predictors. Machine Learning 24(2),
123–140

an effective methodology on learning algorithms where

small changes in the training set have large impacts in the

resulting predictions. These algorithms are called “unstable”

and some typical examples include decision trees or neural

networks.

The increased accuracy from bagging comes from the

reduction in the variance of the individual classifier,

improving therefore our generalisation error. If the The increased accuracy from

bagging comes from a reduction in

the variance of the single classifier.
classifiers are stable, the error incurred comes mainly from

their bias and bagging may not be effective. Since we are

resampling the data with replacement, bagging does not

focus on particular data instances of the training data. This

means that we are less prone to overfitting.

7.3.2 Boosting

From the methodology used in bagging we now know

that specific data records are not given any preferential

treatment. However, it is worth considering changes that

data science and analytics with python 273

we can implement if we wanted to focus our attention

Boosting is an iterative method

that adapts data sampling to focus

on misclassified records.

on specific particular records in the training dataset. A

possibility is to change the sampling distribution of the

training records. Boosting can be described as an iterative

methodology that adapts the sampling of the data in order

to concentrate on records that have been misclassified in

previous iterations.

In the initial iteration we start with a uniform distribution We start in the same way we did

for bagging.assigning equal weights to our N records. At the end of the

first round we change the weights to emphasise those

records that were misclassified. In that way, boosting

produces a series of classifiers whose inputs are chosen Boosting produces a series of

classifiers with inputs based

on the outcome of the previous

family of classifiers.

based on the performance of the previous family of

classifiers in the series. The final prediction of the series is

computed by a weighted vote, depending on the training

errors of the individual base classifiers.

Boosting is aimed at building, with each iteration, classifiers

that are better at predicting the label of a data instance than

the classifiers in the previous iteration. The sampling is We use sampling with

replacement.done with replacement and we may encounter situations

were some particular records do not show in a given

training subset. This is not a problem as these overlooked

records are more likely to be misclassified and as a result Overlooked records are more

likely to be misclassified. This is

corrected in later iterations as the

weight of these instances will be

higher.

they will be given a higher weight in later iterations, forcing

the ensemble to correct for these mistakes. We can see that

on each iteration, the base classifiers will concentrate on

records that are harder and harder to classify, facing more

difficult learning tasks as the task progresses.

274 j. rogel-salazar

A popular implementation of boosting is the Ada-Boost

algorithm9, or adaptive boosting. It uses either the approach 9 Freund, Y. and R. Schapire
(1997). A decision-theoretic
generalization of on-line learning
and an application to boosting.
J. Comp. and Sys. Sciences 55(1),
119–139

of selecting a set of data points based on the probability of

the instances themselves, or by using all the data instances

and weighting the error of each instance by its own

probability. Ada-Boost is a fast algorithm with no

parameters to tune, except for the number of iterations.

Nonetheless, if the base classifiers are complex, Ada-Boost

may lead to overfitting. Remember that Ada-Boost may be

susceptible to noise.

7.3.3 Random Forests

A single tree provides a good shade, but the canopy Difficult to beat a group of trees

for shade.of a group of trees is difficult to beat. If we grow a group

of various decision trees as our base classifiers, and enable

their growth to use a random effect we end up with a

random forest10. We have seen that bagging produces better 10 Breiman, L. (2001). Random
forests. Machine Learning 45(1),
5–32

results than a single base classifier. If the base classifier is

for instance a decision tree, the various trees we generate

with bagging have different predictions because they use

different training sets.

If we were to introduce changes in the way our trees are

grown, for example by randomly selecting not only the

data instances that are included in each subset, but also

by randomly selecting the features to use, we can get base Not only do we randomly select

data instances, but also the

features used to grow our trees.
classifiers that are uncorrelated with each other. In effect,

random forests add a layer of randomness to bagging with

decision trees: On top of growing each tree using each

data science and analytics with python 275

bootstrap sample, in a random forest each node of the

tree is split among a subset of randomly chosen features. The result is a robust classifier.

The result is a classifier that performs very well and is

robust to overfitting. A random forest algorithm is very

straightforward to understand as it only has two parameters:

1) the number of features in the random subset at each We have two parameters in a

random forest:

• Number of features at each

node

• Number of trees in the forest

node, and 2) the number of trees in the forest. The simplest

forest we can grow consists of selecting at each node a small

number of features to perform the split. We then simply

allow the trees to grow to maximum size without pruning.

This methodology is known as Forest-RI or Random Input

selection.

In cases where there is a small number of features, it is

possible to create new features by taking random linear

combinations of the existing ones. These new features are We can grow the trees by random

input selection or by random

feature combinations.
then used to grow the trees. This process is called Forest-

RC or Random Combinations. If instead we have a large

number of predictors we have to bear in mind that the

available feature set will be very different from one node to

the next.

We can go one step forward in our inclusion of randomness

into the growth of our trees and instead of simply picking

the best split among the chosen features at a node, the

thresholds for the split are selected at random for each

chosen feature. The best of these randomly-generated

thresholds becomes the rule for splitting. These type of

random forests are known as extremely randomised trees11. As 11 Geurts, P., D. Ernst, and
L. Wehenkel (2006). Extremely
randomized trees. Machine
Learning 63, 3–42

with any of the other ensemble techniques we have outlined,

the greater the correlation among the trees we grow, the

276 j. rogel-salazar

greater the random forest error rate. We would therefore

prefer trees that are uncorrelated among themselves. Remember that we prefer

uncorrelated base classifiers.Running a random forest algorithm is fast, having the

advantage of being robust against unbalanced or even

missing data. However, with datasets that are particularly

noisy, they tend to overfit.

7.3.4 Stacking and Blending

Apart from the ensemble techniques discussed above,

there are other methodologies that can be explored. A way

to combine multiple base classifiers of different kind, known

as stacked generalisation, has been proposed by Wolpert.12 12 Wolpert, D. H. (1992).
Stacked generalization. Neural
Networks 5(2), 241–259

Some of the steps applied in stacked generalisation are the

same as those in cross-validation: For a 2-fold case, we need

to split our training data into two disjoint parts. We first See our discussion of cross-

validation in Section 3.12.train the base classifiers on the first part, and test them on

the second one. We use the predictions from the last step as

inputs for training a higher level learner.

An alternative name for stacking is blending and the word Blending is another altenative.

was made popular by the winners of the famous Netflix

Prize Competition to improve the accuracy of

recommendations provided by Netflix, based on customer

film preferences13. Sometimes a distinction between the two 13 Töscher, A. and M. Jahrer
(2009). The BigChaos solution
to the Netflix grand prize. http:

//www.netflixprize.com/assets/

GrandPrize2009_BPC_BigChaos.

pdf

is introduced: In blending we create a small holdout set out

of the training set, and the stacker model is trained on the

holdout set. In general, blending is a simpler methodology

than stacking, but less data is actually used. Please note that

the stacker may overfit to the holdout set.

http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf

data science and analytics with python 277

7.4 Ensemble Techniques in Action

Let us now turn our attention to the Scikit-learn

implementation of the various ensemble techniques we have We will continue using the Titanic

dataset.covered. We will continue working with the Titanic dataset

we used in Section 7.1.1.

We will apply the same pre-processing steps to the training

set as we did before, but this time we are going to add more We apply the same pre-processing

as before.variables, including the port of embarkation. This feature

will need to be transformed in order to obtain dummy

variables to encode the three categories:

• Cherbourg: C
These are the three levels for the

port of embarkation.• Queenstown: Q

• Southampton: S

For completeness, let us detail the steps again:

These steps are similar to those

applied in Section 7.2.1.

We need to encode the port of

embarkation.

titanic = pd.read_csv(u’./Data/train.csv’)

titanic = titanic.drop([’Ticket’,’Cabin’], axis=1)

titanic = titanic.dropna()

titanic = pd.concat([titanic,\

pd.get_dummies(titanic[’Sex’])], axis=1)

titanic = pd.concat([titanic,\

pd.get_dummies(titanic[’Embarked’])], axis=1)

278 j. rogel-salazar

Let us split our dataset into training and testing. We will

use the former to train various models, and the latter for

evaluation:

We construct a matrix with the

required features.

We then create our training and

testing datasets.

import sklearn.model_selection as ms

X = titanic[[’Pclass’,’Age’,’female’,’SibSp’,\

’Parch’,’Fare’,’S’,’C’,’Q’]]

Y = titanic[’Survived’]

XTrain, XTest, YTrain, YTest =\

ms.train_test_split(X, Y,\

test_size= 0.2, random_state=42)

We are interested in employing a variety of ensemble

methods implemented in Scikit-learn, namely:

• Bagging: BaggingClassifier()

• Boosting: AdaBoostClassifier()

• Random Forests: RandomForestClassifier()

• Extremely Randomised Trees: ExtraTreesClassifier()

These ensemble techniques in Scikit-learn accept a

parameter called base_estimator that determines the base The parameter base_estimator

determines the base classifier.classifier to be used in modelling. By default, the base

classifier is taken to be a decision tree, such as

DecisionTreeClassifier, which we have discussed in

Section 7.2. They also take a parameter that determines the The number of base classifiers to

use is given by n_estimators.total number of base classifiers to be used, namely

n_estimators.

data science and analytics with python 279

Let us import the relevant modules we will use:

We will use a decision tree as our

base classifier.

We will use implementations

for Ada-Boost, Bagging,

Random Forests and Extremely

Randomised Trees.

from sklearn.metrics import roc_curve

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble.weight_boosting import \

AdaBoostClassifier

from sklearn.ensemble import BaggingClassifier

from sklearn.ensemble.forest import \

(RandomForestClassifier, ExtraTreesClassifier)

We can write a script that considers each of the ensemble

methods above, as well as a standard decision tree to train

a variety of models. Let us prepare the ground for the

script by building objects to hold relevant information. For

example, we define the number of base classifiers as follows:

We will use 100 trees in our

ensembles.
n_estimators = 100

Let us now define a list with the different models we are

going to train:

Then we create a list of models to

be trained.

models = [DecisionTreeClassifier(max_depth=3),\

BaggingClassifier(n_estimators=n_estimators),\

RandomForestClassifier(n_estimators=n_estimators),\

ExtraTreesClassifier(n_estimators=n_estimators),\

AdaBoostClassifier(n_estimators=n_estimators)]

280 j. rogel-salazar

Let us also create a list with the names of the models we are

going to use:

This list will provide an easy way

to identify each of the models.

model_title = [’DecisionTree’, ’Bagging’,\

’RandomForest’, ’ExtraTrees’, ’AdaBoost’]

We also need a suitable structure to keep track of the

predictions, probabilities and scores, as well as the true and

false positive rates and thresholds:

We are initialising six empty lists

that will get populated next.

surv_preds, surv_probs, scores,\

fprs, tprs, thres = ([] for i in range(6))

We can now traverse the models list , and fit each of our

models with the XTrain and YTrain arrays. We can then

proceed to obtain predictions and probabilities using XTest

and YTest:

Let us print the name of the model

being trained.

We proceed to train the model and

calculate the predictions.

Finally we calculate the true and

false positive rates and thresholds.

for i, model in enumerate(models):

print(‘‘Fitting {0}’’.format(model_title[i]))

clf = model.fit(XTrain,YTrain)

surv_preds.append(model.predict(XTest))

surv_probs.append(model.predict_proba(XTest))

scores.append(model.score(XTest, YTest))

fpr, tpr, thresholds = roc_curve(YTest,\

surv_probs[i][:,1])

fprs.append(fpr)

tprs.append(tpr)

thres.append(thresholds)

data science and analytics with python 281

In this case, the scores that we have obtained are as follows:

We can now print the scores

obtained when training each of the

models in question.

> for i, score in enumerate(scores):

print(‘‘{0} with score {1:0.2f}’’.\

format(model_title[i], score))

DecisionTree with score 0.75

Bagging with score 0.73

RandomForest with score 0.76

ExtraTrees with score 0.78

AdaBoost with score 0.81

Notice that we have not performed any k-folding in our

cross validation, and you are encouraged to do so. For the

time being, we can obtain a wider view of the performance

of these models by looking at the ROC.

In Figure 7.9 we have the ROC curves, and their

corresponding AUC scores, obtained with the various

ensemble models used. We can see that all of the models

used perform much better than random guessing (diagonal

dotted line). For the simple splitting we have made, the

ROC curves indicate that the ensemble models also perform

better than the decision tree. Ada-Boost (AUC = 0.83) and Remember that the decision tree is

our base classifier.Random Forest (AUC=0.82) are seen to be better at this

classification task than the rest.

282 j. rogel-salazar

Figure 7.9: ROC curves and their
corresponding AUC scores for
various ensemble techniques
applied to the Titanic training
dataset.

7.5 Summary

The inspiration that trees have provided in the

endeavour of organising and visualising information is

undeniable. Their appeal is palpable in different disciplines

as relevant communication tools, depicting information

about biological species, family relationships, database

schemas or computational algorithms. In this chapter we

have seen how trees have also influenced the data science

arena with algorithms in both supervised and unsupervised

learning thanks to the hierarchical organisation that a tree

provides.

data science and analytics with python 283

In regards to unsupervised learning, we considered

hierarchical clustering. In particular we concentrated in the

description of agglomerative clustering, where we build a

hierarchy from the bottom-up. Starting with data instances

as their own cluster, we successively merge similar clusters

as we go up in the levels of the tree. A way to visualise the

result of hierarchical clustering is with the aid of a

dendrogram. A dendrogram is therefore a tree-like structure

that lets us visualise the clusters obtained with the

algorithm. The length of the clades or branches of the

dendrogram are related to the similarity between clusters.

We also covered the supervised learning task of

classification with the help of decision trees. Decision trees

are well-known tools in areas such as operations research or

decision analysis. Their diagrammatic representation in

terms of rules that guide us through the structure is readily

understood, even without knowing how the tree itself was

constructed. We discussed a heuristic to grow decision trees

without having to construct rules for all the different

combinations of features in our dataset. The key is the

measure of purity before and after data is split by the

application of a rule. We considered the application of

entropy, Gini impurity and classification error as measures

of purity.

Finally, we appealed to the wisdom of base classifiers to

improve on our predictions. Ensembles of these base

classifiers result in more accurate results than those

obtained with a base classifier on its own. These base

classifiers, or weak learners, are required to be more

284 j. rogel-salazar

accurate than random guessing and exhibit diversity in their

misclassifications, as well as being uncorrelated with each

other. Ensemble classifiers can be constructed by

manipulating a) the training dataset, b) the class labels, or c)

the learning algorithm. We finished this chapter with details

about ensemble techniques such as bagging, boosting and

random forests.

285

8

Less is More: Dimensionality Reduction

The dramatic increase in data we have seen in recent

times not only encompasses an explosion in the number

of records, but also in the number of features that describe

our datasets. In Chapter 1 we alluded to the fact that the

richness of the data available to businesses and researchers

provides us with opportunities to make better decisions

based on the data itself. Nonetheless, sometimes the number Learn from Mr Creosote: Even if it

is wafer thin, an extra mint can be

far too much.
of available features can be overwhelming, to the point that

it is difficult to determine what attributes of a dataset are

the most important ones.

We have already discussed the idea behind feature selection See Section 3.6 for a discussion on

feature selection.as a useful tool under our jackalope data scientist belt,

where less is truly more: A careful selection of the features

to be included in our models has a large effect in the

outcomes of many machine learning algorithms, and in Careful selection of features may

have a large effect in our results.some cases may even help in our understanding of the

results obtained. We also saw in Section 4.9 how

regularisation techniques, such as LASSO, provide a way to

286 j. rogel-salazar

perform feature selection in an automatic way, directly as a Remember that LASSO allows

for regression coefficients to be

shrunk down to zero.
result of suitable regularisation measures.

In this chapter we we will discuss Principal Component

Analysis (PCA) and Singular Value Decomposition (SVD)

as ways reducing the number of features in our dataset by

generating combinations of the given attributes with the

purpose of projecting into a lower dimensional space while

maintaining as much information as possible.

