Back to Index       Back to newest additions
KATO K., KUROKAWA N., SAITO T.,
[1] Number theory. 1. Fermat's dream.
Translations of Mathematical Monographs, 186. Iwanami Series in Modern
Mathematics. American Mathematical Society, Providence, RI, 2000. xvi+154 pp.
KATSURADA M.,
[1] Power series and asymptotic series associated with the Lerch zeta-function.
Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), no. 10, 167-170.
[2] Rapidly convergent series representations for $\zeta(2n+1)$ and their $\chi$-analogue. Acta Arith. 90 (1999), no. 1, 79-89.
KLEINER I.,
[1] From Fermat to Wiles: Fermat's last theorem becomes a theorem.
Elem. Math. 55 (2000), no. 1, 19-37.
PITMAN J., YOR M.,
[1] Path decompositions of a Brownian bridge related to the ratio of its
maximum and amplitude.
Studia Sci. Math. Hungar. 35 (1999), no. 3-4, 457-474.
PORUBSKÝ S.,
[8] Identities with covering systems and Appell polynomials.
Number theory in progress, Vol. 1 (Zakopane, 1997), 407-417,
de Gruyter, Berlin, 1999.
TENENBAUM G.,
[1] Introduction to analytic and probabilistic number theory. Translated
from the second French edition (1995) by C. B. Thomas. Cambridge Studies
in Advanced Mathematics, 46. Cambridge University Press, Cambridge, 1995.
xvi+448 pp. ISBN: 0-521-41261-7
TAYA H.,
[1] Iwasawa invariants and class numbers of quadratic fields for the prime $3$.
Proc. Amer. Math. Soc. 128 (2000), no. 5, 1285-1292.
URBANOWICZ J., WILLIAMS K.S.,
[1] Congruences for $L$-functions. Mathematics and its Applications, 511.
Kluwer Academic Publishers, Dordrecht, 2000. xii+256 pp. ISBN: 0-7923-6379-5
December 13, 2000:
KIM TAEKYUN, RIM SEOG-HOON,
[1] A note on $p$-adic Carlitz's $q$-Bernoulli numbers.
Bull. Austral. Math. Soc. 62 (2000), no. 2, 227-234.
[2] Generalized Carlitz's $q$-Bernoulli numbers in the $p$-adic number field. Adv. Stud. Contemp. Math. (Pusan) 2 (2000), 9-19.
SUN ZHI-HONG,
[3] Congruences concerning Bernoulli numbers and Bernoulli polynomials.
Discrete Appl. Math. 105 (2000), no. 1-3, 193-223.
KUDO A.,
[7] A congruence of generalized Bernoulli number for the character of the
first kind. Adv. Stud. Contemp. Math. (Pusan) 2 (2000), 1-8.
WANG YUN KUI, MA WU YU
[1] Necessary and sufficient conditions for Bernoulli's numbers and
discriminant prime numbers. (Chinese)
J. Huaqiao Univ. Nat. Sci. Ed. 21 (2000), no. 3, 234-238.
ADELBERG A.,
[8] Universal higher order Bernoulli numbers and Kummer and related
congruences. J. Number Theory 84 (2000), no. 1, 119-135.
SLAVUTSKII I.SH.,
[32] A remark on the paper of A. Simalarides: "Congruences mod $p\sp n$ for
the Bernoulli numbers" [Fibonacci Quart. 36 (1998), no. 3, 276-281].
Fibonacci Quart. 38 (2000), no. 4, 339-341.
DATTOLI G., LORENZUTTA S., CESARANO C.,
[1] Finite sums and generalized forms of Bernoulli polynomials.
Rend. Mat. Appl. (7) 19 (1999), no. 3, 385-391 (2000).
LIU GUO DONG,
[4] Recurrence sequences and higher order multivariable Euler-Bernoulli
polynomials. (Chinese) Numer. Math. J. Chinese Univ. 22 (2000),
no. 1, 70-74.
KIM MIN-SOO, SON JIN-WOO,
[1] On Bernoulli numbers.
J. Korean Math. Soc. 37 (2000), no. 3, 391-410.
EHRENBORG R., STEINGRIMSSON E.,
[1] Yet another triangle for the Genocchi numbers.
European J. Combin. 21 (2000), no. 5, 593-600.
GUO SEN-LIN, QI FENG,
[1] Recursion formulae for $\sum\sp n\sb {m=1}m\sp k$.
Z. Anal. Anwendungen 18 (1999), no. 4, 1123-1130.
HATADA K.,
[4] On the limits of $p$-adic sequences of averages.
Sci. Rep. Fac. Ed. Gifu Univ. Natur. Sci. 24 (2000), no. 2, 7-13.
