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Introduction to Random Variables
• A random variable assigns a real number to each outcome in the 

sample space of a random experiment. 

• Definition: For a given sample space  of an experiment, A random variable  is 

a function that associates a real number with each outcome in . That is 

 

• examples:  

-  Heads -> 1; Tails -> 0 

- the sum of two dice, e.g. X = 4 is the event {(1,3), (2,2), (3,1)} 

Notation: we commonly use capital letters (such as  or ) to denote random 
variables, and lower case letters (such as  or ) to denote the corresponding values. 
So, {X = x} is the event that the random variable X takes the specific value x. 

S X
S

X : S → ℝ

X Y
x y
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Example
• Experiment: 

- A process that produces random outcomes 

- e.g. tossing two coins 

• Sample Space: 

- a set of all possible outcomes produced by an experiment 

- e.g. S={HH, HT, TH, TT} 

• Event: 

- a subset of the sample space 

- e.g. Let A denote the event that we get at most 1 heads. 

• Random Variable: 

- Random variable map outcomes to numbers 

- e.g. X = number of heads
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Two types of Random Variables
• Discrete Random Variable: a random variable that has only a specified 

finite or countably list of possible values, i.e. . 

- countable values, e.g.  

• number of customers waiting in line 

• rolling a dice 

• students’ grade level 

- Bernoulli Random Variable: the simplest kind of random variable whose only 
possible values are 0 and 1. e.g. True/False, Head/Tail, Success/Fail … 

• Continuous Random Variables: a random variable which can infinitely 

many possible values in an interval, i.e.  

- uncountable value, e.g.  

• waiting time for a bus 

• height, weight

x ∈ {x1, x2, . . . }

x ∈ {x : a < x < b; a, b ∈ ℝ}
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Probability Distributions for Discrete 
Random variables
• Definition: 
The probability distribution or probability mass function (pmf) of a discrete random variable X is 
defined by
                        
which represents the probability that the random variable X equals a specific value .

Properties of pmf:

- 

- 

- For any event 

                               

p(x) = P(X = x) = P(all s ∈ S : X(s) = x)
x

p(x) = P(X = x) ≥ 0

∑
all x

p(x) = 1

A ⊂ S
P(A) = ∑

all s∈A:X(s)=x

p(x)
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Cumulative Distribution Function for 
Discrete random variables
• Definition: The cumulative distribution function (cdf)  of a discrete random 

variable X with pdf p(x) is defined by  

                            

• Properties of cdf: 

- The cumulative distribution function, F(x), is a non-decreasing function  for any 

  

-  and  

- For any two real numbers ,  

, where “ ” is the largest possible value of 

X that is strictly less than .

F(x)

F(x) = P(X ≤ x) = ∑
y:y≤x

p(y)

↔
x1 < x2, F(x1) ≤ F(x2)

lim
x→−∞

F(x) = 0 lim
x→∞

F(x) = 1

a ≤ b

P(a ≤ X ≤ b) = F(b) − F(a−) a−
a
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pmf vs cdf
• pmf :  

• cdf :  

• Let X be a discrete RV with the following pmf: 

• The cdf of X is 

                       

•
          and          

P(X = x)

P(X ≤ x)

p(x) = F(x) − F(x−) F(x) = P(X ≤ x) = ∑
y≤x

p(y)
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X …

…

x1 x2 xn

p(x) p1 p2 pn



Example 
• Let x be a random variable with the following mass function 

• Calculate
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X -3 -2 -1 0 1 4 6

P(X=x) 0.13 0.16 0.17 0.2 0.16 0.11 k

1) k 

2)  

3) The cdf of X, “F(x)” 

4) 

P(X ≤ − 2)

P(X > 0)

5)  

6)  

7)  

8) 

P(−2 ≤ X ≤ 1)
P(−2 ≤ X < 1)
P(−2 < X ≤ 1)
P(−2 < X < 1)
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Expected Values of Discrete Random 
Variables
• Definition: Let X be a discrete RV with a set of possible values 

 and pmf . The expected or mean value of X, denoted as 

 or  or  is  

                                     

• The Expected Value of a random variable gives a measure of the center of X 

• Example:The following is the distribution of the number credit cards, X , a person 

possesses. What is the expected number of credit cards that a randomly selected 
person will possess?