8.1 Dimensionality Reduction

In the algorithms and applications we have been

discussing we organise our data in terms of matrices (large

and small). This representation enables us to use linear We have been representing our

data in terms of matrices.algebra to carry out matrix operations and use compact

notations to express our models. For instance, in Section

3.10 we saw how Scikit-learn expects data to be represented

by numeric matrices with M instances (row-by-row) and N

features in the columns.

We can think of the features in our data as the different

dimensions along which our data instances are specified.

We are also aware of the so-called curse of dimensionality, See Section 3.9 for a discussion

about the curse of dimensionality.where the increase in the number of dimensions requires us

to have a much larger number of instances in our datasets.

A way to deal effectively with this problem is by

considering the features that we are including in our models.

A careful selection of these features goes a long way, and Dimensionality reduction is in a

way a form of feature extraction.sometimes appropriate transformations have the advantage

data science and analytics with python 287

of reducing the number of features while conveying as

much useful information as possible. Dimensionality

reduction is thus a form of feature extraction.

In that respect, the process of dimensionality reduction

involves taking datasets represented in large matrices and

finding “narrower” ones that are close to the original matrix. Narrower in the sense that having

less features leads to less columns

in our matrices.
These narrower matrices have a smaller number of columns

and of rows, and in a way are easier to manipulate than the

large matrix we started with. Having fewer dimensions in

our problem may improve generalisation, we gain some Improved generalisation leads to

less chance of overfitting.speed in the running of algorithms and use less storage to

hold the data. In this respect, a good example to bear in

mind is data compression. For instance, in image Image compression is a good

example of dimensionality

reduction.
compression we are interested in reducing the size of the

data while still being able to tell what is depicted. We need

to balance file size with the resolution we want to keep.

The process of finding the “narrower” matrix we are

interested in involves the decomposition our original large

matrix into simpler meaningful pieces. In many cases, the

process involves the calculation of the eigenvalues and Matrix decomposition is an

important step in dimensionality

reduction.
eigenvectors of the original matrix, i.e. eigenvalue

decomposition. It is worth exploring the importance of the

process of eigenvalue decomposition and its meaning.

The mathematician David Hilbert1 was the first person to 1 Hilbert, D. (1904). Grundzüge
einer allgeminen Theorie der
linaren Integralrechnungen. (Erste
Mitteilung). Nachrichten von der
Gesellschaft der Wissenschaften
zu Göttingen, Mathematisch-
Physikalische Klasse, 49–91

use the word eigen in this context. The word comes from the

German language and is a prefix that can be translated as

“proper”, “distinct”, “own” or “particular”. Given an n× n

square matrix A, and a column vector x with n non-zero

288 j. rogel-salazar

elements we can carry out the matrix multiplication Ax. We

can ask the following question: Is there a number λ such

that the multiplication λx gives us the same result as Ax? In

other words:

Ax = λx. (8.1)

If such a number λ exists, then we say that it is an

eigenvalue of the matrix A, and x is one of its eigenvectors. In this context λ is the eigenvalue

of the matrix A.The interest in these quantities comes into place when we

start pondering the application of linear transformations of

the matrix A.

A linear transformation is a function between two vector

spaces that preserves the operations of addition and scalar We can think of linear

transformation as ways to stretch

or rotate an object.
multiplication. In simpler terms, a linear transformation

takes, for example, straight lines into straight lines or to

a single point, and they can be used to elucidate how to

stretch or rotate an object.

The use of eigenvalues and eigenvectors comes into place

as they make linear transformations easier to understand.

Eigenvectors can be seen as the “directions” along which Eigenvectors can be seen as the

direction along which stretching

or flipping is applied.
a linear transformation stretches (or compresses), or flips

an object, whereas eigenvalues are effectively the factors

by which such changes occur. In that way, eigenvalues

characterise important properties of linear transformations,

for example whether a system of linear equations has a

unique solution, and they can also describe the properties of

a mathematical model.

Notice that Equation (8.1) implies that we can recover the

result of the matrix multiplication by multiplying the

data science and analytics with python 289

eigenvalues with the appropriate eigenvectors. Once we This is a much easier operation

as eigenvalues are scalars, i.e.

numbers.
have decomposed our matrix, the pieces can then be used in

the modelling steps of other algorithms. In the case of

dimensionality reduction, the decomposition is usually Dimensionality reduction is a

pre-processing step.applied as a pre-processing step to get a better idea of the

data we are dealing with, and typical examples are in effect

unsupervised learning tasks.

The learning objective of dimensionality reduction is the use

of data in the most meaningful basis possible. This can be Think about this as the more

meaningful coordinates if you

will.
achieved by choosing a subset of features and create new

ones out of them. In an unsupervised manner, we consider

only the data points themselves and not their labels (if Dimensionality reduction is an

unsupervised task.they exist). We look therefore to remove data that is not

informative, enabling us to get better generalisation and

model performance on new data.

For a dataset represented by a matrix B with M records and

N features, we are interested in finding a d-dimensional We are interested in finding

a smaller representation of a

matrix while keeping as much

information as possible.

representation of B, with (d � N) that encapsulates the

information in the original dataset based on particular

criteria. Linear dimensionality reduction is based on the

concept of performing a linear projection of the data as:

b = UTB, (8.2)

where b has dimensionality d and is a projection of the

original matrix B. The projection is obtained with the use of

the N × d matrix U that defines a d-dimensional linear Dimensionality reduction can be

seen as a projection of the original

matrix.
subspace. We end up with different dimensionality

reduction methods depending on the definition of U.

290 j. rogel-salazar

x1

x2

u1

u2

Figure 8.1: A simple illustration
of data dimensionality reduction.
Extracting features {u1, u2} from
the original set {x1, x2} enables
us to represent our data more
efficiently.

Before we enter into further details, let us provide an

illustration of the usage of dimensionality reduction. For

simplicity, let us consider data in a 2-dimensional space

with features {x1, x2} as shown in Figure 8.1. If we were to

carry out feature selection and concentrate only on feature Here we are naïvely reducing the

dimensionality from 2D to 1D.x1, we naïvely would have indeed reduced the

dimensionality of the datase. However, we would need to

ask ourselves whether we have lost meaningful information

by disregarding x2.

In view of the representation given in Figure 8.1 we can see

that the data has substantial variance along both features

x1 and x2. Concentrating only on x1 has the effect of a large

loss of information.

data science and analytics with python 291

Let us now consider a coordinate transformation into the

features {u1, u2} shown in Figure 8.1. These new features

are given as a linear combination of the original set {x1, x2}
such that:

The new features {u1, u2} are

given as a linear combination of

{x1, x2}.

u1 = a1x1 + a2x2, (8.3)

u2 = b1x1 + b2x2. (8.4)

In this new representation, we can concentrate our attention

in the extracted feature u1. In that case, we are indeed

reducing the dimensionality (from 2D to 1D), and most

importantly the information loss incurred by ignoring u2 The information loss by

concentrating only on u1 is much

less than in the previous case.
is much less than in the previous case. This is because the

spread of the data is larger along u1 than along u2. In other

words, there is less variance along the latter feature.

We can now use the new representation of our data and

concentrate only on feature u1. We can also apply other

algorithms: Linear regression, clustering, decision trees, etc.

It is worth emphasising that the new feature u1 is now a Remember that the extracted

feature is a combination of the

original features.
combination of the original features x1 and x2 as shown in

Equation (8.4). Depending on the nature of the data, the

interpretation of the extracted feature u1 may or may not be

straightforward, but there is no doubt that the modelling

part will turn out to be much more efficient.

8.2 Principal Component Analysis

Principal component analysis, or PCA, is a favoured

technique for dimensionality reduction. It is widely used

292 j. rogel-salazar

among other things for exploratory analysis, data

compression and feature extraction. It has application range

from brain topology2 to seasonality analysis3. It makes use 2 Duffy, F. H. et al. Unrestricted
principal components analysis
of brain electrical activity: Issues
of data dimensionality, artifact,
and utility. Brain Topography 4(4),
291–307

3 Rogel-Salazar, J. and N. Sapsford
(2014). Seasonal effects in
natural gas prices and the
impact of the economic recession.
Wilmott 2014(74), 74–81

of an orthogonal transformation to take the original N

coordinates of our dataset into a new coordinate system

known as the principal components. The aim of the

technique is to use a reduced subspace, provided by the

principal components, that seeks to maintain most of the

variability of the data.

The principal components are ranked, with the first

principal component accounting for the largest contribution

to the variance. In succession, each of the rest of the The principal components are

ranked in decreasing order of

contribution to the variance.
principal components provide their contribution to the

variability of the dataset. Since the transformation is

orthogonal, each of the components is uncorrelated with

each other. The orthogonality constraint comes from the fact

that the principal components are the eigenvectors of the

covariance matrix. The dimensionality reduction comes into
We reduce the dimensionality by

considering only those principal

components with the highest

contribution.
place when representing our data using only those principal

components that provide the highest contributions to the

variance of the dataset.

As we mentioned above, PCA of a matrix A is equivalent to
PCA is equivalent to an

eigenvalue decomposition of

the covariance matrix.

performing an eigenvalue decomposition of the covariance

matrix of A. A covariance matrix provides a summary of the

extent to which corresponding elements from two sets of

ordered data move in the same direction. Principal
A symmetric matrix is a square

matrix that is equal to its

transpose.

component analysis can be applied to a matrix of any

dimensions, but remember that the covariance matrix is a

symmetric.

data science and analytics with python 293

For a matrix A, it is possible to calculate the mean value of

each of its columns and create the vector µ. We define the

covariance matrix as:

The covariance matrix can be

expressed in this way.
V = E

[
(A− µ) (A− µ)T

]
, (8.5)

the Vij element of the matrix corresponds to the covariance

of the i and j columns of A:

This is the expression for the

covariance.
Vij = E

[
(Ai − µi)

(
Aj − µj

)T
]
= σij. (8.6)

In particular, the diagonal elements of the matrix V are the

variances of the components of A:

This is the expression for the

variance.
Vii = E

[
(Ai − µi)

2
]
= σ2

i . (8.7)

The eigenvalues of the covariance matrix V are all real and

positive, and the eigenvectors that correspond to distinct

eigenvalues are orthogonal. This means that we can

decompose the matrix V as:

The covariance matrix can be

decomposed in this way.V = QΛQT =
n

∑
i=1

λi~qi~qi
T , (8.8)

where Q are the eigenvectors of A, and the values in the

matrix Λ are the eigenvalues associated with A.

The covariance matrix provides us with information about

the spread (variance) and orientation of our dataset. If we The covariance matrix gives us

information about the variance of

our dataset.
are interested in the representation of our data that provides

that largest variability, we simply have to find the direction

of the largest spread of data. The largest eigenvector of the

294 j. rogel-salazar

covariance matrix will point into the desired direction, and

The first eigenvector points in the

direction of the largest variability.

its eigenvalue is related to the amount of variance explained

by this component. In turn, the second largest eigenvector is

orthogonal to the first one, and points in the direction of the

second largest variability in the data, and so on.

Figure 8.2: A diagrammatic scree
plot showing the eigenvalues
corresponding to each of 6
different principal components.It is usual to represent the eigenvalue associated with a

component in a scree plot. We show a diagrammatic

A scree plot is used to represent

the variance contribution of each

of the components.

example in Figure 8.2 for 6 components and their

corresponding eigenvalues. The scree plot may provide an

indication of how many principal components to keep.

Ideally the scree plot shows a steep downward curve: The

number of components to keep are those in the steepest part

of the plot. This is sometimes known as the elbow test.

data science and analytics with python 295

8.2.1 PCA in Action

We will apply PCA to the image of a jackalope4 shown 4 Rogel-Salazar, J. (2016b,
Jan). Jackalope Image.
10.6084/m9.figshare.2067186.v1

in Figure 8.3. It is available at https://dx.doi.org/10.

6084/m9.figshare.2067186.v1. We will see how principal

component analysis can be used in image compression: We

will take an increasing number of components to reconstruct

the image. We can read the PNG file that into Python with

the help of matplotlib:

%pylab inline

from numpy import mean, size

A = imread(r’JRogel_Jackalope.png’)

The size is given by the shape of the matrix A:

We use imread to read an image

from a file into an array.

> print(shape(A))

(1880, 1860, 4)

As we can see, the image is made out of 1860× 1880 pixels

The image has 1860× 1880 pixels.

arranged in four stacked arrays. Each of the first three

arrays corresponds to the red (R), green (G) and blue (B)

channels of the image, and the fourth one is the so-called The stacked arrays that make the

image correspond to RGB and

alpha values.
alpha, or transparency. In this case, since the image is black

and white, the RGB values would be similar, and for the

sake of simplicity we will work with a single array made

out of the mean value of the 4 arrays provided:

We take the mean value of the

layers.
A1 = mean(A,2)

We know that the total number of components is given by

the original data set:

https://dx.doi.org/10.6084/m9.figshare.2067186.v1
https://dx.doi.org/10.6084/m9.figshare.2067186.v1

296 j. rogel-salazar

Figure 8.3: A jackalope silhouette
to be used for image processing.

> full_pc = size(A1, axis=1)

> print(full_pc)

1860

We are interested to see if we can reconstruct the image

Here we are taking the size of

the matrix along the columns, i.e

axis=1.

with a smaller number of components obtained with PCA.

We will write a script that uses a number of components We want to reconstruct the

image using a smaller number

of components.
less than full_pc (in this case 1860) and visually compare

the reconstructed image with the original one.

data science and analytics with python 297

The PCA decomposition can be carried out with the

implementation in the decomposition module in

Scikit-learn:

from sklearn import decomposition

The .PCA() function takes a parameter called n_components

The decomposition module is

required.

that tells the algorithm the number of components to keep.

If the parameter is not provided, all components are kept. We can tell PCA how many

components to keep with the

n_components parameter.
In this case, we are going to see the effects that the image

reconstruction has when keeping up to 500 components.

First we will fit a PCA model with a determined number of

components to keep using the fit method. Then we will

reconstruct the image using the inverse_transform method:

We will programmatically take

a number of components to

reconstruct the image.

The decomposition is carried out

by the fit method.

The reconstruction is done with

the inverse_transform method.

We get rid of the ticks in the axes

and show the result.

components = range(0,600,100)

fig=plt.figure()

for i, num_pc in enumerate(components):

i+=1

pca = decomposition.PCA(n_components=num_pc)

pca.fit(A1)

Rec = pca.inverse_transform(pca.transform(A1))

ax = fig.add_subplot(2,3,i,frame_on=False)

removing ticks

ax.xaxis.set_major_locator(NullLocator())

ax.yaxis.set_major_locator(NullLocator())

imshow(Rec)

title(str(num_pc) + ’ PCs’)

gray()

298 j. rogel-salazar

The results can be seen in Figure 8.4. It is clear that using

even 100 components, the image is definitely recognisable,

and by the time we are keeping 500 components we can

clearly distinguish some of the finer features in the image,

such as the white streaks in the ears and the eye of the

jackalope.

Figure 8.4: Principal component
analysis applied to the jackalope
image shown in Figure 8.3. We
can see how retaining more
principal components increases
the resolution of the image.

We can take a look at the explained variance ratio we would

obtain by allowing all the components in the model and

looking at the percentage of variance explained by each of

the components:

data science and analytics with python 299

pca1 = decomposition.PCA()

pca1.fit(A1)

var_ratio = pca1.explained_variance_ratio_

Remember that by default PCA

takes all the components.

Figure 8.5: Scree plot of the
explained variance ratio (for 10
components) obtained by applying
principal component analysis to
the jackalope image shown in
Figure 8.3.

We show a scree plot of these values in Figure 8.5 where we

can see that the elbow test would indicate that 8

components are enough to explain the variability in the

image.