JEDELSKÝ D., SKULA L.,
[1] Some results from the tables of irregularity index of a prime.
Acta Math. Inform. Univ. Ostraviensis 8 (2000), 45-50.
FOX G.J., URBANOWICZ J., WILLIAMS K.S.,
[1] Gauss' congruence from Dirichlet's class number formula and generalizations.Number theory in progress, Vol. 2 (Zakopane, 1997), 813-839,
de Gruyter, Berlin, 1999.
ZIA-UD-DIN M.,
[2] Some more formulae for the Bernoullian mumbers.
Math. Student 15 (1938), 81-157.
October 6, 2000:
JONES G.A., JONES J.M.,
[1] Elementary number theory.
Springer-Verlag London, Ltd., London, 1998. xiv+301 pp.
KANEKO M., ZAGIER D.,
[1] Supersingular $j$-invariants, hypergeometric series, and Atkin's orthogonal
polynomials. Computational perspectives on number theory (Chicago, IL, 1995),
97-126, AMS/IP Stud. Adv. Math., 7, Amer. Math. Soc., Providence, RI, 1998.
September 7, 2000:
SIACCI F.,
[1] Sull'uso dei determinanti delle potenze intere dei numeri naturala,
Annali di Matematica, Ser. I., 7 (1865), 19-24.
SCHOENBERG I.J.,
[1] Monosplines and quadrature formulae. 1969 Theory and Applications of
Spline Functions (Proceedings of Seminar, Math. Research Center, Univ.
of Wisconsin, Madison, Wis., 1968) pp. 157-207 Academic Press, New York.
[5] Cardinal spline interpolation and the exponential Euler splines. Functional analysis and its applications (Internat. Conf., Eleventh Anniversary of Matscience, Madras, 1973; dedicated to Alladi Ramakrishnan), pp. 477--489. Lecture Notes in Math., Vol. 399, Springer, Berlin, 1974.
STEFFENSEN J.F.,
[2] The poweroid, an extension of the mathematical notion of power.
Acta Math. 73 (1941), 333-366.
[3] On the polynomials $R\sb \nu\sp {[\lambda]}(x)$, $N\sb \nu\sp {[\lambda]}(x)$ and $M\sb \nu\sp {[\lambda]}(x)$. Acta Math. 78 (1946), 291-314.
DILCHER K.,
[9] Von Staudt-Clausen Theorem. Encyclopedia of Mathematics, Supplement II.
Kluwer Academic Publishers, Dordrecht, 2000.
September 3, 2000:
AGOH T.,
[23] Generalization of Lehmer's congruences for Bernoulli numbers,
C. R. Math. Rep. Acad. Sci. Canada 22 (2000), no. 2, 61-65.
KIM MIN-SOO,
[1] On Bernoulli numbers.
J. Korean Math. Soc. 37 (2000), no. 3, 391-410.
MUSÈS C.,
[4] Some new considerations on the Bernoulli numbers, the factorial function,
and Riemann's zeta function.
Appl. Math. Comput. 113 (2000), no. 1, 1-21.
SRIVASTAVA H.M.,
[2] Some formulas for the Bernoulli and Euler polynomials at rational
arguments.
Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 1, 77-84.
LUCAS, E.,
[7] Sur les sommes des puissances semblables des nombres entries.
Nouv. Ann. (2) 16 (1877), 18-26.
MAMBRIANI A.,
[1] Sugli sviluppi, dati dallo Schwatt, di $\sec^p x$ e $\tg^p x$. (Italian)
Boll. Unione Mat. Ital. 10 (1931), 17-20.
July 10, 2000:
AGOH T.,
[22] Recurrences for Bernoulli and Euler polynomials and numbers,
Exposition. Math. 18 (2000), 197-214.
JANKOVIC Z.,
[1] Summen der gleichen Potenzen der natürlichen Zahlen,
Zeitschrift für math. u. naturwiss. Unterricht 74 (1943), 41-44.
KARST E.,
[1] On the coefficients of $\sum_{x=1}^n x^k/\sum_{x=1}^n x^m$, written in
terms of n, Pi Mu Epsilon J. 4 (1964), 11-14.
GOULD H.W.,
[1] Stirling number representation problems. Proc. Amer. Math. Soc. 11
(1960), no. 3, 447-451.
[2] The Lagrange interpolation formula and Stirling numbers. Proc. Amer. Math. Soc. 11 (1960), no. 3, 421-425.
[3] The $q$-Stirling numbers of first and second kinds. Duke Math. J. 28 (1961), no. 2, 281-289.
[4] Note on a paper of Klamkin concerning Stirling numbers. Amer. Math. Monthly 68 (1961), no. 5, 477-479.