D = {x1, x2, . . . , xn} p(x)
E(X) μx μ

E(X) = μ = ∑
x∈D

xp(x)
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X 0 1 2 3 4 5

p(x) 0.08 0.28 0.38 0.16 0.06 0.04



Expected Value of functions of random variables 

• If X is a discrete rv with a pmf  and  is a function of X, then the expected 

value of , denoted by , is computed by 

                                                   

• The  moment of a random variable  is defined as . Thus, the mean is the 

first moment of . 

• Properties of expected value 

- If  is a constant, then . 

- Constants can be factored out of expected values: 

 

- The expected value of a sum is equal to the sum of expected values: 

p(x) h(x)
h(X) E[h(X)] or μh(X)

E[h(X)] = ∑
all x

h(x)p(x)

kth X E(Xk)
X

c E(c) = c

E[c ⋅ g(X)] = c ⋅ E[g(X)]

E [c1g1(X) + c2g2(X)] = c1E [g1(X)] + c2E [g2(X)]

12



The Variance and Standard Deviation
• Definition: Let X be a discrete rv with a pmf  and expected 

value . Then the variance of X, denoted by , or  or , is 

                       

• The standard deviation (SD) of X is . Note: . 

• The variance and standard deviation give the measure of spread 
for random variables. 

• A shortcut Formula for :  

• Exercise: show the proof of the shortcut?

p(x)
μ V(X) σ2

x σ2

V(X) = E [(X − μ)2] = ∑
all x

(x − μ)2p(x)

σ = σ2 σ2, σ ≥ 0

σ2 V(X) = σ2 = E(X2) − μ2

13



The expected value and variance of a linear 
function of X
• If the function  is a linear function of X, i.e. , then the 

expected value and the variance of  can be easily computed as 

-  

-  

-  

• Exercise: suppose ,  and , 
calculate the expected value, variance and standard deviation of 

?

h(x) h(x) = ax + b
h(x)

E[aX + b] = aE[X] + b

V(aX + b) = a2V(X)

SD(aX + b) = |a | ⋅ SD(X)

E(X) = 5 V(X) = 10 h(X) = − 4X + 3

h(x)
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Example
Suppose there is a non-balance coin which has the probability  

. Let’s toss this non-balance coin two times 
independently and let X be the number of heads we observed. Find: 

• 1) the pmf and cdf of X 

• 2) the expected number of heads and its variance 

• 3) to play this game, you should pay $10, but you will gain $20 every time it turns 
head, what is your expected gain and the corresponding variance?

P(T ) = 2P(H)
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Some important Discrete Probability 
Distributions

• Binomial Distribution 

• Negative Binomial Distribution 

• Hypergeometric Distribution 

• Poisson Distribution

17



Binomial Distribution
• A binomial experiment is a random experiment that satisfies the 

following assumptions: 

- The experiment consists of n repeated trials. 

- Each trail can only result in two possible outcomes: a success or a failure. 

- The probability of success, denoted by p, is the same on every trial. 

- The trials are independent. 

• Binomial random variable: X = number of successes observed for the n 
trials in a binomial experiment. 

• We say that X follows a Binomial distribution, denoted by  
where n, p are parameters. 

• Example: Tossing a fair coin 5 times, let X be the number of heads, describe the 

probability distribution of X?

X ∼ Bin(n, p)
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Properties of Binomial Distribution
• If , then we have: 

- The probability mass function (pmf) of X: 

  

- Expected value (Mean) of  X:  

- Variance of X:                  

• Example: Tossing a fair coin n times, let X be the number of heads, what is 

the probability of X=x?

X ∼ Bin(n, p)

E(X) = np

V(X) = np(1 − p)
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Example
• In a restaurant an average of 3 out of every 5 customers ask for 

water with their meal. A random sample of 10 customers is 
selected. Find the probability that 

- exactly 6 ask for water with their meal 

- less than 9 ask for water with their meal 

- What is the expected number of asking for water and what is the corresponding 
variance? 
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Negative Binomial Distribution
• Negative Binomial experiment: 

- each trial has only two possible outcomes: success/failure 

- The probability of success is  for all trials 

- repeatedly perform independent trial until having r success. 

• Negative Binomial random variable: X = the number of failures 

before  success. 

• Then we say that X follows a Negative Binomial distribution, 

, where r, p are parameters. 