300 j. rogel-salazar

8.2.2 PCA in the Iris Dataset

Let us now apply PCA to the Iris dataset and use the

dimensionality-reduced data in a logistic regression

classifier. As usual, let us load the dataset into appropriate

arrays:

This should be second nature to us

by now.

from sklearn import datasets

iris = datasets.load_iris()

X = iris.data

Y = iris.target

We start by splitting our data into training and testing

datasets:

We definitely know how to do this

and, more importantly, why!

import sklearn.model_selection as ms

XTrain, XTest, YTrain, YTest =\

ms.train_test_split(X, Y,\

test_size= 0.3, random_state=7)

In this case we only have four features: Sepal length, sepal

width, petal length and petal width. Let us perform PCA in

the training set to give us an idea of the amount of variance PCA will let us see how many

principal components explain

most of the variance.
explained by the principal components. The result is shown

in the scree plot in Figure 8.6. As we can see, perhaps one or

two components are good enough to explain the variance in

this dataset.

data science and analytics with python 301

from sklearn import decomposition

IrisPCA=decomposition.PCA()

Iris_Decomp = IrisPCA.fit(XTrain)

X_Decomp = Iris_Decomp.transform(XTrain)

var_ratio = IrisPCA.explained_variance_ratio_

We simply apply the PCA

decomposition to the data.

Remember to fit and transform the

model.

Figure 8.6: Scree plot of the
explained variance ratio obtained
by applying principal component
analysis to the four features in the
Iris dataset.

It is possible to use PCA first to extract the features we are

interested in and use them in our classification task later;

in this case we are employing logistic regression. Let us

explore how we can use Scikit-learn to chain the feature

extraction to the logistic regression estimator, and at the

same time run a search for the best parameters to use. We

302 j. rogel-salazar

can do all this with the help of Pipeline which sequentially

applies a list of transformations and estimators. For our

purposes we need to chain PCA and LogisticRegression:

The Pipeline command enables

us to chain models. In this case

we chain principal component

analysis with a logistic regression.

from sklearn import linear_model

from sklearn.pipeline import Pipeline

logistic = linear_model.LogisticRegression()

pca = decomposition.PCA()

pipe = Pipeline(steps=[(’pca’, pca),\

(’logistic’, logistic)])

The steps in the pipeline indicate the transformations that
The steps in the pipeline indicate

the models to be executed.
we are expected to carry out. We are also providing a name

(included as a string) to be used to refer to the various

steps in the pipeline. With that in place, we will conduct a

search for both the number of components to keep (from

PCA), and the inverse of the regularisation strength used in

logistic regression.
See Section 6.3.2 for a discussion

of logistic regression.

We will search for the best

parameters for PCA and logistic

regression.

from sklearn.model_selection import GridSearchCV

n_components = list(range(1,3))

Cs = np.logspace(-2,4,100)

We can now carry out the search employing k-fold cross-

validation with 10 folds:

data science and analytics with python 303

Iris_cls = GridSearchCV(pipe,\

dict(pca__n_components=n_components,\

logistic__C=Cs), cv=ms.KFold(n_splits=10))

We are ready to use our pipe to fit the model:

We need to pass the pipeline to the

GridSearchCV command.

Training the piped model works in

the same way as before.

> Iris_cls.fit(XTrain, YTrain)

> print(Iris_cls.best_params_)

{’pca__n_components’: 2,

’logistic__C’: 114.97569953977356}

As we can see, the search indicates that 2 components with

a value of C equal to 114.98 provides the best estimator. Let

us use the result to obtain our prediction:

And the predictions are extracted

in the same manner.y_pred = Iris_cls.predict(XTest)

Finally, we can obtain a confusion matrix for the prediction

of our classifier against the testing set:

In this case we have a three-way

confusion matrix.

> from sklearn.metrics import confusion_matrix

> confusion_matrix(YTest,y_pred)

array([[12, 0, 0],

[0, 13, 3],

[0, 3, 14]])

304 j. rogel-salazar

8.3 Singular Value Decomposition

Finding the principal components that characterise

our data is a powerful tool to have in our jackalope data

science toolbox. However, PCA may not be suitable when

the initial dimensionality of our data is very large. In the In cases where the dimensionality

of our data is very large, PCA may

not be suitable.
example of the image processing we provided in Section

8.2.1, the resolution of the image could have been very

large: For images in megapixels we have N ≥ 106 and the

covariance matrix will be ≥ 1012. Not an impossible task per

se, but perhaps other methods may be more suitable and

efficient.

One such method is the Singular Value Decomposition or

SVD for short. It has the advantage of offering an exact

representation of any matrix and, most importantly for us,

enables the elimination of parts of the data that are deemed Singular Value Decomposition

(SVD) is a good alternative.to be less important. It therefore creates an approximate

representation with the number of dimensions we choose.

In other words, it is a suitable alternative for dimensionality

reduction, and for other applications as we shall discuss

later in this chapter.

Let us consider an M× N matrix A. We define the rank r of

the matrix A as the maximum number of linearly

independent rows (or columns). We can decompose the

A set of vectors are linearly

independent if no vector in the set

is a linear combination of the other

vectors.

matrix A as:

A = UΣVT , (8.9)

where U is an M × r column-orthonormal matrix, Σ is an

Column-orthonormal: each

column is a unit vector & the dot

product of any two columns is

zero.r× r diagonal matrix whose elements are called the singular

data science and analytics with python 305

values of A, and finally V is an N × r column-orthonormal

matrix. The columns of U and V are called the singular

vectors of the matrix A. In Figure 8.7 we show a

diagrammatic representation of the singular value

decomposition.

UA

VT
Σ

= M

N N r r

r

Figure 8.7: An illustration of the
singular value decomposition.

The singular vectors of A provide orthonormal bases for

AAT and ATA. The SVD process consists of calculating

the eigenvalues and eigenvectors of AAT and ATA. The

singular values in Σ are then equal to the square roots of The singular values are the square

roots of the eigenvalues of U (or

V).
the eigenvalues of U (or V) in descending order. As we can

see from the diagram in Figure 8.7, the number of singular

values is equal to the rank r of A.

SVD results in a representation of the original data in which In SVD, the covariance matrix has

a diagonal representation.the covariance matrix is diagonal, and much easier to

306 j. rogel-salazar

handle than a full matrix, as it is the case in PCA. So, where

is the dimensionality reduction? We can think of this

problem as finding an approximation to A with a matrix Ã

whose rank is r. This problem can be solved by setting the

smallest of the singular values of A to zero. This translates

into the elimination of the corresponding rows from both U

and V. It can be shown5 that besides achieving a reduction 5 Golub, G. and C. Van Loan
(2013). Matrix Computations.
Johns Hopkins Studies in the
Mathematical Sciences. Johns
Hopkins University Press

in dimensionality, this process minimises the

root-mean-square error between A and its approximation.

The dimensionality reduction obtained with SVD underlies

some techniques used in document analysis such as latent

semantic analysis (LSA), where a term-document matrix is

used as the basis to obtain linearly independent In Section 6.4.1 we obtained a

term-document matrix to be used

with the Naïve Bayes Classifier.
components. These components can be thought of as hidden

or latent concepts in the original data, and hence the name.

After the application of SVD, the words are represented by

the rows of U, whereas the documents by the rows of V.

Document similarity is extracted by comparing the rows of

VΣ. A similar application to this can be found in the design

of recommendation systems, as we will discuss in Section

8.4.

8.3.1 SVD in Action

As a demonstration of the power of singular value

decomposition, we shall see an application in terms of data

compression and noise reduction. Consider the image of a

(pixelated) letter J as shown in Figure 8.8. As we can see, it
We will see an example using SVD

for image compression and noise

reduction.
is possible to construct the image with 4 different types of

data science and analytics with python 307

pixel columns. It is conceivable that we can represent the

same data in a more efficient way.

Figure 8.8: An image of a letter
J (on the left) and its column
components (on the right).

Let us construct a noisy picture of the letter J shown in

Figure 8.8 using 250× 150 pixels, i.e. a total of 37, 500 pixels

to represent this letter:

We are constructing the pixelated

letter J with the help of arrays in

Python.

%pylab inline

import matplotlib.pyplot as plt

import numpy as np

M = np.zeros((250,150))

M[:31,:]=1

M[:,60:91]=1

M[-31:,:60]=1

M[150:,:31]=1

308 j. rogel-salazar

We can even add some random noise to the image. The

noise can be generated with the help of the random.uniform

command:

M_noisy = np.asmatrix(np.random.uniform(low=0,\

high=0.7, size=(250,150)))

M_noisy = M + M_noisy

The linear algebra module in NumPy has an

We are creating a matrix with

random entries between 0 and 0.7.

implementation of SVD. With it we can readily apply the

method to our noisy matrix:
NumPy has an implementation of

SVD in the linear algebra module.U, s, V = np.linalg.svd(M_noisy)

We can see the first 10 singular values obtained from the

operation above in Figure 8.9. It is clear that after the fourth

component, the curve flattens out.

Let us now put together a script that takes an increasing

number of singular components from 1 to 4, and see if we

can reconstruct our image using fewer pixels and even

reduce the noise:

The mat command interprets

the result as a matrix and eye

corresponds to array representing

an identity matrix.

We get rid of the columns we do

not need.

for S in range(1,5):

Sig = mat(np.eye(S)*s[:S])

U_reduced = U[:,:S]

V_reduced = V[:S,:]

M_rec = U_reduced*Sig*V_reduced

data science and analytics with python 309

Figure 8.9: The singular values
obtained from applying SVD in a
an image of a letter J constructed
in Python.

The result of the reconstruction process presented above

can be seen in Figure 8.10. Each of the panels represents the

reconstruction using different number of components. As

we can see, the use of 4 singular values renders a very good

result.

In terms of the number of elements used in the

reconstruction of the image, we needed only 1, 604: With 4

singular values, we have 1, 000 from the 250× 4 U_reduced

matrix and 600 from the 4× 150 V_reduced matrix. That is a

good reduction from the original 37, 500 elements in the We have reduced the number of

pixels needed, as well as the noise.original, with the added benefit of having lessened the noise

in the image, as is clearly seen when comparing the first and

last panels in Figure 8.10.

310 j. rogel-salazar

Figure 8.10: Reconstruction of the
original noisy letter J (left most
panel), using 1-4 singular values
obtained from SVD.

The example above is a simplified application of SVD to

more complex images and indeed other data in general. We

We can apply SVD as a pre-

processing step.

can consider for instance its use in regression where a clear

linear relationship exists between a feature and the target

variables, where small noisy errors come into play. Singular

value decomposition may enable us to determine the

direction in which the data aligns better and safely ignore

the rest of the singular values. SVD can be used to detect

groupings in the data. This can be useful in determining Think of the four types of columns

that make up our letter J.similarities among data instances. This pattern detection is

exploited for example in building recommendation systems

and we shall explore some of the most important concepts

in the following section.

8.4 Recommendation Systems

We are all familiar with online outlets offering us a

variety of products from household items, books, music,

data science and analytics with python 311

films, recipes, friends and partners. Some are more A variety of outlets offer us

a wide range of services, and

recommendations are a good way

to engage with us.

specialised than others and they all have one thing in

common: They are interested in continuing a relationship

with us, the customers. One way to continue our

engagement with these services is by obtaining meaningful

recommendations.

An example of the importance of this type of application is

the now famous 2006 Netflix competition6 offering a $1 6 Töscher, A. and M. Jahrer (2009).
The BigChaos solution to the
Netflix grand prize. http://

www.netflixprize.com/assets/

GrandPrize2009_BPC_BigChaos.

pdf

million USD prize to anyone who could improve their

recommendation engine. The 2009 winning entry improved

the system by 10%. However, the solution was never

implemented due to the engineering efforts that were

required.

Picture then the following situation: You are interested in a

streaming service that lets you play videos in your favourite

device. You create your account and are presented with

some of the most popular offerings the service provides as a The aim of a recommendation

engine is to predict the likely

rating we would give to an unseen

item.

form of recommendation. The service provider is interested

in predicting the rating you are likely to give to an item you

have not rated yet. If the rating is high, then the item can

be a good product to put in the recommended list and keep

you happy and watching.

Sounds good, but how is that rating produced? The service

provider will use information from the items on offer, as

well as from other users and their characteristics to try to Information about the items and

from others users is exploited.predict the rating. In some cases maybe even exploiting

social network analysis can be done. There are two main

camps for this:

http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf

312 j. rogel-salazar

1. Content-based filtering, where items are mapped into a

feature space using their attributes. The
Content-based filtering uses the

attributes of the items.

recommendations depend on the characteristics of the

items.

2. Collaborative filtering considers data from the ratings

that other users have provided for specific items. The
Collaborative filtering also uses

information from other users.

recommendations depend on the preferences expressed

by the user.

8.4.1 Content-Based Filtering in Action

Content-based filtering requires us to specify the

attributes or features that describe the items in our database.

We also need to obtain the scores that our users give to

each of these features. We can then represent users and Content-based filtering is based on

the use of vectors describing items

based on a series of attributes.
items in terms of vectors in the feature space. The item

vectors provide a measure of the degree to which items are

described by each of the features in question. Similarly, user

vectors measure the preferences that the users have for each User vectors tell us the preference

that users have for the given

attributes.
of the features. We can assume that users will prefer items

that are similar to the preferences they have expressed.

From the discussion about similarity measures in Section

3.8, we know that a convenient way to define similarity is

provided by the cosine similarity. In this case, the ratings
For a discussion on cosine

similarity see Section 3.8.

can be obtained by taking the dot product of the user and

item vectors and divide by the product of their norms.

Let us go through an example that, although is a little bit

oversimplified, will let us see the way in which content-

based recommendations work. Imagine that we have set up

data science and analytics with python 313

a streaming service and our catalogue contains a total of 5

films: Cronos (1993), Life of Brian (1979), The Never-Ending Our streaming service has a rather

limited catalogue, but will help

us see how content-based filtering

works.

Story (1984), Pinocchio (1940), and Titanic (1997).

The feature space we will consider is given by revenue

at the box office, film suitability for children, and Oscar

winning film. The scores (1-5) for these features are shown

in Table 8.1.

ID Film
Box
Office

For
Children

Oscar

1 Cronos 2 1 1

2 Life of Brian 3 3 1

3 The Never-ending Story 2 5 1

4 Pinocchio 3 5 5

5 Titanic 5 2 5

Table 8.1: Films considered in
building a content-based filtering
recommendation system.

ID Film
Box
Office

For
children

Oscar

a Graham 4 2 5

b Terry G. 1 2 2

c Eric 5 4 4

d John 4 3 1

e Michael 3 2 5

f Terry J. 1 1 4

Table 8.2: Scores provided by
users regarding the three features
used to describe the films in our
database.

We can now look at the preferences that our (Pythonic)

users have expressed for the three features describing the

films in our database. The user scores are shown in Table

8.2. Let us calculate the rating that Graham is predicted to

give to Cronos by obtaining the cosine similarity of the user

314 j. rogel-salazar

and film score vectors:

SimGraham−Cronos =
(4)(2) + (2)(1) + (5)(1)√
42 + 22 + 52

√
22 + 12 + 12

,

=
15√

(45)(6)
,

= 0.9128. (8.10)

It seems that Cronos is indeed a good match for Graham. We

We calculate the cosine similarity

between the user and item vectors.

show below a function that receives as input information

from films and users stored in pandas dataframes.

We check that the user exists,

otherwise we terminate execution.

We take the norm of the user

vector.

In turn we take each of the item

vectors and use them to calculate

the cosine similarity.

After checking for the threshold,

we sort the recommendations and

report them.

import numpy as np, sys

def content_recomm(user, user_df, film_df):

try:

u = user_df.loc[user][1:].values

except:

print(‘‘Error: User does not exist ’’,\

sys.exc_info()[0])

sys.exit(1)

u_norm = np.linalg.norm(u)

film_recom = []

for row in range(shape(film_df)[0]):

f_name = film_df.index[row]

f = film_df.ix[:,1:].iloc[row].values

f_norm = np.linalg.norm(f)

s = np.dot(u, f)/(u_norm*f_norm)

if s>0.8:

film_recom.append((f_name, s))

film_recom = sorted(film_recom,\

key=lambda x: x[1], reverse=True)

return film_recom

data science and analytics with python 315

In the code above we pass on the name of a user (an ID

would be preferable in general, though) and calculate the

cosine similarity of the user against the films in the database.
We can decide to use a more

stringent threshold.
We then report only those films for which the cosine

similarity is greater than 0.8.

