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Introduction to Random Variables

* Arandom variable assigns a real number to each outcome in the
sample space of a random experiment.

 Definition: For a given sample space S of an experiment, A random variable X is
a function that associates a real number with each outcome in S. That is
X:-R

« examples:
- Heads -> 1; Tails -> 0

- the sum of two dice, e.g. X =4 is the event {(1,3), (2,2), (3,1)}

Notation: we commonly use capital letters (such as X or Y) to denote random

variables, and lower case letters (such as x or y) to denote the corresponding values.
So, {X = x} is the event that the random variable X takes the specific value x.
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Example

Experiment:

- A process that produces random outcomes

- e.g. tossing two coins

Sample Space:

- a set of all possible outcomes produced by an experiment

- e.g. S={HH, HT, TH, TT}

Event:

- a subset of the sample space

- e.g. Let A denote the event that we get at most 1 heads.

Random Variable:

- Random variable map outcomes to numbers

- e.g. X = number of heads
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Two types of Random Variables

* Discrete Random Variable: a random variable that has only a specified
finite or countably list of possible values, i.e. x € {x,x,,... }.
- countable values, e.qg.
* number of customers waiting in line
* rolling a dice
 students’ grade level

- Bernoulli Random Variable: the simplest kind of random variable whose only
possible values are 0 and 1. e.g. True/False, Head/Tail, Success/Fail ...

 Continuous Random Variables: a random variable which can infinitely
many possible values in an interval,i.e.x € {x:a<x < b;a,b € R}
- uncountable value, e.g.
* waiting time for a bus
* height, weight
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Probability Distributions for Discrete
Random variables

* Definition:
The probability distribution or probability mass function (pmf) of a discrete random variable X is

defined by
px)=PX=x)=Palls e §:X(s)=x)
which represents the probability that the random variable X equals a specific value x.

Properties of pmf:

-px) =PX=x)20

- Forany eventA C S

PA= )  pW

all seA:X(s)=x
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Cumulative Distribution Function for
Discrete random variables

« Definition: The cumulative distribution function (cdf) F(x) of a discrete random

variable X with pdf p(x) is defined by
Fx)=PX <x)= Y p()

Viy<Xx

* Properties of cdf:
- The cumulative distribution function, F(x), is a non-decreasing function < for any
X1 < X, F(x)) £ F(x,)

lim F(x) = 0and lim F(x) = 1

X—>—Q0 X—> 0
- For any two real numbers a < b,

Pla < X < b)=F(b)—- F(a—), where “a—" is the largest possible value of

X that is strictly less than a.
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pmf vs cdf

pmf: P(X =x)

secdf: P(X <x)

* Let X be a discrete RV with the following pmf:

* The cdf of X is

F(x) = {

\

p(x) = F(x) = F(x—)
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p(x)

0,

P1,

P1 + P2,

P1 + P2 + P3,

Pi+P2+- + Pnot,
1,

P1 1%}

X < Xq

X1 <X < Xo
Xo < X < X3
X3 < X < X4

Xp—1 < X < Xp
Xp < X

and Fx)=PX <x) = ZP()’)

y<x

Pn




Example

* Let x be a random variable with the following mass function

X -3 -2 -1 0 1 4 6
P(X=x)  0.13 0.16 0.17 0.2 0.16 0.11 Kk
« Calculate
1)k 5) P(—2 < X < 1)
2) PIX < —12) 6) P(-2< X< 1)
3) The cdf of X, “F(x)” NP(-2<X<1)
4) P(X > 0) 8) P(-2<X<1)
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Expected Values of Discrete Random
Variables

* Definition: Let X be a discrete RV with a set of possible values

D = {x{,%,,...,x,} and pmf p(x). The expected or mean value of X, denoted as

E(X)orpu, orpuis

EX)=p= ) xpK)

xeD

 The Expected Value of a random variable gives a measure of the center of X

 Example:The following is the distribution of the number credit cards, X , a person

possesses. What is the expected number of credit cards that a randomly selected
person will possess?

X 0 1 2 3 4 5
p(x) 0.08 0.28 0.38 0.16 0.06 0.04
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Expected Value of functions of random variables

If X is a discrete rv with a pmf p(x) and A(x) is a function of X, then the expected

value of 4(X), denoted by E[A(X)] or p,x), is computed by

E[h(X)] = ) h(x)p(x)

all x

. The k™ moment of a random variable X is defined as E(Xk). Thus, the mean is the

first moment of X.

* Properties of expected value

- If ¢ is a constant, then E(c) = c.