• Example: if we keep tossing a fair coin until we get 5 times of heads, let X be the 

number of tails we got, what is the probability distribution of X?

p

rth

X ∼ NB(r, p)
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Properties of negative binomial distribution
• If  then we have 

• the pmf of X is 

 

• Expected value:  

• Variance:   

• When  in , then the negative binomial distribution reduces 
to geometric distribution (X: number of failures before first success 
occurs).

X ∼ NB(r, p)

E(X) = r
1 − p

p

V(X) = r
1 − p

p2

r = 1 NB(r, p)
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Relationships with Binomial
• The binomial distribution and negative binomial distribution are 

trying to answer somewhat opposite questions: 

• For the binomial distribution: 

- the total number of trials is fixed. 

- the number of successes is random. 

• For the negative binomial distribution: 

- the total number of successes is fixed. 

- the number of trials is random.
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Hypergeometric Distribution
• The assumptions to a hypergeometric distribution: 

- A population of N objects 

- M objects are characterized as success and  objects are characterized as 
failure 

- Pick randomly n objects without replacement  (without replacement, means once we pick an 

object, we do not put it back to the population.) 

• Hypergeometric random variable: X = the number of successes 

• Then we say X follows the hypergeometric distribution 

, where  are parameters 

• Example: an urn contains a total of N balls, where M of the balls are red and the 

remaining N-M balls are blue. Suppose we draw n times without replacement from the 
urn and X = number of red balls we drew, then X ~ h(n, M, N)

N − M

X ∼ h(n, M, N) n, M, N
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Properties of hypergeometric distribution
• If , then we have 

• pmf of X is 

 

Expected value of X is  

Variance of X is 

X ∼ h(n, M, N)

P(X = x) = h(x; n, M, N ) =
(M

x ) (N − M
n − x )

(N
n )

, max(0,n − N + M) ≤ x ≤ min(n, M)

E(X) = n ×
M
N

V(X) = (
N − n
N − 1

) × n ×
M
N

× (1 −
M
N

)
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Relationship with Binomial Distribution
• Binomial Distribution: draw with replacement 

- Given a population of N objects 

- Randomly draw n times                                          (n repeated trials) 

- M of the objects are characterized as success      (the probability of success: ) 

- draw with replacement                                            (  is same for all trials) 

- X = number of success 

• Hypergeometric distribution: draw without replacement 

• In binomial distribution, each draw is independent (  is same for 
every trial); in hypergeometric distribution, each draw is not 

independent (  changes)

p =
M
N

p(success)

p

p
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Example
• Suppose we randomly select 5 cards without replacement from a 

deck of 52. What is the probability of getting exactly 2 red cards? 

• If we draw 5 times with replacement (every time we draw a card, we note 

down the color and then put it back to the deck), what is the probability of 
observing 2 red cards?
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Poisson Distribution
• Poisson distribution can be used to model the number of events 

occurred during a period time. 

• Definition: A random variable X has a Poisson distribution, with 

parameter , if its probability mass function is given by 

•  

• denoted by .   

• Note that  is a mathematical constant  ( ) 

•  = mean number of occurrences of the event over the interval 

• Expected value and Variance 

- If 

λ > 0

P(X = x) = pois(x; λ) =
e−λλx

x!
,  for x = 0,1,2,…

X ∼ Poisson(λ)

e e ≈ 2.718

λ

X ∼ Poisson(λ), then E(X) = V(X) = λ
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Example
• Suppose that the number of typing errors per page has Poisson 

distribution with average 6 typing errors. 

1. What is the probability that in a given page, the number of typing errors will be 
7? 

2. What is the probability that in a given page, the number of typing errors will be at 
least 2? 

3. What is the probability that in 2 pages there will be 10 typing errors? 

4. What is the probability that in a half page there will be no typing errors?
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Relationship with Binomial
• The Poisson distribution as a limit Binomial distribution 

( ): 

• Poisson approximation to the Binomial 

-  is difficult to compute when n is large. 

- Binomial can be approximated by a Poisson distribution when n is large (n>50) 
and p is small (p <5/n). 

                    

• Example: Each computer in a cluster work properly with a probability of 99.9%. 

The cluster has 100 computers. What is the probability that 2 computers are not 
working properly.

n → ∞, p → 0

b(x; n, p)

b(x; n, p) ≈ pois(x; np)
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