We apply the function to our dataset as follows:

We are assuming that the data is

stored in appropriate csv files.

The content_recomm function can

be applied to each individual user.

import pandas as pd

films = pd.read_csv(u’./Data/FilmCB.csv’,\

index_col=1)

users = pd.read_csv(u’./Data/UsersCB.csv’,\

index_col=1)

r1 = content_recomm(’Graham’, users, films)

r4 = content_recomm(’John’, users, films)

r6 = content_recomm(’Terry J.’, users, films)

Let us see the results for Graham:

We have three recommendations

for Graham.

print(r1)

[(’Titanic’, 0.99401501176863483),

(’Cronos’, 0.9128709291752769),

(’Pinocchio’, 0.91214859859201181)]

As we can see, the top three films for Graham in descending

order of cosine similarity are Titanic, Cronos and Pinocchio.

We can do the same for John and Terry J. We would Recommendations for other users

are obtained in a similar fashion.recommend to John all of the five films starting with Life of

316 j. rogel-salazar

Brian (0.9898) followed by Cronos (0.9607), whereas for Terry

J. we only have two recommendations: Titanic (0.866) and

Pinocchio (0.8592).

Content-based filtering works well in cases where there are

clear attributes that describe the items to be recommended

and for which users have provided clear preferences.

However, it has some important drawbacks:

• We need to map each item into a feature space. In Mapping items into the feature

space is resource-intensive.general, the feature space may be rather large and the

mapping process is very resource-intensive.

• The recommendations obtained are very limited in scope

as items must be similar to each other.

• User preferences have to be obtained in order for a

recommendation to be processed. This is known as the

cold start problem. It is therefore difficult to provide The cold start problem is a

significant drawback.recommendations to new users who typically have not

provided rating information.

• The nature of the filtering makes it difficult to obtain Cross-content recommendation is

difficult.cross-content recommendations. This is because it

requires a comparison of items from potentially different

feature spaces.

8.4.2 Collaborative Filtering in Action

The main assumption of collaborative filtering Collaborative filtering uses a

utility matrix to recommend items

based on other users’ preferences

and tastes.

is that users get value from recommendations based on

other users with similar preferences and tastes. While in

content-based filtering we have used the similarity of items

data science and analytics with python 317

to determine the recommendations, in collaborative filtering

instead we make use of a utility matrix whose elements are

the preferences reported by users about the items on offer.

There are several approaches that we can take to build our

recommendation. For instance, we could take a look at the There are several approaches to

content-based filtering.ratings in our utility matrix to create a matrix detailing the

similarity among items. This approach is known as

item-based collaborative filtering or memory-based

collaborative filtering and the recommendations that a user In item-based collaborative

filtering the user receives

recommendations based on

items she has rated in the past.

receives are based on other items that the user has rated

highly in the past. This approach can be thought of in terms

of clustering items based on ratings provided by the user.

Notice that this item-based filtering is different from

content-based filtering as we are not mapping the attributes

of the item to a feature space.

Another alternative is provided by the so-called model-

based collaborative filtering where instead of looking for Model-based collaborative filtering

is based the rating that individual

users give to specific items

available.

similarity among items, we consider the utility matrix to be

the result of the product involving two thinner matrices U

and V, encapsulating latent concepts in our data. The utility

matrix is understood as the ratings that individual users

give to specific items available.

Let us consider the utility matrix shown in Table 8.3

detailing the entries (1-10) that users have provided for a set

of books: I. Robot (I. Asimov, 1950), The Martian (A. Weir,
Here we will exemplify

collaborative filtering for a set

of books.
2011), Do Androids Dream of Electric Sheep? (P. K. Dick, 1968),

2001 Space Odyssey (A. C. Clarke, 1968) and Solaris (S. Lem,

1961). The question marks in the table indicate items for

318 j. rogel-salazar

User
I,
Robot

The
Martian

Do Androids
Dream of
Electric
Sheep?

2001
Space
Odyssey

Solaris

Alice 8 2 10 5 1

Bob 4 ? 2 10 9

Carl 3 8 4 9 10

Daniel 5 10 4 9 10

Eve 7 2 9 6 ?

Table 8.3: Utility matrix of users
v books used for collaborative
filtering. We need to estimate
the scores marked with question
marks.

which users have not provided a rating. The missing values Missing values in the utility

matrix are denoted with a

question mark.
occur because there may be many more users than items,

plus users only provide scores for a small portion of the

items on offer.

In this case we are not so much interested in reconstructing

the utility matrix as it was the case for the example

discussed in Section 8.3.1. Instead we are interested in Our task is to estimate the missing

values in the utility matrix.estimating the missing values in the matrix. Typical

applications make use of very sparse matrices.

The idea is that if a user has not rated an item it is likely to

be because they have not had a chance to “experience” it. If

the estimate is high then the item is a good candidate to be

recommended to that particular user. The use of SVD makes

it possible to find those missing values without necessarily SVD makes this possible.

having to determine all the missing scores as we shall see.

Remember that SVD decomposes a matrix A as:

A = UΣVT . (8.11)

data science and analytics with python 319

We can think of U as a matrix where users are represented The matrices U and V are related

to the users and items.as row vectors containing linearly independent components.

Similarly, the matrix V corresponds to the items represented

as linearly independent row vectors. For the i-th user we

can define the row vector problem

pi = Ui
√

Σ
T

. (8.12)

Similarly, for the j-th item we have

This matrix decomposition enables

us to formulate the problem in

terms of an objective function

to be optimised, as we shall see

below.
qj =

√
ΣVT

j ; (8.13)

and the score that user i will give to item j is given by:

rij = piqT
j . (8.14)

This works for full matrices, but in this case we are dealing

with sparse ones. If we impute an initial value of zero we We have sparse matrices due to

the cold start problem.are effectively indicating that the user will definitely not

prefer the item. Some potential solutions include

normalising the ratings by subtracting the mean rating by

user for example or, as we will do in this case, taking the In this case we wil use the mean

rating for an item to avoid this

issue.
mean rating of the item in question.

The objective function that we are trying to minimise can

then be expressed as follows:

The objective function we are

trying to minimise is given by the

matrix decomposition defined

above.

min
p∗q∗

∑
(i,j)

(
rij − µ− piqT

j

)2
+ λ

(
|pi|2 + |qj|2

)
, (8.15)

where µ is the mean value we referred to above, and λ is the

hyperparameter that controls the amount of regularisation.

320 j. rogel-salazar

Please note that this optimisation problem has two

unknowns, i.e. p and q and convexity is not guaranteed. A

further discussion goes beyond the scope of this book, and

you are recommended to read more about methods such as

alternating least squares7,8 to tackle this problem. 7 Takács, G. and D. Tikk (2012).
Alternating least squares for
personalized ranking. In
Proceedings of the Sixth ACM
Conference on Recommender Systems,
RecSys ’12, New York, NY, USA,
pp. 83–90. ACM
8 Hu, Y., Y. Koren, and C. Volinsky
(2008). Collaborative filtering for
implicit feedback datasets. In
Proceedings of the 2008 Eighth IEEE
International Conference on Data
Mining, ICDM ’08, Washington,
DC, USA, pp. 263–272. IEEE
Computer Society

In this case, we will be tackling this problem with a naïve

approach (i.e., use with care!) to find the likely ratings that

Bob will give to The Martian, and Eve to Solaris (see Table

8.3). Starting with a csv file holding the data from Table 8.3

we can load the information into a Pandas dataframe. We

still have to deal with the cold start problem as the SVD

method will not be able to deal with missing data. In this

case we will initialise the missing values with the mean

score provided by other users:

We can tell pandas what

characters represent missing

values with na_values.

We replace missing values with

fillna.

import pandas as pd

import numpy as np

A = pd.read_csv(u’./Data/CF_Table.csv’,\

index_col=0, na_values=[’?’])

A.fillna(A.mean(), inplace=True)

In the code above we are assuming that the missing data in

the comma-separated-value file is denoted with a question

mark, as shown in Table 8.3. We load the data into a Pandas

The various methods in Pandas let

us manipulate the missing values

as required.
dataframe and specify that any question marks encountered

are replaced by NaN so that the software handles the missing

data appropriately. In this case we are replacing the missing

values by the mean score given to each item with the help

data science and analytics with python 321

of the .fillna method. Please note that the replacement

is requested to be done in place. In this case, Bob’s initial

rating for The Martian is calculated to be 5.5, and Eve’s

initial rating for Solaris is estimated to be 7.25.

Let us now write a function that uses SVD to improve on

the predicted scores:

We check that the user (or item)

exists, otherwise we terminate

execution.

The scores can be obtained using

only the relevant parts of the

utility matrix. There is no need to

compute the entire multiplication.

SVD is applied to the data and

the dimensionality is reduced. We

are using a minimum of S = 2

components.

We use the reduced matrices to

obtain our estimate and report it.

import sys

def cf_recomm(user, book, dat, S=2):

try:

uind = dat.index.get_loc(user)

bind = dat.columns.get_loc(book)

except:

print(‘‘Error: User/item doesn’t exist’’,\

sys.exc_info()[0])

sys.exit(1)

else:

uind = dat.index.get_loc(user)

bind = dat.columns.get_loc(book)

U, s, V = np.linalg.svd(dat)

Reduced_Sig = np.mat(np.eye(S)*s[:S])

U_reduced = U[:, :S]

V_reduced = V[:S, :]

recom = U_reduced[uind, :]*Reduced_Sig*\

np.mat(V_reduced[:, bind]).T

return recom.item(0)

322 j. rogel-salazar

We can now use the function to determine the scores as

follows:

> bob_score = cf_recomm(’Bob’, ’The Martian’, A)

> eve_score = cf_recomm(’Eve’, ’Solaris’, A)

> print(bob_score)

7.233127706402881

> print(eve_score)

5.323332988443551

This results in Bob’s score for The Martian being 7.23, while

We only need to provide the

function with the relevant row and

column from matrix A to calculate

the rating estimate.

Eve is predicted to score Solaris with 5.32. We can then

The singular value decomposition

can be understood in terms of

latent features in our data.

recommend Bob to consider reading The Martian, whereas

Eve may want to consider other items instead of Solaris.

SVD has enabled us to decompose the utility matrix shown

in Table 8.3 into latent features that users rate highly or

poorly. In this case for instance, these latent features could

be themes such as books with sentient robots or action taking

place in Space.

Please note that in the example above, other than using SVD

to find the missing values in our utility matrix, we have not

employed any further optimisation or even considered the

use of cross-validation. There are a number of

recommendation system implementations for Python and

we recommend taking a look at some such as pysuggest,

Pysuggest: https://code.google.

com/p/pysuggest

Crab: https://github.com/

muricoca/crab

Python-recsys: https://github.

com/ocelma/python-recsys

crab, and python-recsys.

https://github.com/ocelma/python-recsys
https://github.com/muricoca/crab
https://code.google.com/p/pysuggest
https://github.com/ocelma/python-recsys
https://github.com/muricoca/crab
https://code.google.com/p/pysuggest

data science and analytics with python 323

Recommendation systems that use model-based

collaborative filtering are very flexible, and there are a few

things that need to be taken into account when using them,

including:

• Large datasets are needed to construct meaningful utility

matrices Utility matrices can be large and

sparse.
• The utility matrices obtained are very sparse

• The possibility of shilling attacks must be considered.

A shilling attack consists of malicious users providing Shilling attacks consist of users

providing a large number of

positive reviews to their own

products for example.

a large number of very positive ratings to their own

products and very negative ones to their competitors’,

skewing the recommendations obtained

• Initial values for the preferences of a new user are

potentially non-existent and therefore a lot of data is

needed to tackle this cold start problem. The use of

implicit feedback is a way to deal with this issue

Implicit feedback includes

information from other sources

such as search patterns, browsing

history, etc.

8.5 Summary

The curse of dimensionality introduced in Section 3.9

is an important issue that has to be considered in any data

science modelling. This is particularly true in those cases

where we have a large number of dimensions, imposing

the need for larger datasets. We started this chapter by

introducing a couple of techniques for dimensionality

reduction that no jackalope data scientist should forgo.

It is clear that using the most important features that

describe our data science problem is the best way to proceed

324 j. rogel-salazar

in the modelling part of our workflow. Therefore, careful

feature selection can be of great help in cases where we have

a large number of features. An alternative for this is

extracting features. This may help reduce the number of

dimensions, while conveying as much useful information as

possible.

In Principal Component Analysis (PCA), given a feature

matrix A, we are interested in performing an eigenvalue

decomposition of the covariance matrix. This is because we

want to obtain a representation (orientation) of our data that

provides the largest variability. The eigenvalues obtained

from PCA are related to the amount of variance explained

by each of the associated eigenvectors, or components. This

enables us to represent our dataset with a reduced number

of features and even tackle issues with noisy data.

Another approach we saw in this chapter is Singular Value

Decomposition (SVD) of the matrix A directly. The method

offers an exact representation of any matrix and enables us

to eliminate parts of the data that are deemed to be less

important. This is done by finding an approximation Ã to

the original matrix by setting the smallest singular values of

A to zero. This process eliminates the corresponding rows

of both U and V, the component matrices. We also

discussed how SVD can be used in building

recommendation systems.

In general, dimensionality reduction helps with:

• Reducing computational expense

• Reducing noise in the dataset

data science and analytics with python 325

• Increasing the generalisation of our predictions

• Reducing overfitting

• Enhancing our understanding of the data and the

outcomes of our models.

http://taylorandfrancis.com

327

9

Kernel Tricks up the Sleeve: Support Vector

Machines

The dreaded curse of dimensionality can be a tough

adversary for any jackalope data scientist out there.

Fortunately, we now know that there are a number of tools

that can be used to defend ourselves against it: From careful Probably as effective as defending

yourself agains a man armed with

a banana...
feature selection through to dimensionality reduction. In the

last chapter we saw how Principal Component Analysis

(PCA) and Singular Value Decomposition (SVD) can be used

to reduce the number of features in our problem. This Remember that the number

of features corresponds to the

number of dimensions in our

problem.

reduction is achieved thanks to combinations of the original

attributes that conserve as much information as possible.

Another way to tackle our machine learning problems is

with the application of suitable transformations to our data.

Take for instance the logarithmic transformation we applied We would like to combine

the task of selecting features

with the application of useful

transformations.

in Section 4.5, where we successfully managed to represent

our data in terms of a linear relationship in the transformed

space. We can now take a step forward and combine the

328 j. rogel-salazar

idea of selecting relevant features by applying suitable

transformations.

In this chapter we will consider the use of kernel functions

as a way to manipulate datasets in their own original

feature space, but as though they were projected into a We then explain the Support

Vector Machine (SVM) algorithm.higher dimensional space. This transformation lets us carry

out manipulations in a more straightforward manner.

9.1 Support Vector Machines and Kernel Methods

We have concentrated so far in extracting features from

our existing data to obtain a representation using fewer Instead of extracting new features,

we can perform transformations to

simplify the learning tasks.
dimensions while retaining as much information as possible.

A different approach is to transform the data in such a way

that our learning tasks look easier to be carried out than in

the original feature space.

In a sense, this is what we have done when applying a

logarithmic transformation to the mammals dataset in

Section 4.5: In the transformed feature space, the We have done this with a

logarithmic transformation in

Section 4.5.
relationship between a mammal’s body and brain is better

approximated by a straight line than when using the

untransformed features. Once we have carried out the

learning task, we need to invert the transformation to the

original feature space.

Continuing with that train of thought, let us consider the

datasets shown in Figure 9.1 using a space spanned by

features X1 and X2. The data points shown in panel a) can

be separated into two groups by using a diagonal line from

data science and analytics with python 329

the upper left-hand corner to the lower right-hand one. In

other words, we say that the dataset is linearly separable. Linear separability refers to the

possibility of discriminating data

classes with a single decision

surface.

However, the squares in panel b) cannot be separated in

such an easy manner from the circles in this representation.