[10] Evaluation of sums of convolved powers using Stirling and Eulerian numbers.Fibonacci Quart. 16 (1978), no. 6, 488-497, 560-561.
KLAMKIN M.S.,
[1] On a generalization of the geometric series. Amer. Math. Monthly 64
(1957), no. 2, 91-93.
July 8, 2000:
WANG YUN KUI,
[1] General expressions for sums of equal powers and Bernoulli numbers.
(Chinese. English, Chinese summary)
J. Guangxi Univ. Nat. Sci. Ed. 24 (1999), no. 4, 318-320.
KIM TAEKYUN,
[3] On $p$-adic $q$-Bernoulli numbers.
J. Korean Math. Soc. 37 (2000), no. 1, 21-30.
FRAPPIER C.,
[2] Generalised Bernoulli polynomials and series.
Bull. Austral. Math. Soc. 61 (2000), no. 2, 289-304.
SATOH J.,
[6] A recurrence formula for $q$-Bernoulli numbers attached to formal group.
Nagoya Math. J. 157 (2000), 93-101.
CHEN MING-PO,
[1] An elementary evaluation of $\zeta (2m)$.
Chinese J. Math. 3 (1975), no. 1, 11-15.
MEYER J.L.,
[1] Character analogues of Dedekind sums and transformations of analytic
Eisenstein series. Pacific J. Math. 194 (2000), no. 1, 137-164.
April 11, 2000:
ALZER H.,
[4] Sharp bounds for the Bernoulli numbers,
Arch. Math. (Basel) 74 (2000), no. 3, 207-211.
BAKER Andrew,
[1] A supersingular congruence for modular forms,
Acta Arith. 86 (1998), no. 1, 91-100.
CARLITZ L.,
[105] Generating functions,
Fibonacci Quart. 7 (1969), no. 4, 359-393.
DENCE J.B., DENCE Th. P.,
[1] Elements of the theory of numbers.
Harcourt/Academic Press, San Diego, CA, 1999. xviii+517 pp. ISBN 0-12-209130-2
DUMAS P., FLAJOLET P.,
[1] Asymptotique des récurrences mahlériennes: le cas
cyclotomique, J. Théor. Nombres Bordeaux 8 (1996), no. 1, 1-30.
EIE M., CHEN KWANG-WU
[1] A theorem on zeta functions associated with polynomials,
Trans. Amer. Math. Soc. 351 (1999), no. 8, 3217-3228.
GRAS G.,
[6] Étude d'invariants relatifs aux groupes des classes des corps
abéliens, Journées Arithmétiques de Caen (Univ. Caen,
Caen, 1976), pp. 35-53. Asterisque No. 41-42, Soc. Math. France, Paris, 1977.
GREENBERG R.,
[3] On the Jacobian variety of some algebraic curves,
Compositio Math. 42 (1980/81), no. 3, 345-359.
HONG SHAOFANG,
[1] Notes on Glaisher's congruences,
Chinese Ann. Math. Ser. B 21 (2000), no. 1, 33-38.
IWANIEC H.,
[1] Topics in classical automorphic forms.
Graduate Studies in Mathematics, 17. American Mathematical Society,
Providence, RI, 1997. xii+259 pp. ISBN 0-8218-0777-3.
KANEMITSU S., KUZUMAKI T.,
[1] On a generalization of the Maillet determinant.
Number theory (Eger, 1996), 271-287, de Gruyter, Berlin, 1998.
KATSURADA H.,
[3] Rapidly convergent series representations for $\zeta(2n+1)$ and their $\chi$
-analogue,
Acta Arith. 90 (1999), no. 1, 79-89.
KATSURADA M., MATSUMOTO K.,
[2] Explicit formulas and asymptotic expansions for certain mean square of
Hurwitz zeta-functions. II. New trends in probability and statistics,
Vol. 4 (Palanga, 1996), 119-134, VSP, Utrecht, 1997.
KIM JAE MOON,
[3] Units and cyclotomic units in ${Z}\sb p$-extensions,
Nagoya Math. J. 140 (1995), 101-116.
SCHMIDT P.,
[1] The Stickelberger element of an imaginary quadratic field,
Acta Math. 91 (1999), no. 2, 165-169.
SHOKROLLAHI M.A.,
[2] Relative class number of imaginary abelian fields of prime conductor below
10000, Math. Comp. 68 (1999), no. 228, 1717-1728.
SOULÉ CH.,
[2] Perfect forms and the Vandiver conjecture,
J. Reine Angew. Math. 517 (1999), 209-221.
UZBANSKIJ V.M.,
[1] Dmitrij Grave i ego vremya [Dmitrij Grave and his time],
Naukova Dumka, Kiev, 1998, 268 pp.