- Constants can be factored out of expected values:
Elc - g(X)] = c - E[g(X)]

- The expected value of a sum is equal to the sum of expected values:
E [c161(X) + ¢,8,(X)| = ¢,E |[g:X)] + ¢,E |,(X)]
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The Variance and Standard Deviation

- Definition: Let X be a discrete rv with a pmf p(x) and expected

value 4. Then the variance of X, denoted by V(X), or 62 or 62, is

VX) = E[X - p?] = ) (x— w)*p()

all x

« The standard deviation (SD) of Xis 60 =/ o°. Note: 02, o> 0.

 The variance and standard deviation give the measure of spread

for random variables.

. A shortcut Formula for 6°: V(X) = 6> = E(X?) — ,uz

 Exercise: show the proof of the shortcut?
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The expected value and variance of a linear
function of X

- If the function /(x) is a linear function of X, i.e. i(x) = ax + b, then the

expected value and the variance of /i(x) can be easily computed as
- ElaX+ bl =aE[X]+ b

- V(aX + b) = a*V(X)

- SD(aX + b) = |a| - SDX)

- Exercise: suppose F(X) =5, V(X)) = 10and h(X) = — 4X + 3,
calculate the expected value, variance and standard deviation of

h(x)?
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Example

Suppose there is a non-balance coin which has the probability

P(T) = 2P(H). Let’s toss this non-balance coin two times

independently and let X be the number of heads we observed. Find:

* 1) the pmf and cdf of X
« 2)the expected number of heads and its variance

« 3)to play this game, you should pay $10, but you will gain $20 every time it turns

head, what is your expected gain and the corresponding variance?
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Some important Discrete Probability
Distributions

* Binomial Distribution
* Negative Binomial Distribution
 Hypergeometric Distribution

e Poisson Distribution
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Binomial Distribution

« A binomial experiment is a random experiment that satisfies the

following assumptions:

The experiment consists of n repeated trials.

Each trail can only result in two possible outcomes: a success or a failure.

The probability of success, denoted by p, is the same on every trial.

- The trials are independent.
« Binomial random variable: X = number of successes observed for the n

trials in a binomial experiment.

- We say that X follows a Binomial distribution, denoted by X ~ Bin(n, p)

where n, p are parameters.

 Example: Tossing a fair coin 5 times, let X be the number of heads, describe the

probability distribution of X?
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Properties of Binomial Distribution

- If X ~ Bin(n, p), then we have:

- The probability mass function (pmf) of X:

r(;{’)px(l -p)" "t x=0,1,2,...,n

\ 0 otherwise

b(x; n, p) = %

- Expected value (Mean) of X: E(X) = np

- Variance of X: V(X) = np(1 — p)

« Example: Tossing a fair coin n times, let X be the number of heads, what is
the probability of X=x7?
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Example

* In a restaurant an average of 3 out of every 5 customers ask for

¥

water with their meal. A random sample of 10 customers is

selected. Find the probability that

- exactly 6 ask for water with their meal

- less than 9 ask for water with their meal

- What is the expected number of asking for water and what is the corresponding

variance?
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Table A.1 Cumulative Binomial Probabilities

B(x;n.p) = > by n.p)
y=0

a.n=S5
4

0.01 0.05 0.10 0.20 025 030 040 050 060 070 075 030 090 095 099

0 951 J74 590 328 237 168 078 031 010 002 001 000 000 000 000
1 999 977 919 737 633 528 337 88 087 031 016 007 000 000 000
2 1.000 999 991 942 896 837 683 500 317 163 104 058 009 001 000
3 1.000 1000 1.000 993 984 969 913 B12 663 472 367 263 081 023 001
4 1.000 1.000  1.000 1000 999 998 990 969 922 832 763 672 410 226 049

b.n=10
P

0.01 0.05 0.10 0.20 025 030 040 050 060 070 075 030 090 095 099

0 904 599 349 107 056 028 006 001 000 000 000 000 000 000 000
1 996 914 736 376 244 149 046 011 002 000 000 000 000 000 000
2 1.000 988 930 678 526 383 167 055 012 002 000 000 000 000 000
3 1.000 999 987 879 776 650 382 72 055 011 004 001 000 000 000
4 1000 1.000 998 967 922 850 633 377 166 047 020 006 000 000 000
5 1.000 1000 1.000 994 980 953 B34 623 367 IS0 078 033 002 000 000
6 1000 1000 1.000 999 996 989 945 828 618 350 224 121 013 001 000
7 1.000 1.000  1.000 1000 1.000 998 988 945 833 617 474 322 070 012 000
8 1000 1000 1000 1000 1000 1000 998 989 954 851 56 624 264 086 004
9 1000 1000 1000 1000 1000 1000 1000 999 994 972 944 893 651 401 096
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egative Binomial Distribution

Negative Binomial experiment:
- each trial has only two possible outcomes: success/failure

- The probability of success is p for all trials

- repeatedly perform independent trial until having r success.