It may be possible that the data points are actually linearly

separable in a different feature space, perhaps even in a

higher dimensional one. If that is the case, we can try to

find the transformation as we did for the mammals dataset

and carry out our classification task in the new space.

x1

x2

a)

x1

x2

b)

Figure 9.1: The dataset shown in
panel a) is linearly separable in the
X1 − X2 feature space, whereas the
one in panel b) is not.Although it is possible to find a new feature space where

linear separability can be achieved, there are a couple of

things we need to consider. First of all, we may not know

the transformation that needs to be carried out, and we will
We may not know the

transformation that needs to

be applied, plus we are adding

complexity to the model.
need to search for it. Second, if indeed the data is separable

in a higher dimensional space, we are adding complexity to

330 j. rogel-salazar

our model. Could it possible to manipulate the dataset in

its original feature space, but as if it were projected into a

higher-dimensional one without the need to explicitly carry It is possible though to manipulate

the dataset without the need

to explicitly carry out the

transformation.

out the transformation? It sounds far-fetched but it turns

out that the answer to that question is YES, and we will

discuss this point in further detail in Section 9.1.2. However,

before we get there, let us consider the linearly separable

case.

As Jorge Luis Borges would remind us1 a line is made out 1 Borges, J. L. (1984). El Libro de
Arena. El Ave Fénix. Plaza & Janés

of an infinite number of ponts, a 2-dimensional space is

made out of an infinite number of lines, a 3-dimensional

one is made out of an infinite number of planes, etc. As

such, a linear classifier in 2D will correspond to a decision

boundary given by a line (as discussed above). In 3D it will

be a plane, and in higher dimensions we can talk about a

In general we talk about a

hyperplane as the decision

boundary for a linearly separable

dataset.hyperplane. In general we can express a linear classifier as:

f (x) = wTx + b, (9.1)

where the weight vector w is normal to the hyperplane and

b is the bias. In our classification task, the training data is The weight w is normal to the

hyperplane and b is the bias.used to learn w and not used again since we can directly

use the weight vector for classifying new unseen data.

If the data points are linearly separable we can end up with

a situation like the one shown in Figure 9.2, where we have Our task is to find the best

classification boundary.more than one separation boundary. Not only is our task

to find the classification boundary, but also to find the best

one.

data science and analytics with python 331

x1

x2

Figure 9.2: A linearly separable
dataset may have a large number
of separation boundaries. Which
one is the best?9.1.1 Support Vector Machines

A support vector machine is a binary linear classifier

where the classification boundary is built in such a manner

as to minimise the generalisation error in our task. Unlike

other classifiers we have discussed, the support vector
A support vector machine

minimises the generalisation error

associated with the geometrical

notion of a margin.

machine boundary is obtained using geometrical reasoning

instead of algebraic. With that in mind, the generalisation

error is associated with the geometrical notion of a margin,

which can be defined as the region along the classification

boundary that is free of data points.

332 j. rogel-salazar

In that manner, a support vector machine (SVM) has the

goal of discriminating among classes using a linear decision

boundary that has the largest margin, giving rise to the
The maximum margin hyperplane

is the linear decision boundary

with the largest margin.
so-called maximum margin hyperplane or (MMH). Having

the maximum margin is equivalent to minimising the

generalisation error. This is because using the MMH as the

classification boundary minimises the probability that a A wider margin results in having

better defined and separate

classes.
small perturbation in the position of a data point results in a

classification error. Intuitively, it is easy to see that a wider

margin results in having better defined and separate classes.

Given the discriminant function in Equation (9.1), we can

determine the class label of a new record by considering the

sign of the function f (x):

The class label of a new record

is given by the sign of the

discriminant function.

f (xi) = wTxi + b

≥ 0→ yi = +1,

< 0→ yi = −1.
(9.2)

The weight vector w defines the orientation of the

classification boundary, whereas the bias b specifies a

translation from the origin. In Figure 9.3 we depict the main

components of a support vector machine: The maximum

margin is defined by the support vectors, i.e. the data points The support vectors are the data

points closest to the classification

hyperplane.
that lie closest to the classification hyperplane. These points

are marked in black in Figure 9.3. The task of finding the

MMH boils down to the optimisation of a convex objective

function and this means that we are guaranteed to obtain a

global optimum.

The support vectors are in fact the data points that are the

most difficult to classify as they are closest to the

data science and analytics with python 333

x1

x2

Maximum margin
M

axim
um

 m
argin hyperplane

w

Figure 9.3: A support vector
machine finds the optimal
boundary by determining the
maximum margin hyperplane.
The weight vector w determines
the orientation of the boundary
and the support vectors (marked
in black) define the maximum
margin.

classification boundary. Other points, particularly those that

lie farther away, do not contribute in defining the boundary.

In that respect, only the support vectors have a direct effect

on the location of the classification boundary. We can get a

further understanding of the support vectors by considering

an analogy with static equilibrium in mechanics: The forces The support vectors are the data

points that are the most difficult to

classify.
Fn exerted on a static still slab (the decision boundary)

defined by the normal vector w must satisfy the following

equilibrium conditions:

334 j. rogel-salazar

∑
n

Fn = 0, (9.3)

∑
n

sn × Fn = 0, (9.4)

where sn are the support vectors in our analogy. Equation

These are the equations of

mechanical equilibrium.

(9.4) implies that the total torque exerted on the boundary is

zero, and we can think of these vectors as providing support

for the hyperplane to be in “static equilibrium”. The SVM

algorithm was proposed by Vapnik and collaborators2 in 2 Boser, B. E., I. M. Guyon, and
V. N. Vapnik (1992). A training
algorithm for optimal margin
classifiers. In 5th Annual ACM
Workshop on COLT, Pittsburgh, PA,
pp. 144–152. ACM Press

1992 and variants and its applications are quite varied.

Remember that we are interested in obtaining a linear

classifier where the margin is as large as possible.

Furthermore, let us recall that the distance from a point

with coordinates (x0, y0) to a line defined by

Ax + By + C = 0 is given by:

d =
|Ax0 + By0 + C|√

A2 + B2
, (9.5)

and hence the distance from one of the dotted lines in

Figure 9.3 and the classification boundary is given by:

This is the distance from the

support vector to the classification

boundary.

|wTx + b|
||w|| =

1
||w|| , (9.6)

and the margin is therefore twice this amount. It is clear

that in order to maximise the margin we need to minimise

||w|| with the condition that there are no other points

data science and analytics with python 335

inside the margin. It is possible to express this optimisation

problem as:

min
w,b

1
2
||w||2, (9.7)

s.t. : yi

(
wTx + b

)
≥ 1, i = 1, . . . , n.

Up to this point we have considered a situation where the

The SVM algorithm as an

optimisation problem.

data points are linearly separable as depicted in panel a)

of Figure 9.1. Nonetheless, in general the data may not In some cases we can tolerate a

larger margin at the expense of

incurring some training error. This

can be done with the help of slack

variables.

necessarily be so nicely separated. In those cases we can

consider using a larger margin than the one originally

obtained at the expense of incurring some training error.

This can be achieved by introducing slack variables ξi ≥ 0

and replacing the constraint of the optimisation problem in

Equation (9.7) with the following one:

yi

(
wTx + b

)
≥ 1− ξi, i = 1, . . . , n. (9.8)

The slack variables generalise our optimisation problem

allowing for some misclassification in the training records at

a cost C. A data point is misclassified if the value of its slack The slack variables provide us

with a way to regularise our

optimisation problem.
variable is greater than 1. A bound on the number of

misclassified examples is given by the sum of the slack

variables. Our optimisation problem can therefore be

expressed as:

The soft-margin SVM formulation.min
w,b

1
2
||w||2 + C ∑ ξi, (9.9)

s.t. : yi

(
wTx + b

)
≥ 1− ξi, ξi ≥ 0.

336 j. rogel-salazar

This formulation of the support vector machine algorithm is

called the soft-margin SVM3. This is a form of the variance- 3 Cortes, C. and V. Vapnik (1995).
Support vector networks. Machine
Learning 20, 273–297

bias trade-off we know and love. Every constraint imposed

can be satisfied for a sufficiently large ξi. The constant C is

a regularisation parameter: For small values of C we ignore

the constraint and we obtain a large margin, whereas for

large values of C the constraint is imposed and we end up

with a narrow margin. If C → ∞ then all constraints are

imposed and we get a “hard” margin.

Let us start by solving the quadratic programming problem

given in Equation (9.7). Since it is a constrained

optimisation problem we can start by using the well-known

method of Lagrange multipliers4 where we are interested in 4 Bertsekas, D. (1996). Constrained
Optimization and Lagrange
Multiplier Methods. Athena
scientific series in optimization
and neural computation. Athena
Scientific

optimising a function f (x, y) subject to the constraint

g(x, y) = 0. We construct a new function called the

Lagrangian such that:

L(x, y, α) = f (x, y)− αg(x, y), (9.10)

where the new variable α is called the Lagrange multiplier.

The method can be extended to be applied to n dimensions

and m constraints. This means that taking the appropriate The Lagrange multipliers

method can be used to solve

our optimisation problem.
derivatives to calculate the gradient of the Lagrangian

results in n + m equations all set to zero. This optimisation

problem can be tackled with the so-called steepest descent

algorithm.

For the case of our interest we have that f (·) = 1
2 ||w||2

and g(·) = yi
(
wTx + b

)
− 1 = 0. Our new unconstrained

data science and analytics with python 337

problem in terms of the Lagrangian is expressed as:

min
w,b

L =
1
2
||w||2 −

l

∑
i=1

αiyi

(
wTxi + b

)
+

l

∑
i=1

αi, (9.11)

where l is the number of training points. We know that the

The constrained form of the SVM

optimisation problem.

partial derivatives with respect to w and b should be zero at

the minimum of the Lagrangian function. We can then write

the following:

The partial derivatives of the

Lagrangian formulation with

respect to w and b.

∂wL = w−
l

∑
i=1

αiyixi = 0, (9.12)

∂bL =
l

∑
i=1

αiyi = 0, (9.13)

From the equations above we obtain the following

conditions that enable us to find the margin for our SVM

problem:

These are the conditions that

enable us to find the margin for

our SVM problem.

w =
l

∑
i=1

αiyixi, (9.14)

l

∑
i=1

αiyi = 0. (9.15)

The first condition above already tells us something about

what the weights w are: They turn out to be linear

combinations of the training inputs and outputs, as well as The weights w are linear

combinations of the training

inputs and outputs.
the values αi. In turn, we expect that most of the αi

parameters are zero and those that are not will correspond

to the actual support vectors.

338 j. rogel-salazar

The problem cast above is known as the primal form and

we can solve it directly in that representation. However, Instead of solving the primal

problem we would like to solve

the dual one.
there are advantages in actually solving the dual

representation of the problem. In that manner, instead of

finding the minimum over w and b, with constraints over

the parameters αi, we can maximise over α subject to In this context α is called the dual

variable.conditions (9.14) and (9.15). By substituting these conditions

into expression (9.11) we free ourselves from dependencies

on w and b. The Lagrangian in the dual form is given by:

max
αi

LD = −1
2

l

∑
i=1

l

∑
j=1

αiαjyiyj
(
xi · xj

)
+

l

∑
i=1

αi, (9.16)

subject to
l

∑
i=0

αiyi = 0, and ai ≥ 0.

Transforming the problem into its dual form may seem a

The Lagrangian in the dual

representation.

bit over the top, after all we could find the minimum in the

primal representation. Nonetheless, there is a substantial

gain by using the dual, namely we can solve our problem The inner product maps two

vectors in feature space K into the

real line R.
by performing simple inner products of two vectors and

mapping them into the real line R. This is a very important

result and we will address it more generally in Section 9.1.2.

Solving the optimisation problem in Equation (9.16)

provides us with the values for the parameters αi. We can Given the dual variables αi we can

calculate w and b directly.then find the weights w with the aid of condition (9.14),

whereas b can be obtained from a support vector such that

yi = 1, giving us the maximal margin hyperplane we were

looking for. Finally, we can classify an unseen data point

with features x by looking at the sign of f (x).

data science and analytics with python 339

It is important to note that the vast majority of the weights

will have αi values equal to zero and that only the actual

support vectors will survive. This is effectively a way of The vast majority of the weights

will have αi values equal to zero,

leaving only the support vectors.
reducing the dimensionality of our problem. This reduction

has been achieved in a more straightforward manner thanks

to the application of the inner products in the dual

formulation of our problem. In order to provide some

intuition about the role of the inner product, we can appeal

to the discussions we had in Section 3.8.

The inner product can be used as a measure of the similarity

between two vectors defined over an N-dimensional feature

space. In a 2D space for example, if two vectors are parallel This is the idea behind cosine

similarity discussed in Section 3.8.then their inner product is 1 and we say that the vectors are

completely similar. If the vectors are perpendicular, then their

inner product is zero and we say that they are completely

dissimilar. This notion of similarity can be extended to

higher-dimensional spaces without loss of generality.

With the above discussion in mind, in the case of Equation If two vectors are completely

dissimilar, they do not contribute

to the value of LD .
(9.16), if two vectors xi and xj are dissimilar they will not

contribute to the value of LD. However, if the two vectors

are similar we have two possible results. On the one hand,

they can predict the same target value yi = ±1. In this

case the value given by Equation (9.16) will be positive.

Remember that we are trying to maximise LD, and the

minus sign attached to the first term of Equation (9.16) The first term of Equation (9.16)

contains the inner product.implies that the situation described above will decrease the

value of the overall expression for LD. This means that the

algorithm reduces the importance of similar vectors that

make the same prediction.

340 j. rogel-salazar

On the other hand, if the vectors in question make opposite

predictions about the target value yi, but they are One predicts +1 whereas the other

one −1.nonetheless similar, then the term containing the inner

product is negative. This means that its contribution will

increase the value of LD. This situation helps maximising These are the type of vectors we

are interested in as they help

maximise the value of LD .
our objective function. Vectors like these are actually the

examples we are interested in, as they are the ones of

utmost importance to be able to discriminate our two

classes.

9.1.2 The Kernel Trick

Our discussion of the support vector machine

algorithm has relied on the fact that the classes in our

problem can be distinguished thanks to a linear boundary.

We have seen how the constraint can be relaxed by

including slack variables, however the linear separability The application of the SVM

algorithm is not confined to

linearly separable classes.
limitation remains. Although linear separability is a case of

interest, we cannot leave aside the fact that there are many

cases where a nonlinear boundary exists.

In those cases we need the implementation of nonlinear

support vector machines. The main idea is to obtain a linear

boundary by mapping the data into a higher-dimensional The main aim is to obtain a linear

boundary by mapping data into a

higher-dimensional space.
space. That is indeed possible but we can come across a few

issues. We may not be certain about the type of

transformation that needs to be done to obtain linear

separability. Even if we did know, the transformation might

turn out to be computationally difficult and

time-consuming.

data science and analytics with python 341

To a certain extent that is the issue we have already

circumvented in the previous section by avoiding the

optimisation problem in the primal form shown in Equation

(9.11). Instead we used the dual formulation where the A suitable kernel enables

us to carry out the required

transformation letting us operate

implicitly in the original space.

inner product enabled us to remap the vectors xi into a

representation where we did not have to carry out any

calculations in the original feature space.

This is possible thanks to the application of a suitable kernel

to carry out a transformation that lets us operate implicitly

in the original feature space. This is what is known as the

kernel trick.

A kernel is a function K(x, y) whose arguments x and y

can be real numbers, vectors, functions, etc. It is effectively

a map between these arguments and a real value. The

operation is independent of the order of the arguments. We This means that K(x, y) = K(y, x).

are familiar with at least one such kernel: The well-known

vector product. With x and y being two N-dimensional

vectors, the inner product is given by:

The inner product is a well-known

kernel.
K(x, y) = xTy =

N

∑
i=1

xiyi. (9.17)

The kernel trick is a direct implementation of the Mercer

theorem: With K being a mapping as defined above and

a non-negative definite, symmetric continuous function,

there exists a set of functions {φi} and a set of positive real

numbers {λi} with i ∈N such that

The Mercer theorem is the

mathematics behind the kernel

trick.