March 31, 2000:
LIU GUO DONG,
[3] Generalized Euler-Bernoulli polynomials of order $n$. (Chinese),
Math. Practice Theory 29 (1999), no. 3, 5-10.
SLAVUTSKII I.SH.,
[31] Leudesdorf's theorem and Bernoulli numbers,
Arch. Math. (Brno) 35 (1999), 299-303.
SUBRAMANIAN P.R.,
[2] Evaluation of ${\rm Tr}(J\sp {2p}\sb \lambda)$ using the Brillouin function,
J. Phys. A, 19 (1986), no. 7, 1179-1187.
[3] Generating functions for angular momentum traces, J. Phys. A, 19 (1986), no. 13, 2667-2670.
SUBRAMANIAN P.R., DEVANATHAN V.,
[2] Recurrence relations for angular momentum traces,
J. Phys. A, 13 (1980), 2689-2693.
March 10, 2000:
ROBBINS N.,
[1] Revisiting an old favourite: $\zeta(2m)$,
Math. Mag. 72 (1999), no. 4, 317-319.
SCHOENBERG I.J.,
[1] Norm inequalities for a certain class of $C\sp{\infty }$ functions,
Israel J. Math. 10 (1971), 364-372.
[3] Cardinal spline interpolation. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. vi+125 pp.
[4] On the remainders and the convergence of cardinal spline interpolation for almostperiodic functions. Studies in spline functions and approximation theory, pp. 277-303. Academic Press, New York, 1976.
LEE JUNGSEOB,
[1] Integrals of Bernoulli polynomials and series of zeta function,
Commun. Korean Math. Soc. 14 (1999), no. 4, 707-716.
LÓPEZ J.L.; TEMME N.M.,
[2] Hermite polynomials in asymptotic representations of
generalized Bernoulli, Euler, Bessel, and Buchholz polynomials,
J. Math. Anal. Appl. 239 (1999), no. 2, 457-477.
January 22, 2000:
ARAKAWA T., KANEKO M.,
[2] On poly-Bernoulli numbers,
Comment. Math. Univ. St. Paul. 48 (1999), no. 2, 159-167.
SLAVUTSKII I.SH.,
[30] About von Staudt congruences for Bernoulli numbers,
Comment. Math. Univ. St. Paul. 48 (1999), no. 2, 137-144.
LÓPEZ J.L.; TEMME N.M.,
[1] Uniform approximations of Bernoulli and Euler polynomials in terms of
hyperbolic functions. Stud. Appl. Math. 103 (1999), no. 3, 241-258.
FOX, G.J.,
[2] Euler polynomials at rational numbers,
C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 3, 87-90.
MILLAR J., SLOANE N.J.A., YOUNG N.E.,
[1] A new operation on sequences: the boustrophedon transform,
J. Combin. Theory Ser. A 76 (1996), no. 1, 44--54.
January 21, 2000:
ALMKVIST G., GRANVILLE A.,
[1] Borwein and Bradley's Apéry-like formulae for $\zeta(4n+3)$,
Experiment. Math. 8 (1999), no. 2, 197-203.
BERNDT B.C.,
[12] Ramanujan's notebooks. Part IV. Springer-Verlag, New York,
1994. xii+451pp.
CORNELISSEN G.,
[1] Zeros of Eisenstein series, quadratic class numbers and supersingularity
for rational function fields,
Math. Ann. 314 (1999), no. 1, 175-196.
IBUKIYAMA T.,
[1] On some elementary character sums,
Comment. Math. Univ. St. Paul. 47 (1998), no. 1, 7-13.
JAKUBEC S.,
[9] Note on the congruence of Ankeny-Artin-Chowla type modulo $p\sp 2$,
Acta Arith. 85 (1998), no. 4, 377-388.
JAKUBEC S., LASSÁK M.,
[1] Congruence of Ankeny-Artin-Chowla type modulo $p\sp 2$.
Number theory (Cieszyn, 1998). Ann. Math. Sil. No. 12, (1998), 75-91.
ONO K.,
[1] Indivisibility of class numbers of real quadratic fields,
Compositio Math. 119 (1999), no. 1, 1-11.
ROTA G.-C.,
[1] Combinatorial snapshots,
Math. Intelligencer 21 (1999), no. 2, 8-14.
SCHINZEL A., URBANOWICZ J., VAN WAMELEN P.,
[1] Class numbers and short sums of Kronecker symbols,
J. Number Theory 78 (1999), no. 1, 62--84.
YANG BI CHENG, ZHU YUN HUA,
[1] Inequalities for the Hurwitz zeta-function on the real axis (Chinese),
Acta Sci. Natur. Univ. Sunyatseni 36 (1997), no. 3, 30-35.
Back to Index       New in 1999