Negative Binomial random variable: X = the number of failures

before " success.

Then we say that X follows a Negative Binomial distribution,

X ~ NB(r,p), where r, p are parameters.

Example: if we keep tossing a fair coin until we get 5 times of heads, let X be the

number of tails we got, what is the probability distribution of X?
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Properties of negative binomial distribution

- If X ~ NB(r, p) then we have

 the pmfof Xis

x+r—1

e 1 )p’(l -pr x=012,...

nb(x; r, p) = (

l—p
p

Expected value: E(X) =r

l—p

Variance: V(X) =r
p?

When r = 1 in NB(r, p), then the negative binomial distribution reduces
to geometric distribution (X: number of failures before first success

occurs).
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Relationships with Binomial

 The binomial distribution and negative binomial distribution are

trying to answer somewhat opposite questions:

 For the binomial distribution:

- the total number of trials is fixed.

- the number of successes is random.

* For the negative binomial distribution:

- the total number of successes is fixed.

- the number of trials is random.

% DALHOUSIE
UNIVERSITY

23



Hypergeometric Distribution

 The assumptions to a hypergeometric distribution:

- A population of N objects

- M objects are characterized as success and N — M objects are characterized as
failure

- Pick randomly n objects without replacement (without replacement, means once we pick an

object, we do not put it back to the population.)

 Hypergeometric random variable: X = the number of successes

 Then we say X follows the hypergeometric distribution
X ~ h(n,M,N), where n, M, N are parameters

 Example: an urn contains a total of N balls, where M of the balls are red and the

remaining N-M balls are blue. Suppose we draw n times without replacement from the
urn and X = number of red balls we drew, then X ~ h(n, M, N)
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Properties of hypergeometric distribution

« X ~ h(n,M,N), then we have

« pmfof Xis

PX=x)=h(x;n,M,N) = ,max(O,n — N+ M) < x <min(n, M)

M

Expected value of X is £(X) = n XW
N—n M M
Variance of X is V(X) = ( )XnX—X (1l —-——)
N-1 N N
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Relationship with Binomial Distribution

 Binomial Distribution: draw with replacement

Given a population of N objects

- Randomly draw n times (n repeated trials)

. . M
_ M of the objects are characterized as success (the probability of success: p = W)
- draw with replacement (p(success) is same for all trials)

X = number of success

 Hypergeometric distribution: draw without replacement

 In binomial distribution, each draw is independent (p is same for

every trial); in hypergeometric distribution, each draw is not

independent (p changes)
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Example

« Suppose we randomly select 5 cards without replacement from a

deck of 52. What is the probability of getting exactly 2 red cards?

* If we draw 5 times with replacement (every time we draw a card, we note
down the color and then put it back to the deck), what is the probability of
observing 2 red cards?

% DALHOUSIE 57

UNIVERSITY



Poisson Distribution

 Poisson distribution can be used to model the number of events
occurred during a period time.

* Definition: A random variable X has a Poisson distribution, with
parameter A > 0, if its probability mass function is given by
e A

. P(X=x)=pois(x; 1) = — forx =0,1.2,...
x!

« denoted by X ~ Poisson(A).

« Note that e is a mathematical constant (¢ ~ 2.718)
« A =mean number of occurrences of the event over the interval

 Expected value and Variance

- If X ~ Poisson(A),then E(X) = V(X) =4
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Example

* Suppose that the number of typing errors per page has Poisson

distribution with average 6 typing errors.

1. What is the probability that in a given page, the number of typing errors will be
7?

2. What is the probability that in a given page, the number of typing errors will be at

least 27?
3. What is the probability that in 2 pages there will be 10 typing errors?
4. What is the probability that in a half page there will be no typing errors?
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Relationship with Binomial

e The Poisson distribution as a limit Binomial distribution

(n — oco,p — 0):
 Poisson approximation to the Binomial

- b(x; n, p) is difficult to compute when n is large.

- Binomial can be approximated by a Poisson distribution when n is large (n>50)

and p is small (p <5/n).
b(x; n, p) ~ pois(x; np)

 Example: Each computer in a cluster work properly with a probability of 99.9%.
The cluster has 100 computers. What is the probability that 2 computers are not

working properly.
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