K(u, v) =
∞

∑
i=1

λiφi(u)φi(v). (9.18)

342 j. rogel-salazar

The Mercer theorem can be seen as an analogue of the

singular value decomposition we discussed in Section 8.3. The Mercer theorem can be seen

as an analogue of the singular

value decomposition.
In this case the kernel lives in an infinite-dimensional space.

So, for a positive-definite symmetric matrix A we can define

a linear operation such that when applied to a vector x, it

generates another vector y:

This is the usual matrix

multiplication that we know

and love.
Ax = y, or

N

∑
m=1

a[m, n]x[m] = y[m]. (9.19)

The eigenvalues and corresponding eigenfunctions are

defined as:

N

∑
m=1

a[m, n]φi[m] = λiφi[n]. (9.20)

The eigenvalues are non-negative and the eigenfunctions are

The eigenvalues are non-negative

and the eigenfunctions are

orthonormal.

orthonormal. As such, the eigenfunctions that correspond to

non-zero eigenvalues form a basis for the matrix A, and we

can therefore decompose it as:

We can decompose the matrix in

this way.
a[m, n] =

N

∑
i=1

λiφi[m]φj[n]. (9.21)

The kernel trick implies that we do not need to compute,

or even know, the functions φi. Instead the kernel defines

the appropriate inner products in the transformed space. In The kernel trick implies that we

do not need to compute, or even

know, the functions φi .
that way, it is possible to define nonlinear support vector

machines where the objective function can be written as:

LD =
l

∑
i=1

αi −
1
2

l

∑
i=1

l

∑
j=1

αiαjyiyjK(xi, xj). (9.22)

data science and analytics with python 343

We have a choice of kernels to use. Some of the more

popular ones include:

• Linear: K(x, y) = xTy

• Polynomial: K(x, y) =
(
xTy + 1

)d
Here is a selection of some

popular kernels that we can

use.• Gaussian: K(x, y) = exp
(
−γ||x− y||2

)
• Sigmoid: K(x, y) = tanh (κx · y− δ)

We can certainly take our pick, but remember that more

complicated models may not lead to good generalisation.

Beware of overfitting.

9.1.3 SVM in Action: Regression

The support vector machine algorithm can be

applied in regression problems as a way to optimise the

generalisation boundaries for the regression line. In this SVM can be used in regression

problems.case the feature variables are first mapped onto the higher-

dimensional space and then a linear model is used.

The generalisation performance of the SVM depends on

the kernel used, but as with other regularised models,

it also depends on the hyperparameter C introduced in

Equation (9.9). This hyperparameter gives us the chance to

fine-tune the model complexity: If C tends to infinity, then Remember, it is all about the bias

and variance trade-offwe are effectively optimising the model given only the data

observed, and disregarding completely the complexity of

the model.

Let us see how we can run SVM for regression using the

mammals data we introduced in Chapter 4. Let us recall

344 j. rogel-salazar

that the dataset looks at the relationship of the body mass The data is available at http://

dx.doi.org/10.6084/m9.figshare.

1565651 as well as http://www.

statsci.org/data/general/sleep.

html.

of an animal and the mass of its brain. As before, let us start

by importing some useful Python libraries:

%pylab inline

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

We will now load the dataset into a Pandas dataframe and

sort it. We do this so that at a later stage our plot looks as

we expect it and not like a bad piece of pseudo-modern art:

We sort the data with the method

.sort_values().
mammals = pd.read_csv(u’./Data/mammals.csv’)\

.sort_values(’body’)

Let us load the values of the required columns into

appropriate variables for ease of manipulation:

body = mammals[[’body’]].values

brain = mammals[’brain’].values

Please note that we have also created objects to hold the

values of the quantities of interest. We are interested in We will compare the results of

the SVM with the simple linear

regression model.
comparing the result obtained using the well-known linear

regression models we discussed in Chapter 4 with the SVM

algorithm. Let us load the relevant models from Scikit-learn:

http://dx.doi.org/10.6084/m9.figshare.1565651
http://www.statsci.org/data/general/sleep.html
http://www.statsci.org/data/general/sleep.html
http://www.statsci.org/data/general/sleep.html
http://dx.doi.org/10.6084/m9.figshare.1565651
http://dx.doi.org/10.6084/m9.figshare.1565651

data science and analytics with python 345

from sklearn.linear_model import LinearRegression

from sklearn import svm

SVM contains methods for Support Vector Regression

including SVR and LinearSVR. The former accepts as input

different kernels and the latter is similar to SVR with Scikit-learn has the following

implementations for Support

Vector Regression: SVR and

LinearSVR.

kernel=’linear’. LinearSVR has more flexibility in the

choice of penalties and loss functions. It is also worth

mentioning that the default kernel for SVR is a Gaussian

kernel, also known as a radial basis function (RBF) kernel.

Let us instantiate a couple of SVR models with a fixed value

for the hyperparameter C:

We instantiate a model with a

linear kernel and one with a

Gaussian one.

svm_lm = svm.SVR(kernel=’linear’, C=1e1)

svm_rbf = svm.SVR(kernel=’rbf’, C=1e1)

The first model above is a SVM for regression with a linear

kernel, where as the second one has a Gaussian kernel. We

can now train our models:

svm_lm.fit(np.log(body), np.log(brain))

svm_rbf.fit(np.log(body), np.log(brain))

For comparison, we will now instantiate and fit a regression

We train our models with the log

of the available variables.

model with logarithmic transformation:

Please note that we can chain the

methods.
logfit = LinearRegression().fit(np.log(body),\

np.log(brain))

346 j. rogel-salazar

Figure 9.4: A comparison of the
regression curves obtained using
a linear model, and two SVM
algorithms: one with a linear
kernel and the other one with a
Gaussian one.

The predictions of the models above can be easily obtained

with the predict method for each of the models. In this case

we are directly attaching them to the Pandas dataframe we

started with:

We can obtain the predictions for

all the trained models.

mammals[’log_regr’] = np.exp(logfit.\

predict(np.log(body)))

mammals[’linear_svm’] = np.exp(svm_lm.\

predict(np.log(body)))

mammals[’rbf_svm’] = np.exp(svm_rbf.\

predict(np.log(body)))

The result of the three regression procedures applied to the

mammals dataset can be seen in Figure 9.5. Note that in this

data science and analytics with python 347

case the linear kernel performs no better and even worse

than the simple linear model we saw in Chapter 4. The

Gaussian kernel did not require us to make any explicit

The Gaussian kernel seems to give

better results than the other two

models.

transformations and, in this case, gets closer to the values

observed in the original dataset. Also note that close to the

origin the Gaussian kernel produced some wiggles in the

regression curve. Finally, please remember that overfitting is

still an adversary that needs to be considered. We leave the

tuning of the hyperparameter C as well as the

implementation of cross-validation as an exercise for the

reader.

9.1.4 SVM in Action: Classification

The second application of support vector machines we

will see is that of classification. As we saw in Figure 9.3, the

maximum margin hyperplane serves as a boundary between

different classes. See Equation (9.2) for the mathematical

expression of this statement.

Let us implement the SVM for classification using the wine

data we encountered in Chapter 5. The dataset can be found

in the UCI Machine Learning Repository under “Wine

Dataset”5 and is available at http://archive.ics.uci.edu/ 5 Lichman, M. (2013a). UCI
Machine Learning Repository,
Wine Data. https://archive.

ics.uci.edu/ml/datasets/

Wine. University of California,
Irvine, School of Information and
Computer Sciences

ml/datasets/Wine. Recall that the data records the results of

chemical analysis of Italian wines grown in the same region

from three different cultivars.

Let us start by loading the appropriate libraries into Python

so that we can read the CSV file where the data is contained:

http://archive.ics.uci.edu/ml/datasets/wine
http://archive.ics.uci.edu/ml/datasets/wine
http://archive.ics.uci.edu/ml/datasets/wine
http://archive.ics.uci.edu/ml/datasets/wine
http://archive.ics.uci.edu/ml/datasets/wine

348 j. rogel-salazar

%pylab inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

Using Pandas, we will load the data into a dataframe called
The data is loaded into Pandas,

and the target variable is

separated from the rest of the

dataset.

wine. The data is such that the target variable is contained

in the same table and thus we separate the Cultivar feature

into a target variable Y, leaving the rest of the features in the

variable X:

wine = pd.read_csv(u’./Data/wine.csv’)

X = wine.drop([’Cultivar’], axis=1).values

Y = wine[’Cultivar’].values

In the same way that we dealt with this dataset for

clustering in Section 5.2.2, we will only use the Alcohol and

We will only use the Alcohol and

Colour Intensity features.

Colour Intensity features in our classification task. This will

make our example simpler and easier to understand:

X1=wine[[’Alcohol’,’Colour_Intensity’]].values

We can now split our data set into training and testing for

cross-validation purposes:

As good jackalope datascientists,

we are well-acquainted with

creating training and testing

datasets.

import sklearn.model_selection as ms

XTrain, XTest, YTrain, YTest =\

ms.train_test_split(X1, Y,\

test_size= 0.3, random_state=7)

data science and analytics with python 349

Scikit-learn provides implementations of Support Vector

Classification including SVC and LinearSVC. As with the For classification, Scikit-

learn has SVC and LinearSVC

implementations.
Support Vector Regression case, SVC takes as input different

kernels, whereas LinearSVC is similar to SVC with

kernel=’linear’. Once again, as in the regression case,

LinearSVC has more flexibility in the choice of penalties Remember that RBF stands for

radial basis function.and loss functions. Finally, remember that the default kernel

for SVC is a Gaussian one or RBF.

Let us create an instance of the SVC classifier with a

Gaussian kernel as follows:

Remember that the default kernel

for SVC is a Gaussian one.
from sklearn import svm

SVMclassifier = svm.SVC()

We can use GridSearchCV in conjunction with the training

set created above to find a suitable value for the

hyperparameter C in our model. In this case we set up a

dictionary for our search with values ranging between 0.5

and 2:

We will search for the best

hyperparameter C.

Cval = 2. ** np.arange(-1, 1.2, step=0.2)

n_grid = [{’C’:Cval}]

We can now set up our cross-validated grid search with a

support vector machine for classification:

We use GridSearchCV to find the

best value for the hyperparameter.

In this case we are using 100 folds.

from sklearn.model_selection import GridSearchCV

cv_svc = GridSearchCV(estimator=SVMclassifier,\

param_grid=n_grid,\

cv=ms.KFold(n_splits=100))

350 j. rogel-salazar

Let us now apply the search to data coming from the

training set we constructed above. We can also store the

value of the best value for the parameter C for future use:

The model can finally be fitted.

cv_svc.fit(XTrain, YTrain)

best_c = cv_svc.best_params_[’C’]

Figure 9.5: Heatmap of the
mean cross-validation scores for
the a support vector machine
algorithm with a Gaussian
kernel for different values of
the parameter C.

Let us see what the best parameter found is in this case:

> print(‘‘The best parameter is: C =’’, best_c)

The best parameters is: C = 1.74110112659

data science and analytics with python 351

In Figure 9.5 we can see a heatmap of the search performed

with the different values for C. As we can see, for C =

1.7411 we find the best mean cross-validation score for the

model. With this value it is now possible to construct a

model to be used for training and testing:

svc_clf = svm.SVC(C=best_c)

svc_clf.fit(XTrain, YTrain)

It is now possible to obtain the predictions provided by the

We now create a model using the

best parameter found and train it.

model for the data points in the testing set. Let us take a

look:

y_p = svc_clf.predict(XTest)

For completeness, let us take at look ar the classification

We obtain the predictions for the

testing dataset.

report obtained for the testing dataset:

The classification report gives us

information about the precision

and recall among other things.

> from sklearn import metrics

> print(metrics.classification_report(y_p, YTest))

precision recall f1-score support

1 0.85 0.69 0.76 16

2 0.92 0.92 0.92 24

3 0.76 0.93 0.84 14

avg / total 0.86 0.85 0.85 54

Using the same value for C obtained above, let us compare

the classification boundaries obtained using different

kernels:

352 j. rogel-salazar

C = best_c

svc = svm.SVC(kernel=’linear’, C=C).\

fit(XTrain, YTrain)

rbf_svc = svm.SVC(kernel=’rbf’, gamma=0.7,\

C=C).fit(XTrain, YTrain)

poly_svc = svm.SVC(kernel=’poly’, degree=3,\

C=C).fit(XTrain, YTrain)

lin_svc = svm.LinearSVC(C=C).fit(XTrain, YTrain)

First, we are building a support vector machine (SVM) with

We are creating support vector

machine models with linear,

Gaussian and polynomial kernels

for comparison.

a linear kernel with the SVC implementation. A second

model has a Gaussian kernel with gamma=0.7 and a third

one with a cubic polynomial kernel (degree=3). Finally, with

LinearSVC we create a model using an alternative linear

kernel implementation. A comparison of these models is

Note that the boundaries for linear

kernels are lines, whereas the ones

for nonlinear kernels are more

intricate.
shown Figure 9.6. We can see how the boundaries created

by the linear kernels are given by straight lines, whereas the

nonlinear ones provide us with more intricate boundaries.

The plots in Figure 9.6 also show the data points in the

testing set coloured by the class to which they belong. We

can see the distribution of misclassified points given by

each of the four models used. It is clear that we can use

more features than the two chosen in this example. This will

make the visualisation step more challenging than the 2D

case shown here.

data science and analytics with python 353

Figure 9.6: A comparison of
the classification boundaries
obtained using support vector
machine algorithms with different
implementations: SVC with a
linear, Gaussian and degree-
3 polynomial kernels, and
LinearSVC.

9.2 Summary

The kernel trick is a useful tool to consider alongside

other techniques such as feature selection and

dimensionality reduction to tackle any machine learning

problem that we encounter.

In this chapter we saw how appropriate mappings into

higher-dimensional feature spaces can be used to make

regression or classification possible without actually having

to carry out explicitly any calculations in the

high-dimensional space. This is possible thanks to the

so-called kernel trick. We applied this trick in the

354 j. rogel-salazar

implementation of the Support Vector Machine (SVM)

algorithm.

A support vector machine is a binary linear classifier were

the classification boundary is constructed so as to minimise

the generalisation error in our learning task. The main idea

behind SVM is that data may be linearly separable in the

high-dimensional space, but not linearly separable in the

original feature space. The use of different kernels provides

us with the flexibility to find nonlinear boundaries that

separate the different classes in our problem as

demonstrated in this chapter.

355

Pipelines in Scikit-Learn

The term pipeline is used to describe a series of ordered

concatenated data transformations and manipulations. The

order of the transformations is important as each phase of a A pipeline is a series of ordered

concatenated data transformations

and manipulations.
pipeline feeds from the previous one: The outcome of any

given step serves as the input for the next one as data flows

through the pipeline from beginning to end.

Data pipelines are very useful as they are effectively

automated transformations used to perform routine data

maintenance and analysis tasks, ensuring the validity of the

output data to be fed to the next stage of the workflow. For They help us manage our

workflow by defining the steps we

need to take.
instance in a required workflow it may be necessary to

ensure that the data has the correct units and is scaled

before imputing any missing values and is ready to be used

for training a particular algorithm.

It is possible to implement pipelines in Scikit-learn, helping

us improve our code and manage our models. A pipeline

can be used to amalgamate all the steps we may need to We discussed an example in

Section 8.2.2.prepare our data and make appropriate predictions. In

Section 8.2.2 we applied a pipeline to reduce the

356 j. rogel-salazar

dimensionality of the Iris dataset with principal component

analysis and then use the result in a logistic regression.

Let us see another example implementing a pipeline for

a LASSO regression using the Boston housing dataset

included in Scikit-learn. The dataset has information from

the US Census Service concerning housing in the area of

Boston, Massachusetts. The dataset was originally published

by Harrison and Rubinfeld6 and has 13 attributes as follows: 6 Harrison Jr, D. and Rubinfeld,
D. L. (1978). Hedonic housing
prices and the demand for clean
air. J. Environ. Economics &
Management 5, 81–102• CRIM - per capita crime rate by town

• ZN - proportion of residential land zoned for lots over

25, 000 sq.ft.

• INDUS - proportion of non-retail business acres per town

• CHAS - Charles River dummy variable (1 if tract bounds

river; zero otherwise)

• NOX - nitric oxides concentration (parts per 10 million)

• RM - average number of rooms per dwelling These are the features in the

Boston Housing dataset in Scikit-

learn.• AGE - proportion of owner-occupied units built prior to

1940

• DIS - weighted distances to five Boston employment

centres

• RAD - index of accessibility to radial highways

• TAX - full-value property-tax rate per $10, 000

• PTRATIO - pupil-teacher ratio by town

• B - 1000(Bk− 0.63)2 where Bk is the proportion of black

population by town

data science and analytics with python 357

• LSTAT - percentage lower status of the population

Let us load the dataset:

The Boston Housing dataset can

be loaded from load_boston.

%pylab inline

from sklearn.datasets import load_boston

boston = load_boston()

X = boston[‘‘data’’]

Y = boston[‘‘target’’]

names = boston[‘‘feature_names’’]

We will build a pipeline that takes into account two main

steps, one to standardise the variables as described in

Section 4.6 and then use the result in a LASSO model. We Our pipeline will consist of a

standardisation step and a LASSO

model.
will use the pipeline to search for the appropriate

hyperparameter for the model and finally use the parameter

found to train the model and score it.

Let us first load some useful modules: We will use

preprocessing to standardise our variables, cv to create our

training and testing partitions, Lasso for modelling our data,

GridSearchCV to search for the optimal hyperparameter and

Pipeline to construct our pipeline.

These are the modules and

methods we will use in this

analysis.

from sklearn import preprocessing

import sklearn.model_selection as ms

from sklearn.linear_model import Lasso

from sklearn.model_selection import GridSearchCV

from sklearn.pipeline import Pipeline

We need to create instances for the steps that will be

included in our pipeline. In this case standardisation of our

358 j. rogel-salazar

variables with Scikit-learn’s StandardScaler and a LASSO

model.

We need to instantiate the steps to

be used in our pipeline.
std_scaler = preprocessing.StandardScaler()

lasso1 = Lasso()

We can now define our pipeline. We have to provide a label

to each of our steps so that we can refer to them later on in

the process. Let us call the standardisation step scaling and

the model mylasso:

Note that we are providing a

label to each of the steps in our

pipeline.

pipe = Pipeline(steps=[(’scaling’, std_scaler),\

(’mylasso’, lasso1)])

We need to partition our data into training and testing:

As usual we partition our data

into training and testing.

XTrain, XTest, yTrain, yTest =\

ms.train_test_split(X, Y,\

test_size=0.2, random_state=1)

Let us define a set of values to search for the

hyperparameter.

We will perform a search over a

range of values for the model’s

hyperparameter.

lambda_range = linspace(0.001, 0.5, 250)

We can now pass our pipeline to the exhaustive search

module and fit the search with the training data as follows:

data science and analytics with python 359

cv_lasso = GridSearchCV(pipe,\

dict(mylasso__alpha=lambda_range),\

cv=ms.KFold(n_splits=100))

cv_lasso.fit(XTrain,yTrain)

The grid search will take the raw training data and put it

We pass our pipeline as the model

to be used by GridSearchCV. We

then execute the search over the

training dataset.

through the pipe: First it calls the standardisation process

and the result will be fed to the LASSO model for each of

the hyperparameter values for cross validation. We can take

a look at the best parameter obtained from this process as

follows:

The result of the hyperparameter

search is prefixed by the label

provided when defining our

pipeline.

bestLambda=cv_lasso.best_params_[’mylasso__alpha’]

print(bestLambda)

0.229457831325

Please note that we are referring to the parameter from the

LASSO model by prefixing it with the label given to the

pipeline followed by a double underscore.

Now that we have found the optimal hyperparameter we

can set it as a parameter in the pipeline with the help of the

set_params method:

We can pass the new parameter to

the pipe with set_params.
pipe.set_params(mylasso__alpha=bestLambda)

We are now in a position to train our model:

360 j. rogel-salazar

> BostonLassoModel = pipe.fit(XTrain, yTrain)

Let us take a look at the coefficients we obtained:

The pipeline can be directly used

to train our final model.

Note that a few of the attributes

have coefficients equal to zero.

> BostonLassoModel.named_steps[’mylasso’].coef_

array([-0.3716588 , 0.43517511,

-0. , 0.47183528,

-1.05678543, 2.4463162 ,

-0. , -1.51971828,

0. , -0. ,

-1.83958382, 0.44593894,

-3.83998777])

Since we have used a LASSO model it is no surprise that

some of the coefficients used in the model have shrunk

down to zero. You can take a look at the details in Section

4.9.

Finally, let us score the model and create predictions for the

testing partition:

Finally we can score and obtain

predictions from our model.

Et voilà!

> BostonLassoModel.score(XTest, yTest)

0.73531414540197193

> Boston_Pred = BostonLassoModel.predict(XTest)

361

Bibliography

Allison, T. and D. V. Cicchetti (1976, Nov 12). Sleep

in mammals: ecological and constitutional correlates.

Science 194, 732–734.

Bayes, T. (1763). An essay towards solving a problem in the

doctrine of chances. Philosophical Transactions 53, 370–418.

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour.

Rand Corporation. Research studies. Princeton U.P.

Bertsekas, D. (1996). Constrained Optimization and Lagrange

Multiplier Methods. Athena scientific series in optimization

and neural computation. Athena Scientific.

Borges, J. L. (1984). El Libro de Arena. El Ave Fénix. Plaza &

Janés.

Boser, B. E., I. M. Guyon, and V. N. Vapnik (1992). A

training algorithm for optimal margin classifiers. In 5th

Annual ACM Workshop on COLT, Pittsburgh, PA, pp. 144–

152. ACM Press.

Breiman, L. (1996). Bagging predictors. Machine

Learning 24(2), 123–140.

362 j. rogel-salazar

Breiman, L. (2001). Random forests. Machine Learning 45(1),

5–32.

Cole, S. (2004). History of fingerprint pattern recognition.

In N. Ratha and R. Bolle (Eds.), Automatic Fingerprint

Recognition Systems, pp. 1–25. Springer New York.

Continuum Analytics (2014). Anaconda 2.1.0. https:

//store.continuum.io/cshop/anaconda/.

Cortes, C. and V. Vapnik (1995). Support vector networks.

Machine Learning 20, 273–297.

Cover, T. M. (1969). Nearest neighbor pattern classification.

IEEE Trans. Inform. Theory IT-13, 21–27.

Devlin, K. (2010). The Unfinished Game: Pascal, Fermat, and

the Seventeenth-Century Letter That Made the World Modern.

Basic ideas. Basic Books.

DLMF (2015). NIST Digital Library of Mathematical

Functions. http://dlmf.nist.gov/, Release 1.0.10 of 2015-08-

07.

Downey, A. (2012). Think Python. O’Reilly Media.

Duffy, F. H. et al. Unrestricted principal components

analysis of brain electrical activity: Issues of data

dimensionality, artifact, and utility. Brain Topography 4(4),

291–307.

Eysenck, M. and M. Keane (2000). Cognitive Psychology: A

Student’s Handbook. Psychology Press.

Farris, J. S. (1969). On the cophenetic correlation coefficient.

Systematic Biology 18(3), 279–285.

https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
http://dlmf.nist.gov/

data science and analytics with python 363

Fawcett, T. (2006). An introduction to ROC analysis. Patt.

Recog. Lett. 27, 861–874.

Fisher, R. A. (1936). The use of multiple measurements in

taxonomic problems. Annals of Eugenics 7(2), 179–188.

Fold-it. Solve puzzles for science. https://fold.it/

portal/.

Freedman, D., R. Pisani, and R. Purves (2007). Statistics.

International student edition. W.W. Norton & Company.

Freund, Y. and R. Schapire (1997). A decision-theoretic

generalization of on-line learning and an application to

boosting. J. Comp. and Sys. Sciences 55(1), 119–139.

Galati, G. (2015). 100 Years of Radar. Springer International

Publishing.

Galton, F. (1886). Regression Towards Mediocrity in

Hereditary Stature. The Journal of the Anthropological Institute

of Great Britain and Ireland 15, 246–263.

Galton, F. (1907). Vox populi. Nature 75(1949), 450–451.

Geurts, P., D. Ernst, and L. Wehenkel (2006). Extremely

randomized trees. Machine Learning 63, 3–42.

Gilder, J. and A. Gilder (2005). Heavenly Intrigue: Johannes

Kepler, Tycho Brahe, and the Murder Behind One of History’s

Greatest Scientific Discoveries. Knopf Doubleday Publishing

Group.

Golub, G. and C. Van Loan (2013). Matrix Computations.

Johns Hopkins Studies in the Mathematical Sciences. Johns

Hopkins University Press.

https://fold.it/portal/
https://fold.it/portal/

364 j. rogel-salazar

Harrison Jr, D. and Rubinfeld, D. L. (1978). Hedonic

housing prices and the demand for clean air. J. Environ.

Economics & Management 5, 81–102.

Hilbert, D. (1904). Grundzüge einer allgeminen Theorie

der linaren Integralrechnungen. (Erste Mitteilung).

Nachrichten von der Gesellschaft der Wissenschaften zu

Göttingen, Mathematisch-Physikalische Klasse, 49–91.

Hoerl, A. E. and R. W. Kennard (1970). Ridge

regression: Biased estimation for nonorthogonal problems.

Technometrics 12(3), 55–67.

Hu, Y., Y. Koren, and C. Volinsky (2008). Collaborative

filtering for implicit feedback datasets. In Proceedings

of the 2008 Eighth IEEE International Conference on Data

Mining, ICDM ’08, Washington, DC, USA, pp. 263–272.

IEEE Computer Society.

Hunt, E. B., J. Marin, and P. J. Stone (1966). Experiments in

induction. New York: Academic Press.

Kaggle (2012). Titanic: Machine Learning from Disaster.

https://www.kaggle.com/c/titanic.

Langtangen, H. (2014). A Primer on Scientific Programming

with Python. Texts in Computational Science and

Engineering. Springer Berlin Heidelberg.

Laplace, P. and A. Dale (2012). Pierre-Simon Laplace

Philosophical Essay on Probabilities: Translated from the fifth

French edition of 1825 With Notes by the Translator. Sources

in the History of Mathematics and Physical Sciences.

Springer New York.

https://www.kaggle.com/c/titanic

data science and analytics with python 365

Le, Q. V., R. Monga, M. Devin, G. Corrado, K. Chen,

M. Ranzato, J. Dean, and A. Y. Ng (2011). Building high-

level features using large scale unsupervised learning.

CoRR abs/1112.6209.

Lehren, A. W. and Baker, A. (2009, Jun 18th). In New York,

Number of Killings Rises With Heat. The New York Times.

Lichman, M. (2013a). UCI Machine Learning Repository,

Wine Data. https://archive.ics.uci.edu/ml/datasets/

Wine. University of California, Irvine, School of Information

and Computer Sciences.

Lichman, M. (2013b). UCI Machine Learning Repository,

Wisconsin Breast Cancer Database. https://archive.

ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+

(Original). University of California, Irvine, School of

Information and Computer Sciences.

Lima, M. (2011). Visual Complexity: Mapping Patterns of

Information. Princeton Architectural Press.

Lima, M. and B. Shneiderman (2014). The Book of Trees:

Visualizing Branches of Knowledge. Princeton Architectural

Press.

Lohr, S. (2014, Aug 17th). For Big-Data Scientists, ’Janitor

Work’ Is Key Hurdle to Insights. The New York Times.

MacQueen, J. (1967). Some Methods for classification and

Analysis of Multivariate Observations. In Proceedings of 5-th

Berkeley Symposium on Mathematical Statistics and Probability.

University of California Press.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
https://archive.ics.uci.edu/ml/datasets/wine

366 j. rogel-salazar

Mangasarian, O. L. and W. H. Wolberg (1990, Sep.). Cancer

diagnosis via linear programming. SIAM News 25(5), 1 &

18.

Martin, D. (2003, Jan 19th). Douglas Herrick, 82, Dies;

Father of West’s Jackalope. The New York Times.

McCandless, D. (2009). Information is Beautiful. Collins.

McGrayne, S. (2011). The Theory that Would Not Die: How

Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian

Submarines, & Emerged Triumphant from Two Centuries of

Controversy. Yale University Press.

McKinney, W. (2012). Python for Data Analysis: Data

Wrangling with Pandas, NumPy, and IPython. O’Reilly

Media.

Milligan, Glenn W. and Cooper, Martha C. (1988). A study

of standardization of variables in cluster analysis. Journal of

Classification 5(2), 181–204.

Pearson, K (1904). On the theory of contingency and

its relation to association and normal correlation. In

Mathematical Contributions to the Theory of Evolution.

London, UK: Dulau and Co.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, et al.

(2011). Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research 12, 2825–2830.

Python Software Foundation (1995). Python reference

manual. http://www.python.org.

R Core Team (2014). R: A language and environment for

statistical computing. http://www.R-project.org.

http://www.R-project.org
http://www.python.org

data science and analytics with python 367

Rogel-Salazar, J. (2014). Essential MATLAB and Octave.

Taylor & Francis.

Rogel-Salazar, J. (2016a, Jan). Data Science Tweets.

10.6084/m9.figshare.2062551.v1.

Rogel-Salazar, J. (2016b, Jan). Jackalope Image.

10.6084/m9.figshare.2067186.v1.

Rogel-Salazar, J. and N. Sapsford (2014). Seasonal effects

in natural gas prices and the impact of the economic

recession. Wilmott 2014(74), 74–81.

Rousseeuw, P. J. (1987). Silhouettes: a Graphical Aid to the

Interpretation and Validation of Cluster Analysis. Comp. and

App. Mathematics 20, 53–65.

Scientific Computing Tools for Python (2013). NumPy.

http://www.numpy.org.

Takács, G. and D. Tikk (2012). Alternating least squares

for personalized ranking. In Proceedings of the Sixth ACM

Conference on Recommender Systems, RecSys ’12, New York,

NY, USA, pp. 83–90. ACM.

Tibshirani, R. (1996). Regression Shrinkage and Selection

via the Lasso. J. R. Statist. Soc. B 58(1), 267–288.

Toelken, B. (2013). The Dynamics of Folklore. University Press

of Colorado.

Töscher, A. and M. Jahrer (2009). The BigChaos solution

to the Netflix grand prize. http://www.netflixprize.com/

assets/GrandPrize2009_BPC_BigChaos.pdf.

http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf
http://www.numpy.org

368 j. rogel-salazar

Turing, A. M. (1936). On computable numbers, with an

application to the Entsheidungsproblem. Proceedings of the

London Mathematical Society 42(2), 230–265.

Turing, A. M. (1950). Computing machinery and

intelligence. Mind 59, 433–460.

Weir, A. (2014). The Martian: A Novel. Crown/Archetype.

Wolpert, D. H. (1992). Stacked generalization. Neural

Networks 5(2), 241–259.

Zimmer, C. (2012). Rabbits with Horns and Other Astounding

Viruses. Chicago Shorts. University of Chicago Press.

Zingg, R., J. Fikes, P. Weigand, and C. de Weigand (2004).

Huichol Mythology. University of Arizona Press.

Zooniverse. Projects. https://www.zooniverse.org/

projects.

https://www.zooniverse.org/projects
https://www.zooniverse.org/projects

369

Index

AdaBoost Classifier, 278

Agglomerative clustering, 242

Amazon, 4

Analysis of variance, 245

ANOVA, 245

Area-under-the-curve, 202

Arithmetic operators, 40

Artificial intelligence, 3, 90

AUC, 202

Azkaban, 19

Backslash, 43

Bagging

Resampling, 271

Bagging Classifier, 278

Bayes’ theorem, 227, 230

Bayes, Thomas, 227

Bayesian analysis, 226

Bayesian statistics, 231

Bernoulli distribution, 214

Bias, 102

Bias-variance balance, 102, 172

Big data, 6

Borges, Jorge Luis, 330

Bowman, 100

Brahe, Tycho, 89

Business acumen, 7

Business intelligence, 82

Cassandra, 20

Categorical features, 97

Causation, 133

Centroids, 184

Character encoding, 234

Chemistry, 88

Citizen science, 266

Classification, 111, 195, 196

KNN, 205

Logistic regression, 211

Clustering, 22, 181, 182

Cohesion, 187

K-means, 183

Separation, 187

Silhouette, 188

Validation, 186

Code readability, 43

Coefficient of determination, 148

Cognitive psychology, 88

370 j. rogel-salazar

Cognos, 82

Cold start problem, 316, 323

Collaborative filtering, 92

Item-based, 317

Memory-based, 317

Model-based, 317

Communication skills, 7, 94

Complex numbers, 43

Computer science, 7

Confounding variable, 133

Confusion matrix, 198

Constraints and assumptions, 6

Control flow

For loop, 57

If statement, 55

While loop, 56

Convex objective function, 332

Corpus, 232

Correlation coefficient, 132

Cosine similarity, 109, 312, 339

Cottontail rabbit papilloma virus, 11

Cross-validation, 100, 104, 116, 124, 174

k-fold, 125, 174

Leave-one-out, 126

Leave-p-out, 126

Curse of dimensionality, 110, 286

D3, 17

Darwin, Charles, 134

Data

Availability, 6

Timeliness, 6

Data scientist, 7

Data compression, 287

Data preprocessing, 289

Data science, 2, 3, 98

Academia and Business, 3

Advertising and marketing, 5

Classification analysis, 5

Clustering analysis and market segmentation, 4

Cybersecurity, 5

Definition, 3

Demand forecasting, 5

E-commerce, 4

Examples, 4

Fraud prevention, 5

Market basket analysis, 4

Online services, 5

Predictive analytics, 4

Python, 34

Recommendation systems, 5

Security, 18

Social media analysis, 5

Team, 1

Workflow, 22

Data acquisition, 25

Data munging, 25

Modelling and evaluation, 26

Question identification, 24

Representation and interaction, 26

Data science tools, 16, 17

Big data query languages, 19

Data framework, 19

Data stores, 20

Job scheduling, 19

Open source, 20

Streaming data collection, 19

Technology, 19

Data science workflow, 99

Data scientist

data science and analytics with python 371

Characteristics, 12, 13

Data architect , 15

Definition, 7

Jackalope, 7

Lead data scientist, 15

Project manager, 15

Triumvirate, 14

Unicorn, 9

Data stratification, 121

Data visualisation, 81

Bokeh, 82

Seaborn, 82

Dataset

Testing, 119

Training, 119

de Fermat, Pierre, 226

Decision trees, 249

Post-pruning, 256

Pre-pruning, 256

Purity, 252

Dendrogram, 242

Clade, 243

Dependent variable, 132

Dictionaries, 52

items, 54

keys, 53

values, 53

Dimensionality reduction, 102, 286, 339

Curse of dimensionality, 286

Distance, 106

Divisive clustering, 242

Document analysis, 306

dot command, 73

Dot product, 109

Dual form, 338

Edge, 250

Eigenvalue decomposition, 287

Eigenvalues, 287

Eigenvectors, 287

Elbow test, 294

Ensemble techniques, 265

Bagging, 271

Blending, 276

Boosting, 272

Random forests, 274

Stacking, 276

Error

Generalisation, 121

Out-of-sample, 121

Training, 121

Euclidean distance, 106, 186

Evidence-based decision making, 2

Explanatory variable, 132

Extremely Randomised Trees, 278

Fallout, 201

False negative, 199

False positive, 199

False positive rate, 201

Feature analysis, 88

Feature extraction, 287

Feature selection, 173

Feature scaling, 160

Normalisation, 161

Z-score, 162

Feature selection, 100, 101, 115, 285

LASSO, 285

Fingerprints, 134

Flume, 19

Fourier transform, 165

372 j. rogel-salazar

Frankenstein’s monster, 90

Function, 61

Definition, 61

Galton, Francis, 134

Gamma function, 114

Generalisation, 95, 99, 102

Generalisation error, 102

Generalised linear model, 212

Golem, 90

Google, 4

Graph, 250

Graphviz, 263

Greedy algorithm, 184, 251

GridSearchCV, 176, 221

Hadoop, 19, 21

Hasenbock, 10

HBase, 20

Hierarchical clustering, 242

Complete linkage, 244

Group average, 244

Single linkage, 244

Ward method, 244

Hit rate, 200

Hive, 19

Huichol mythology, 10

Hyperparameter, 104

Image compression, 287

Imitation game, 90

Immutable object

Strings, 43

Tuple, 43, 51

Impurity measure

Classification error, 254

Entropy, 253

Gini impurity, 253

Inconsistency measure, 248

Indentation, 54

Independent variable, 132

Indexing, 44, 74

Colon notation (:), 45

Infinite loop, 57

Information gain, 255

iPython notebook, 65

Iris dataset, 117, 300

Jaccard similarity, 109

Jackalope, 7, 9, 296

Douglas, Wyoming, 11

JSON, 65

Jupyter notebook, 65

K nearest neighbours, 205

K-means, 183

Kafka, 19

Kepler, Johannes, 89

Kernel

Gaussian, 343

Linear, 343

Polynomial, 343

RBF, 345

Sigmoid, 343

Kernel methods, 328, 341

Kernel trick, 341

KNN, 195, 205

L1-norm, 108

L2-norm, 107

data science and analytics with python 373

Label data, 95

LabelEncoder, 220

Lagrange multipliers, 336

Latent semantic analysis, 306

Least squares, 138

Linear algebra, 69, 139, 179, 286

Linear independence, 304

Linear regression

Multivariate, 136

Normal equation, 139

Optimisation, 138

Univariate, 135

Linearly separable dataset, 329

List, 44

append, 45

Comprehension, 48

Concatenation, 46, 70

sort, 46

sorted, 47

Log-odds function, 213

Logarithmic transformation, 155

Logistic function, 212

Logistic regression, 195, 211, 302

Interpretation, 216

Regularisation, 215

Logit function, 213, 217

Machine learning, 3, 87, 90, 91, 98

Supervised learning, 22, 95

Unsupervised learning, 22, 96

Manhattan distance, 107

MapReduce, 19

Margin, 331

math, 67

Mathematics, 3, 88

Matlab, 82

Matplotlib, 81

savefig, 83

Matrix

Inverse, 73

Matrix rank, 304

Maximum margin hyperplane, 332

Mercer theorem, 341

Model selection, 174

Modelling, 6, 18

Interpretation, 16

Modules, 67

math, 68

Multiclass classification, 217

Multicollinearity, 168

Mutable object

List, 44

Naïve Bayes classifier, 22, 92, 195, 226, 232, 306

Neo4j, 20

Netflix, 4

Node, 243, 250

Normal distribution, 163

Numerical features, 97

NumPy, 71

Arrays, 71

Matrix, 71

mean, 80

SVD, 308

Transpose, 73

Odds, 216

Odds ratio, 217

OLS, 146

One-versus-the-rest, 217

374 j. rogel-salazar

Oozie, 19

Ordinary least squares, 146

Overfitting, 100, 102, 103

Pandas, 76

CSV, 81

DataFrame, 77

describe, 79

Excel, 81

groupby, 80

groups, 80

head, 78

size, 80

tail, 78

pandas

crosstab, 258

Pascal, Blaise, 226

Pattern recognition, 87

PCA, 285, 291, 327

Pearson correlation, 148

Physics, 88

Pig, 19

Pinocchio, 90

Pipeline, 302

Plotting, 81

Power law, 156

Precision, 201

Predictive analytics, 4

Predictive learning

see Supervised learning, 95

Primal form, 338

Principal component analysis, 116, 285, 291

print, 42

Probability

Bayesian, 227

Frequentist, 227

Likelihood, 230

Posterior, 230

Prior, 230

Programming, 7

Purity, 252

Python, 1, 20, 21, 31

Commenting code, 38

Control flow, 54

easy-install, 35

Homebrew, 35

Indentation, 33

Interactive shell, 37

iPython notebook, 34, 39

iPython shell, 33

Jupyter notebook, 34, 39

Matplotlib, 34

Methods, 44

Modules, 65

Monty Python, 31

NumPy, 21, 34

Object oriented, 44

Pandas, 34

pip, 35

Portability, 35

Pythonic style, 33

Pythonista, 33

Scikit-learn, 21, 34

SciPy, 21, 34

Scripts, 65

shell, 36

Statsmodels, 34

Strings, 41

QlikView, 82

data science and analytics with python 375

R, 146

Formula notation, 146

R-project, 21

Random Forest Classifier, 278

Random_state, 207

Recall, 200

Receiver operator characteristic, 202

Recommendation systems, 310

Collaborative filtering, 312, 316

Content-based filtering, 312

Regression, 131, 153

Backward elimination, 166

Forward selection, 166

Ill conditioning, 167

LASSO, 174

Linear, 144

Logarithmic transformation, 155

Multivariate, 169

Polynomial, 164

Ridge, 174

Univariate, 144

Regression analysis, 133

Regression to the mean, 134

Regressor, 132

Regularisation, 100, 102, 104, 215, 336

Reliability, 6

Representation, 96

Resampling, 271

Response variable, 132

ROC, 202

Science, 2

Scientific method, 2

Scikit-learn, 116, 143

get_dummies, 260

SciPy, 71

Scree plot, 294

Scribe, 19

Sensitivity, 200

shape, 75

Shilling attack, 323

Shrinkage, 173

Sigmoid function, 212

Simultaneous assignation, 42

Singular value decomposition, 285, 304, 342

Singularity, 90

Slack variables, 335

Slicing, 44, 74

Colon notation (:), 45

Social network analysis, 311

Spark, 19, 65

PySpark, 65

Sparsity

Space, 113

Specificity, 201

SSR, 106

Standardisation, 160

Statistical analysis, 18

Statistics, 2, 7

StatsModels, 143

Steepest descent algorithm, 336

str, 42

String

Concatenation, 42

lower, 49

split, 49

upper, 49

Strong learner, 266

Subject matter expertise, 93

Subtree raising, 256

376 j. rogel-salazar

Subtree replacement, 256

Sum of squared residuals, 106, 138

Supervised learning

Classification, 195, 196

Support vectors, 332

Support vector machines, 22, 327, 328, 331

Nonlinear, 342

Support vector regression, 345

SVD, 285, 304, 310, 327

SVM, 327, 328

Classification, 347

Regression, 343

Soft SVM, 336

Tableau, 82

Taylor series, 165

Term-document matrix, 306

Testing dataset, 120

Text minining, 109

Training dataset, 120

True negative, 199

True negative rate, 201

True positive, 199

True positive rate, 200

Tuple, 49

Turing test, 90

Turing, Alan M., 90

Twitter, 233

type (command), 41

Types, 40

Complex numbers, 41

Floats, 41

Integers, 41

Unlabelled data, 96

Unsupervised learning

Clustering, 181, 182

Utility matrix, 317

Validation dataset, 121

van Rossum, Guido, 31

Variance, 102

Variance-bias tradeoff, 170

Voldemort, 20

Volume

Hypercube, 114

Hypersphere, 114

Weak learner, 266

Whitespace, 54

Wisdom of crowds, 265

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Reader’s Guide
	About the Author
	1: Trials and Tribulations of a Data Scientist
	1.1 Data? Science? Data Science!
	1.1.1 So, What Is Data Science?

	1.2 The Data Scientist: A Modern Jackalope
	1.2.1 Characteristics of a Data Scientist and a Data Science Team

	1.3 Data Science Tools
	1.3.1 Open Source Tools

	1.4 From Data to Insight: the Data Science Workflow
	1.4.1 Identify the Question
	1.4.2 Acquire Data
	1.4.3 Data Munging
	1.4.4 Modelling and Evaluation
	1.4.5 Representation and Interaction
	1.4.6 Data Science: an Iterative Process

	1.5 Summary

	2: Python: For Something Completely Different
	2.1 Why Python? Why not?!
	2.1.1 To Shell or not To Shell
	2.1.2 iPython/Jupyter Notebook

	2.2 Firsts Slithers with Python
	2.2.1 Basic Types
	2.2.2 Numbers
	2.2.3 Strings
	2.2.4 Complex Numbers
	2.2.5 Lists
	2.2.6 Tuples
	2.2.7 Dictionaries

	2.3 Control Flow
	2.3.1 if... elif... else
	2.3.2 while
	2.3.3 for
	2.3.4 try... except
	2.3.5 Functions
	2.3.6 Scripts and Modules

	2.4 Computation and Data Manipulation
	2.4.1 Matrix Manipulations and Linear Algebra
	2.4.2 NumPy Arrays and Matrices
	2.4.3 Indexing and Slicing

	2.5 Pandas to the Rescue
	2.6 Plotting and Visualising: Matplotlib
	2.7 Summary

	3: The Machine that Goes “Ping”: Machine Learning and Pattern Recognition
	3.1 Recognising Patterns
	3.2 Artificial Intelligence and Machine Learning
	3.3 Data is Good, but other Things are also Needed
	3.4 Learning, Predicting and Classifying
	3.5 Machine Learning and Data Science
	3.6 Feature Selection
	3.7 Bias, Variance and Regularisation: A Balancing Act
	3.8 Some Useful Measures: Distance and Similarity
	3.9 Beware the Curse of Dimensionality
	3.10 Scikit-Learn is our Friend
	3.11 Training and Testing
	3.12 Cross-Validation
	3.12.1 k-fold Cross-Validation

	3.13 Summary

	4: The Relationship Conundrum: Regression
	4.1 Relationships between Variables: Regression
	4.2 Multivariate Linear Regression
	4.3 Ordinary Least Squares
	4.3.1 The Maths Way

	4.4 Brain and Body: Regression with One Variable
	4.4.1 Regression with Scikit-learn

	4.5 Logarithmic Transformation
	4.6 Making the Task Easier: Standardisation and Scaling
	4.6.1 Normalisation or Unit Scaling
	4.6.2 z-Score Scaling

	4.7 Polynomial Regression
	4.7.1 Multivariate Regression

	4.8 Variance-Bias Trade-Off
	4.9 Shrinkage: LASSO and Ridge
	4.10 Summary

	5: Jackalopes and Hares: Clustering
	5.1 Clustering
	5.2 Clustering with k-means
	5.2.1 Cluster Validation
	5.2.2 k-means in Action

	5.3 Summary

	6: Unicorns and Horses: Classification
	6.1 Classification
	6.1.1 Confusion Matrices
	6.1.2 ROC and AUC

	6.2 Classification with KNN
	6.2.1 KNN in Action

	6.3 Classification with Logistic Regression
	6.3.1 Logistic Regression Interpretation
	6.3.2 Logistic Regression in Action

	6.4 Classification with Naïve Bayes
	6.4.1 Naïve Bayes Classifier
	6.4.2 Naïve Bayes in Action

	6.5 Summary

	7: Decisions, Decisions: Hierarchical Clustering, Decision Trees and Ensemble Techniques
	7.1 Hierarchical Clustering
	7.1.1 Hierarchical Clustering in Action

	7.2 Decision Trees
	7.2.1 Decision Trees in Action

	7.3 Ensemble Techniques
	7.3.1 Bagging
	7.3.2 Boosting
	7.3.3 Random Forests
	7.3.4 Stacking and Blending

	7.4 Ensemble Techniques in Action
	7.5 Summary

	8: Less is More: Dimensionality Reduction
	8.1 Dimensionality Reduction
	8.2 Principal Component Analysis
	8.2.1 PCA in Action
	8.2.2 PCA in the Iris Dataset

	8.3 Singular Value Decomposition
	8.3.1 SVD in Action

	8.4 Recommendation Systems
	8.4.1 Content-Based Filtering in Action
	8.4.2 Collaborative Filtering in Action

	8.5 Summary

	9: Kernel Tricks up the Sleeve: Support Vector Machines
	9.1 Support Vector Machines and Kernel Methods
	9.1.1 Support Vector Machines
	9.1.2 The Kernel Trick
	9.1.3 SVM in Action: Regression
	9.1.4 SVM in Action: Classification

	9.2 Summary

	Pipelines in Scikit-Learn
	Bibliography
	Index

